首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 194 groundwater samples were collected from wells in hard rock aquifers of the Medak district, South India, to assess the distribution of fluoride in groundwater and to determine whether this chemical constituent was likely to be causing adverse health effects on groundwater user in the region. The study revealed that the fluoride concentration in groundwater ranged between 0.2 and 7.4 mg/L with an average concentration of 2.7 mg/L. About 57% of groundwater tested has fluoride concentrations more than the maximum permissible limit of 1.5 mg/L. The highest concentrations of fluoride were measured in groundwater in the north-eastern part of the Medak region especially in the Siddipeta, Chinnakodur, Nanganoor and Dubhaka regions. The areas are underlain by granites which contain fluoride-bearing minerals like apatite and biotite. Due to water–rock interactions, the fluoride has become enriched in groundwater due to the weathering and leaching of fluoride-bearing minerals. The pH and bicarbonate concentrations of the groundwater are varied from 6.6 to 8.8 and 18 to 527 mg/L, respectively. High fluoride concentration in the groundwater of the study area is observed when pH and the bicarbonate concentration are high. Data plotted in Gibbs diagram show that all groundwater samples fall under rock weathering dominance group with a trend towards the evaporation dominance category. An assessment of the chemical composition of groundwater reveals that most of the groundwater samples have compositions of Ca2+–Mg2+–Cl? > Ca2+–Na+–HCO3 ? > Ca2+–HCO3 ? > Na+–HCO3 ?. This suggests that the characteristics of the groundwater flow regime, long residence time and the extent of groundwater interaction with rocks are the major factors that influence the concentration of fluoride. It is advised not to utilize the groundwater for drinking purpose in the areas delineated, and they should depend on alternate safe source.  相似文献   

2.
Groundwater is the most important source of water supply in Iran and understanding the geochemical evolution of groundwater is important for sustainable development of the water resources in Tabas area. A total of 29 samples of groundwater in Tabas area have been analyzed for ions and major elements. Groundwater of the study area is characterized by the dominance of Na–Cl water type. Groundwater was generally acidic to high alkaline with pH ranging from 5.42 to 10.75. The TDS as a function of mineralization characteristics of the groundwater ranged from 479 to 10,957 mg/l, with a mean value of 2,759 mg/l. The Ca2+, Mg2+, SO4 2? and HCO3 ? were mainly derived from the dissolution of calcite, dolomite and gypsum. The Cu, Pb and Zn ions are not mobile in recent pH–Eh, but these conditions controlled dissolved Se, V and Mo in groundwater. The As is released in groundwater as a result of the weathering of sulfide minerals like arsenopyrite.  相似文献   

3.
Hydrochemical and stable isotopes (18O and 2H) analyses of groundwater samples were employed to establish the origin of major dissolved ions in groundwater within the Lower Pra Basin. Results showed that, the major processes responsible for chemical evolution of groundwater include: silicate (SiO4)4? dissolutions, ion exchange reactions, sea aerosol spray and pyrite (FeS2) and arsenopyrite (FeAsS) oxidations. The groundwater is strongly acidic to neutral, with pH generally range from 3.5 to 7.0 pH units and mean 5.9 (±0.5). Approximately 89 % of boreholes had pH values outside the World Heath Organization (WHO, Guidelines for drinking water quality, 2004) guideline value for drinking water due principally to natural biogeochemical processes and therefore, not suitable for potable purposes. Electrical conductivity (EC) range from 57.6 to 1,201 μS/cm with mean 279.3 (±198.8) μS/cm. Total dissolved solids (TDS) range from 32 to 661 mg/L with mean 151.7 (±106.8) mg/L, with 98.6 % of groundwater as fresh (TDS < 500 mg/L). The chemical constituents generally have low concentrations and are within the WHO (Guidelines for drinking water quality, 2004) guideline value for drinking water. The relative abundance of cations and anions is in the order: Na+ > Ca2+> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2?, respectively. A plot of ?18O ‰ against 2H ‰ showed that, ground and surface waters clustered on or closely along the Global Meteoric Water Line, suggesting that, the waters emanated principally from meteoric source with evaporation playing an insignificant role on the infiltrating water.  相似文献   

4.
Groundwater samples (n = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeochemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) which is an index to represent the total concentration of soluble salts in water was used to measure the salinity hazard to crops as it reflects the TDS in groundwater ranging from 97 to 1385 μS/cm, except one well in Sopore. The average concentration of major ions was higher in shallow aquifers than in deeper aquifers. In general, Ca2+ is the dominant cation and HCO \(_{3}^{-}\) the dominant anion. Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3, Na–HCO3 were the dominant hydrogeochemical facies. High concentration of HCO3 and pH less than 8.8 clearly indicated that intense chemical weathering processes have taken place in the study area. The groundwater flow pattern in the area follows the local surface topography which not only modifies the hydrogeochemical facies but also controls their distribution. The groundwater in valley flows into four directions, i.e., SW–NE, NE–W, SE-NW and SE–NE directions. The results suggest that carbonate dissolution is the dominant source of major ions followed by silicate weathering and ion-exchange processes. The concentrations of all the major ions determined in the present study are within the permissible limits of WHO and BIS standards. The results of Total Hardness, SAR, Na%, Kelly Index, USDA classification, Magnesium absorption ratio, residual sodium carbonate, and PI suggested that groundwater is good for drinking, livestock, and irrigation purposes.  相似文献   

5.
The Cuatrociénegas area is useful for the investigation of the effect of groundwater extraction in the Chihuahuan freshwater xeric ecoregion. It has been investigated at this time using a selection of geochemical indicators (major, minor and trace elements) and δ34S data, to characterize the origin of groundwater, the main geochemical processes and the mineral/groundwater interactions controlling the baseline geochemistry. The area is composed of limestones of Mesozoic age, with a composite thickness of about 500 m, overlaid by basin fill (poorly consolidated young sediments). Substantial water extraction and modification of natural discharges from the area along the last century have produced a detrimental impact on ecosystem structure and function. Water–rock interactions, mixing and evaporative processes dominate the baseline groundwater quality. Natural recharge is HCO3–Ca type in equilibrium with calcite, low salinity (TDS?<?500 mg/L), Cl? lower than 11 mg/L and average Li+ concentration of 0.005 mg/L. Along the groundwater flow systems, δ34S evidence and mass transfer calculations indicate that Cretaceous gypsum dissolution and dedolomitization reactions adjust water composition to the SO4–Ca type. The increase of water–rock interaction is reflected by Cl? values increase (average 68 mg/L), TDS up to about 1500 mg/L and an average Li+ concentration of 0.063 mg/L. Calculations with chemical geothermometers indicate that temperature at depth could be at maximum of 15–20 °C higher than field-measured temperature for pozas. After groundwater is discharged to the surface, chemical evolution continues; water evaporation, CO2 degassing and precipitation of minerals such as gypsum, calcite and kaolinite represent the final processes and reactions controlling water chemical composition.  相似文献   

6.
Groundwater samples were collected from various localities of Mithi sub-district of the Thar Desert of Pakistan and analysed for fluoride ion along with other chemical parameters. The area is mainly covered by sand dunes and kaolin/granite at variable depths. Results showed that collected water samples were severely contaminated by the presence of fluoride ion and most of the samples have higher concentration than prescribed WHO standards (1.5 mg/l) for drinking water. Fluoride ion concentrations ranged between 0.09 and 11.63 mg/l with mean and median values of 3.64 and 3.44 mg/l, respectively, in this area whereas, distribution pattern showed high concentrations in the vicinity of Islamkot and Mithi towns. The content of F has also been correlated with other major ions found in the groundwater of the study area. The positive correlation of F with Na+ and HCO3 showed that the water with high Na+ and HCO3 stabilizes F ions in the groundwater of the Thar Desert. The pH versus F plots signifies high fluoride concentration at higher pH values, implying that alkaline environment favours the replacement of exchangeable OH with F in the groundwater of Mithi area. The saturation indices (SI) of fluorite (CaF2) and calcite (CaCO3) in the groundwater samples showed that most of the samples are oversaturated with respect to calcite whereas majority of samples have been found under saturated with respect to fluorite. The log TDS and Na/Na+Ca ratio reflected supremacy of weathering of rocks, which promotes the availability of fluoride ions in the groundwater. Piper diagram has been used to classify the hydrofacies. In the cation triangle, all samples are Na-type, while the anion triangle reflects major dominance of Cl-type with a minor influence of HCO3 and SO4 .  相似文献   

7.
The Ganges River water and riverbank shallow groundwater were studied during a single wet season using the hydrochemical and isotopic composition of its dissolved load. The dissolved concentrations of major ions (Cl?, SO4 2?, NO3 ?, HCO3 ?, Ca2+, Na+, Mg2+, and K+), trace elements (barium (Ba) and strontium (Sr)) and stable isotopes (O and D) were determined on samples collected from the Ganges River and its riverbank shallow aquifers. In the present study, the shallow groundwater differs significantly from the Ganges River water; it shows distinct high concentrations of Ca2+, Mg2+, HCO3 ?, Ba, and Sr due to water–rock interaction and this in particular suggests that the Ganges River may not contribute significantly to the riverbank shallow aquifers during wet season. Besides, the sum of the total cationic charge (∑+, in milliequivalents per liter) in the groundwater shows high values (2.48 to 13.91 meq/L, average 9.12 meq/L), which is much higher than the sum of the cations observed in the Ganges water (1.36 to 3.10 meq/L, average 1.94 meq/L). Finally, the more depleted stable isotopic (δ 18O and δ 2H) compositions of the Ganges River water are in contrast to those of the riverbank aquifer having enriched stable isotopic values during the wet season and the riverbank groundwater thus has a purely local origin from precipitation.  相似文献   

8.
The main ions were measured seasonally during two years at 13 sampling stations in the Salado River and its main tributaries. The importance of each ion was assessed by standard methods used to examine ionic composition and by multivariate methods. The K-means clustering and Principal Component Analysis were applied to the percentages of the major ions. The concentration of the major cations are in the order Na+ > Mg2+ > Ca2+ > K+ and the major anions, Cl > SO42− > HCO3 > CO32−, and the salinity was high (mean TDS 2,691 mg l−1) due to sodium chloride. Using the proportions of the ions was possible to identify seven types of water within the basin related to discharges of different river sub-catchments and from endorheic catchments (in a sand dune region) actually connected with the basin by canals. The chemical composition of the basin is consequence of surface waters receiving salts from groundwater, evaporation and weathering of Post-Pampeano materials, and of anthropogenic impact by diversion between subcatchments for flood control. These results allowed us to test the marked effects on the ionic balance of basin at the base of a diversion management from endorheic catchments characterized by high salinity waters.  相似文献   

9.
Assessment of groundwater quality is essential to ensure sustainable use of it for drinking, agricultural, and industrial purposes. The chemical quality of groundwater of Gaya region has been studied in detail in this work to delineate the potable groundwater zones. A total of 30 groundwater samples and 2 surface water samples were collected in and around Gaya district of Bihar. The major cations follow the trend: Ca2+?>?Mg2+?>?Na+?>?K+. The domination of calcium ions in the groundwater is due to weathering of rocks. The K+ ranged between 0.2 and 47.95 ppm, suggesting its abundance the below desired limit; but some samples were found to be above permissible limit. K+ weathering of potash silicate and the use of potash fertilizer could be the source. The major anions abundance followed the order HCO 3 ? ?>?Cl??>?SO 4 2? ?>?NO 3 ? ?>?PO 4 3? . Dissolution of carbonates and reaction of silicates with carbonic acid accounts for the addition of HCO 3 ? to the groundwater and oxidation of sulphite may be the source of SO 4 2? . Principal component analysis was utilized to reflect those chemical data with the greatest correlation and seven major principal components (PCs) representing >80 % of cumulative variance were able to interpret the most information contained in the data. PC1, PC2 and PC3 reflect the hydrogeochemical processes like mineral dissolution, weathering and anthropogenic sources. PC4, PC5, PC6 and PC7 show monotonic, random and independent relationships.  相似文献   

10.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

11.
The chemical characteristics of surface, groundwater and mine water of the upper catchment of the Damodar River basin were studied to evaluate the major ion chemistry, geochemical processes controlling water composition and suitability of water for domestic, industrial and irrigation uses. Water samples from ponds, lakes, rivers, reservoirs and groundwater were collected and analysed for pH, EC, TDS, F, Cl, HCO3, SO4, NO3, Ca, Mg, Na and K. In general, Ca, Na, Mg, HCO3 and Cl dominate, except in samples from mining areas which have higher concentration of SO4. Water chemistry of the area reflects continental weathering, aided by mining and other anthropogenic impacts. Limiting groundwater use for domestic purposes are contents of TDS, F, Cl, SO4, NO3 and TH that exceed the desirable limits in water collected from mining and urban areas. The calculated values of SAR, RSC and %Na indicate good to permissible use of water for irrigation. High salinity, %Na, Mg-hazard and RSC values at some sites limit use for agricultural purposes.  相似文献   

12.
Datong Basin is one of the Cenozoic faulted basins in Northern China’s Shanxi province, where groundwater is the major source of water supply. The results of hydrochemical investigation show that along the groundwater flow path, from the margins to the lower-lying central parts of the basin, groundwater generally shows increases in concentrations of TDS, HCO3 ?, SO4 2?, Cl?, Na+ and Mg2+ (except for Ca2+ content). Along the basin margin, groundwater is dominantly of Ca–HCO3 type; however, in the central parts of the basin it becomes more saline with Na–HCO3-dominant or mixed-ion type. The medium-deep groundwater has chemical compositions similar to those of shallow groundwater, except for the local area affected by human activity. From the mountain front to the basin area, shallow groundwater concentrations of major ions increase and are commonly higher than those in medium-deep aquifers, due to intense evapotranspiration and anthropogenic contamination. Hydrolysis of aluminosilicate and silicate minerals, cation exchange and evaporation are prevailing geochemical processes occurring in the aquifers at Datong Basin. The isotopic compositions indicate that meteoric water is the main source of groundwater recharge. Evaporation is the major way of discharge of shallow groundwater. The groundwater in medium-deep aquifers may be related to regional recharges of rainwater by infiltrating along the mountain front faults, and of groundwater permeating laterally from bedrocks of the mountain range. However, in areas of groundwater depression cones, groundwater in the deep confined aquifers may be recharged by groundwater from the upper unconfined aquifer through aquitards.  相似文献   

13.
A base line study involving analysis of groundwater samples from the Jhansi district were carried out to determine the major and trace element chemistry and to assess the hydrogeochemical processes and water quality for domestic and irrigation uses. Study results show that groundwater is mildly acidic to alkaline in nature and HCO3 ?, Cl?, Ca2+, Na+ and Mg2+ are the major contributing ions for the dissolved loads. The data plotted on the Gibbs and Piper diagrams reveal that the groundwater chemistry is mainly controlled by rock weathering with secondary contribution from anthropogenic sources. In a majority of the groundwater samples, alkaline earth metals exceed alkalies and weak acid dominate over strong acids. Ca–Mg–HCO3 is the dominant hydrogeochemical facies in the majority of the groundwater samples. The computed saturation indices demonstrate that groundwater is oversaturated with respect to dolomite and calcite. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the groundwater chemistry favors kaolinite formation. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that the concentrations of TDS, F?, NO3 ?, total hardness and Fe are exceeding the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is of good to suitable category. Higher salinity and residual sodium carbonate values at some sites restrict the suitability of groundwater and need an adequate drainage and water management plan for the area.  相似文献   

14.
Water samples for chemical analyses were collected in January 2012. A total of 72 samples of groundwater were collected from 72 boreholes in the Midyan Basin, northwestern Saudi Arabia. Samples were collected in polyethylene bottles and preserved and the used analytical techniques were in accordance with the standard methods from American public health association. Geochemical analyses of the groundwater samples from Midyan Basin reveal the concentration of fluoride (F) between 0.98 and 2.1 mg/l. Other parameters, e.g, pH, EC, TDS, HCO3, SO4, NO3, Cl, K, Na, Mg, and Ca have been found in a variable proportion. Among them, the concentration of EC, HCO3, K, Na and Mg is higher than the permissible limits. According to thermodynamical considerations, most of the analysed samples are graded under-saturated with respect to calcite and fluoride, while saturation has been observed in some samples. The under-saturation could probably be attributed to low concentration of calcite and fluoride in the studied wells. Fluoride concentration shows weak positive correlation with EC, TDS, Na, Cl, and SO4. Factors controlling the concentration of fluoride (F) in the studied samples are the area climate, water chemistry and the presence of accessory minerals in the rocks through which groundwater is circulating, besides the anthropogenic activities in the area.  相似文献   

15.
Hydrogeochemistry of groundwater in hard rock terrain are mainly governed by lithology and land use practices. A study area near Madurai region of central Tamil Nadu was selected with various litho-units and a hard rock sedimentary contact with an unconformity. Land use practices in these regions are also varied with lithology. The study was conducted by collecting 54 groundwater samples spatially covering the major litho-units. Collected samples were analyzed for electrical conductivity, pH, total dissolved solids (TDS), temperature, Ca, Mg, Na, K, Cl, HCO3, NO3, H4SiO4, PO4, and SO4. The results of the samples analyzed found to vary spatially. Dominance of ion shows that the alkalies are predominant and HCO3 is the dominant anion. Piper facies show that the samples are alkali-carbonate type indicating the predominance of weathering. Most of the parameters exceed the drinking water permissible limit. Standard plots and statistical analysis also indicate weathering as the major process governing the hydrogeochemistry of the groundwater in the region. Relative mobility of cations indicates that the rate of liberation of alkalies from the lithology is more prominent.  相似文献   

16.
The Markandeya River Basin stretches geographically from 15o56′ to 16o08′ N latitude and 74o37′ to 74o58′ E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. The groundwater quality of 54 pre-monsoon samples in the Markandeya River Basin was evaluated for its suitability for drinking and irrigation purposes by estimating pH, EC, TDS, hardness and alkalinity besides major cations (Na+, K+, Ca2+, Mg2+) and anions (HCO3–, Cl–, SO42–, PO43-, F-, NO3–), boron, SAR, % Na, RSC, RSBC, chlorinity index, SSP, non-carbonate hardness, Potential Salinity, Permeability Index, Kelley’s ratio, Magnesium hazard and Index of Base Exchange. Negative Index of Base Exchange indicates the chloro-alkaline disequilibrium in the study area and the majority of water samples fall in the rock dominance field based on Gibbs’ ratio. Permeability indices of classes I and II suggest suitability of groundwater for irrigation. Based on Cl, SO4, HCO3 concentrations, water samples can be classified as normal chloride (96.3%) and normal sulfate (94.4%) and normal bicarbonate (44.4%) water types.  相似文献   

17.
Excess fluoride in groundwater affects the human health and results in dental and skeletal fluorosis. Higher concentration of fluoride was noted in hard rock terrain of the south India, in the Krishnagiri district of Tamilnadu. The region has a complex geology ranging from ultra basic to acid igneous rocks, charnockite and gneissic rocks. Thirty-four groundwater samples were collected from this study area and analysed for major cations and anions along with fluoride. The order of dominance of cations is Na+?>?Mg2+?>?Ca2+?>?K+ and the anions in the following order HCO3 ??>?Cl??>?NO3 ??>?SO4 2?. It is found that nearly 58 % of the samples have more fluoride ranging from 1 to 3 mg/L. It is also noted that high fluoride waters correspond to magnesium water types. This is due to the release of fluoride from the magnesium-bearing minerals like, biotite, hornblende, etc., or weathering of apatite/hydroxyapatites found in charnockites.  相似文献   

18.
Mine water samples collected from different mines of the North Karanpura coalfields were analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness (TH), major anions, cations and trace metals to evaluate mine water geochemistry and assess solute acquisition processes, dissolved fluxes and its suitability for domestic, industrial and irrigation uses. Mine water samples are mildly acidic to alkaline in nature. The TDS ranged from 185 to 1343 mg L?1 with an average of 601 mg L?1. Ca2+ and Mg2+ are the dominant cations, while SO4 2? and HCO3 ? are the dominant anions. A high concentration of SO4 2? and a low HCO3 ?/(HCO3 ? + SO4 2?) ratio (<0.50) in the majority of the water samples suggest that either sulphide oxidation or reactions involving both carbonic acid weathering and sulphide oxidation control solute acquisition processes. The mine water is undersaturated with respect to gypsum, halite, anhydrite, fluorite, aluminium hydroxide, alunite, amorphous silica and oversaturated with respect to goethite, ferrihydrite, quartz. About 40% of the mine water samples are oversaturated with respect to calcite, dolomite and jarosite. The water quality assessment shows that the coal mine water is not suitable for direct use for drinking and domestic purposes and needs treatment before such utilization. TDS, TH, F?, SO4 2?, Fe, Mn, Ni and Al are identified as the major objectionable parameters in these waters for drinking. The coal mine water is of good to suitable category for irrigation use. The mines of North Karanpura coalfield annually discharge 22.35 × 106 m3 of water and 18.50 × 103 tonnes of solute loads into nearby waterways.  相似文献   

19.
Fluoride in drinking water has both beneficial and detrimental effects on public health, and a narrow range between .6 and 1.5 mg/L is optimal for consumption. However, natural groundwater sources exceed these guidelines affecting the entire population. This study aims to assess the distribution and controlling factors of fluoride concentration in the Tamiraparani River basin, South India. A total of 124 groundwater samples were analyzed for their fluoride content and other hydrogeochemical parameters. The fluoride concentration in the study area varied from .01 to 1.67 mg/L, and the highest concentrations were measured in the northern and central parts of the study area, which is underlain by charnockites and hornblende biotite gneiss. The sampling indicated (as per the Bureau of Indian Standards) that 53.9% of the area has fluoride concentrations below levels that are protective of teeth from dental caries (<.6 mg/L). .1% of the area is considered to be at risk of dental fluorosis, and the remaining 46% of the area is considered to have fluoride levels at desirable to permissible limit in groundwater. The groundwater in the study area belongs to Ca–Mg–Cl–SO4 and Ca–Mg–HCO3 types. A positive correlation between fluoride and TDS, Na+, K+ and HCO3 ? indicates its geogenic origin, and positive loading between pH and fluoride shows that alkaline environment enhances the dissolution of fluoride-bearing minerals into the groundwater. An empirical Bayesian kriging model was applied to interpolate the fluoride concentration in the study area. This geostatistical model is found to be better than other kriging methods, and it yielded an average standard error of .332 and root-mean-square standardized value of .986.  相似文献   

20.
The Ordos Basin of China encompasses Shaanxi, Gansu, and Shanxi provinces, Ningxia and Inner Mongolia autonomous regions. It lacks significant surface water resources. Among the water-bearing formations, the Luohe formation, with an area of 1.32×105 km2, is the most prospective aquifer. Groundwater quality data collected at 211 boreholes drilled into the Luhe formation indicate a complex distribution of groundwater chemistry. The hydrochemical properties were used to study the recharge, runoff, and discharge conditions of the groundwater in Ordos Basin and to evaluate sustainable groundwater resources. In the northern part of the basin, the hydrochemistry types and the total dissolved solids (TDS) show a clear lateral transition from SEE to NWW, indicating that the groundwater gets recharge in the northwest region and discharges in the southeast region. In the southern part of the basin, maximum TDS occurs at the center of the Malian River valley, from which the TDS decreases radially. Therefore, the groundwater in the southern basin gets recharge from the southeast and southwest regions, and the Malian River valley is the discharge zone. As a result of this research, the areas with portable groundwater were delineated. They include most of the southeast region of the Sishili Ridge, east of the Ziwu Mountain, and the southwest corner of the basin. The TDS of the groundwater in these regions is less than 1 g/l, and the hydrochemistry type is either HCO3 or HCO3·SO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号