首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

2.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

3.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   

4.
The timing and extent to which the initial interstellar material was thermally processed provide fundamental constraints for models of the formation and early evolution of the solar protoplanetary disk. We argue that the nonsolar (solar Δ17O ≈ ?29‰) and near‐terrestrial (Δ17O ≈ 0‰) O‐isotopic compositions of the Earth and most extraterrestrial materials (Moon, Mars, asteroids, and comet dust) were established very early by heating of regions of the disk that were modestly enriched (dust/gas ≥ 5–10 times solar) in primordial silicates (Δ17O ≈ ?29‰) and water‐dominated ice (Δ17O ≈ 24‰) relative to the gas. Such modest enrichments could be achieved by grain growth and settling of dust to the midplane in regions where the levels of turbulence were modest. The episodic heating of the disk associated with FU Orionis outbursts were the likely causes of this early thermal processing of dust. We also estimate that at the time of accretion the CI chondrite and interplanetary dust particle parent bodies were composed of ~5–10% of pristine interstellar material. The matrices of all chondrites included roughly similar interstellar fractions. Whether this interstellar material avoided the thermal processing experienced by most dust during FU Orionis outbursts or was accreted by the disk after the outbursts ceased to be important remains to be established.  相似文献   

5.
We report an occurrence of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A calcium‐aluminum‐rich inclusion (CAI) from the CV3 (Vigarano‐like) carbonaceous chondrite Northwest Africa 2086. Dmisteinbergite occurs as approximately 10 μm long and few micrometer‐thick lath‐shaped crystal aggregates in altered parts of the CAI, and is associated with secondary nepheline, sodalite, Ti‐poor Al‐diopside, grossular, and Fe‐rich spinel. Spinel is the only primary CAI mineral that retained its original O‐isotope composition (Δ17O ~ ?24‰); Δ17O values of melilite, perovskite, and Al,Ti‐diopside range from ?3 to ?11‰, suggesting postcrystallization isotope exchange. Dmisteinbergite, anorthite, Ti‐poor Al‐diopside, and ferroan olivine have 16O‐poor compositions (Δ17O ~ ?3‰). We infer that dmisteinbergite, together with the other secondary minerals, formed by replacement of melilite as a result of fluid‐assisted thermal metamorphism experienced by the CV chondrite parent asteroid. Based on the textural appearance of dmisteinbergite in NWA 2086 and petrographic observations of altered CAIs from the Allende meteorite, we suggest that dmisteinbergite is a common secondary mineral in CAIs from the oxidized Allende‐like CV3 chondrites that has been previously misidentified as a secondary anorthite.  相似文献   

6.
Abstract— Amoeboid olivine aggregates (AOAs) in the LL3.0 Semarkona chondrite have been studied by secondary ion mass spectrometry. The AOAs mainly consist of aggregates of olivine grains with interstitial Al‐Ti‐rich diopside and anorthite. Oxygen‐isotopic compositions of all phases are consistently enriched in 16O, with δ17,18O = ~?50‰. The initial 26Al/27Al ratios are calculated to be 5.6 ± 0.9 (2σ) × 10?5. These values are equivalent to those of AOAs and fine‐grained calcium‐aluminum‐rich inclusions (FGIs) from pristine carbonaceous chondrites. This suggests that AOAs in ordinary chondrites formed in the same 16O‐rich calcium‐aluminum‐rich inclusion (CAI)‐forming region of the solar nebula as AOAs and FGIs in carbonaceous chondrites, and subsequently moved to the accretion region of the ordinary chondrite parent body in the solar nebula.  相似文献   

7.
Miller Range (MIL) 090340 and MIL 090206 are olivine‐rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine‐rich achondrites. We conclude that they are brachinite‐like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of ~97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3 ± 0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe‐oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3 ± 0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene (~11 × 3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1 ± 0.6), augite, chromite, metal, and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine‐spinel, olivine‐augite, and two‐pyroxene thermometry range from ~800 to 930 °C. In both samples, symplectic intergrowths of Ca‐poor orthopyroxene + opaque phases (Fe‐oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08 ± 0.30‰, δ17O = 2.44 ± 0.21‰, and Δ17O = ?0.20 ± 0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57 ± 0.06 and 2.59 ± 0.07, respectively, similar to those of three brachinites also analyzed here (Brachina, Hughes 026, Nova 003). They are higher than those of olivine in ureilites, even those containing chromite. The valence systematics of MIL 090340, MIL 090206, and the three analyzed brachinites (lower Fo = more oxidized Cr) are consistent with previous evidence that brachinite‐like parent bodies were inherently more oxidized than the ureilite parent body. The symplectic orthopyroxene + sulfide/metal assemblages in MIL 090340, MIL 090206, and many brachinite clan meteorites have superficial similarities to characteristic “reduction rims” in ureilites. However, they differ significantly in detail. They likely formed by reaction of olivine with S‐rich fluids, with only minor reduction. MIL 090340 and the granoblastic area of MIL 090206 are similar in modal mineralogy and texture to most brachinites, but have higher Fo values typical of brachinite‐like achondrites. The poikilitic pyroxene area of MIL 090206 is more typical of brachinite‐like achondrites. The majority of their properties suggest that MIL 090340 and MIL 090206 are residues of low‐degree partial melting. The poikilitic area of MIL 090206 could be a result of limited melt migration, with trapping and recrystallization of a small volume of melt in the residual matrix. These two samples are so similar in mineral compositions, Cr valence, and cosmic ray exposure ages that they could be derived from the same lithologic unit on a common parent body.  相似文献   

8.
Abstract— Thermochemical equilibria are calculated in the multicomponent gas‐solution‐rock system in order to evaluate the formation conditions of fayalite, (Fe0.88–1.0Mg0.12–0)2SiO4, Fa88–100, in unequilibrated chondrites. Effects of temperature, pressure, water/rock ratio, rock composition, and progress of alteration are evaluated. The modeling shows that fayalite can form as a minor secondary and transient phase with and without aqueous solution. Fayalite can form at temperatures below ?350 °C, but only in a narrow range of water/rock ratios that designates a transition between aqueous and metamorphic conditions. Pure fayalite forms at lower temperatures, higher water/rock ratios, and elevated pressures that correspond to higher H2/H2O ratios. Lower pressure and water/rock ratios and higher temperatures favor higher Mg content in olivine. In equilibrium assemblages, fayalite usually coexists with troilite, kamacite, magnetite, chromite, Ca‐Fe pyroxene, and phyllosilicates. Formation of fayalite can be driven by changes in temperature, pressure, H2/H2O, and water/rock ratios. However, in fayalite‐bearing ordinary and CV3 carbonaceous chondrites, the mineral could have formed during the aqueous‐to‐metamorphic transition. Dissolution of amorphous silicates in matrices and/or silica grains, as well as low activities of Mg solutes, favored aqueous precipitation of fayalite. During subsequent metamorphism, fayalite could have formed through the reduction of magnetite and/or dehydration of ferrous serpentine. Further metamorphism should have caused reductive transformation of fayalite to Ca‐Fe pyroxene and secondary metal, which is consistent with observations in metamorphosed chondrites. Although bulk compositions of matrices/chondrites have only a minor effect on fayalite stability, specific alteration paths led to different occurrences, quantities, and compositions of fayalite in chondrites.  相似文献   

9.
Dhofar 1671 is a relatively new meteorite that previous studies suggest belongs to the Rumuruti chondrite class. Major and REE compositions are generally in agreement with average values of the R chondrites (RCs). Moderately volatile elements such as Se and Zn abundances are lower than the R chondrite values that are similar to those in ordinary chondrites (OCs). Porphyritic olivine pyroxene (POP), radial pyroxene (RP), and barred olivine (BO) chondrules are embedded in a proportionately equal volume of matrix, one of the characteristic features of RCs. Microprobe analyses demonstrate compositional zoning in chondrule and matrix olivines showing Fa‐poor interior and Fa‐rich outer zones. Precise oxygen isotope data for chondrules and matrix obtained by laser‐assisted fluorination show a genetic isotopic relationship between OCs and RCs. On the basis of our data, we propose a strong affinity between these groups and suggest that OC chondrule precursors could have interacted with a 17O‐rich matrix to form RC chondrules (i.e., ?17O shifts from ~1‰ to ~3‰). These interactions could have occurred at the same time as “exotic” clasts in brecciated samples formed such as NWA 10214 (LL3–6), Parnallee (LL3), PCA91241 (R3.8–6), and Dhofar 1671 (R3.6). We also infer that the source of the oxidation and 17O enrichment is the matrix, which may have been enriched in 17O‐rich water. The abundance of matrix in RCs relative to OCs, ensured that these rocks would be apparently more oxidized and appreciably 17O‐enriched. In situ analysis of Dhofar 1671 is recommended to further strengthen the link between OCs and RCs.  相似文献   

10.
Cover          下载免费PDF全文
Cut surface of the Vicência (S1)(3.2) LL chondrite fall of September 21, 2013, showing abundant and beautifully developed chondrules and what appear to be chondrule, mineral and rock fragments, embedded into a grey to black, fine‐grained matrix. Klaus Keil et al. discuss the meteorite in detail in their paper on pp. 1089—1111. (Image courtesy of K. Keil)  相似文献   

11.
We present high‐precision measurements of the Mg isotopic compositions of a suite of types I and II chondrules separated from the Murchison and Murray CM2 carbonaceous chondrites. These chondrules are olivine‐ and pyroxene‐rich and have low 27Al/24Mg ratios (0.012–0.316). The Mg isotopic compositions of Murray chondrules are on average lighter (δ26Mg ranging from ?0.95‰ to ?0.15‰ relative to the DSM‐3 standard) than those of Murchison (δ26Mg ranging from ?1.27‰ to +0.77‰). Taken together, the CM2 chondrules exhibit a narrower range of Mg isotopic compositions than those from CV and CB chondrites studied previously. The least‐altered CM2 chondrules are on average lighter (average δ26Mg = ?0.39 ± 0.30‰, 2SE) than the moderately to heavily altered CM2 chondrules (average δ26Mg = ?0.11 ± 0.21‰, 2SE). The compositions of CM2 chondrules are consistent with isotopic fractionation toward heavy Mg being associated with the formation of secondary silicate phases on the CM2 parent body, but were also probably affected by volatilization and recondensation processes involved in their original formation. The low‐Al CM2 chondrules analyzed here do not exhibit any mass‐independent variations in 26Mg from the decay of 26Al, with the exception of two chondrules that show only small variations just outside of the analytical error. In the case of the chondrule with the highest Al/Mg ratio (a type IAB chondrule from Murchison), the lack of resolvable 26Mg excess suggests that it either formed >1 Ma after calcium‐aluminum‐rich inclusions, or that its Al‐Mg isotope systematics were reset by secondary alteration processes on the CM2 chondrite parent body after the decay of 26Al.  相似文献   

12.
Abstract— We have characterized Ca-Fe-rich silicates (salite-hedenbergite pyroxenes (Fs10–50Wo45–50), andradite (Ca3Fe2Si3O12), kirschsteinite (CaFeSiO4), and wollastonite (Ca3Si3O9)) in the type I chondrules and matrices in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. In type I chondrules in the Bali-like CV3 chondrites, metal is oxidized to magnetite; magnetite-sulfide nodules are replaced by Ca-Fe-rich pyroxenes with minor andradite and pure fayalite. We infer that Ca-Fe-rich pyroxenes, andradite, fayalite, magnetite, and phyllosilicates (which occur in mesostases) formed at relatively low temperatures (<300 °C) in the presence of aqueous solutions. Thermodynamic analysis of phase relations in the Si-Fe-Ca-O-H system and large O isotopic fractionation of the coexisting magnetite and fayalite (~20%) (Krot et al., 1998) are consistent with this interpretation. In type I chondrules in the Allende-like CV3 chondrites and dark inclusions, magnetite-sulfide nodules are replaced by Ca-Fe-rich pyroxenes and ferrous olivine; low-Ca pyroxene and forsterite phenocrysts are rimmed and veined by ferrous olivine. It appear that the Ca-Fe-rich pyroxenes predate formation of ferrous olivine; the latter postdates formation of talc and biopyriboles (Brearley, 1997). The Allende dark inclusions are crosscut by Ca-Fe-pyroxene-andradite veins and surrounded by Ca-rich rims that consist of Ca-Fe-rich pyroxenes, andradite, wollastonite, and kirschsteinite. Calcium-rich veins and rims formed after aggregation and lithification of the dark inclusions. The rimmed dark inclusions show zoned depletion in Ca, which is due to a lower abundance of Ca-Fe-rich pyroxenes close to the rim. Calcium was probably leached from the inclusions and redeposited along their edges. We infer that the Allende-like chondrites and dark inclusions experienced similar aqueous alteration to the Bali-like chondrites and were metamorphosed subsequently, which resulted in loss of aqueous solutions and dehydration of phyllosilicates. We conclude that Ca-Fe-rich silicates in the oxidized CV3 chondrites and Allende dark inclusions are secondary and resulted from aqueous fluid-rock interactions during progressive metamorphism of a heterogeneous mixture of hydrous (ices?) and anhydrous materials; the latter were possibly mineralogically similar to the reduced CV3 chondrites.  相似文献   

13.
We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from ?0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from ?0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.  相似文献   

14.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

15.
Here we characterize the magnetic properties of the Chelyabinsk chondrite (LL5, S4, W0) and constrain the composition, concentration, grain size distribution, and mineral fabric of the meteorite's magnetic mineral assemblage. Data were collected from 10 to 1073 K and include measurements of low‐field magnetic susceptibility (χ0), the anisotropy of χ0, hysteresis loops, first‐order reversal curves, Mössbauer spectroscopy, and X‐ray microtomography. The REM and REM′ paleointensity protocols suggest that the only magnetizations recorded by the chondrite are components of the Earth's magnetic field acquired during entry into our planet's atmosphere. The Chelyabinsk chondrite consists of light and dark lithologies. Fragments of the light lithology show logχ0 = 4.57 ± 0.09 (s.d.) (= 135), while the dark lithology shows 4.65 ± 0.09 (= 39) (where χ0 is in 10?9 m3 kg?1). Thus, Chelyabinsk is three times more magnetic than the average LL5 fall, but is similar to a subgroup of metal‐rich LL5 chondrites (Paragould, Aldsworth, Bawku, Richmond) and L/LL5 chondrites (Glanerbrug, Knyahinya). The meteorite's room‐temperature magnetization is dominated by multidomain FeNi alloys taenite and kamacite (no tetrataenite is present). However, below approximately 75 K remanence is dominated by chromite. The metal contents of the light and dark lithologies are 3.7 and 4.1 wt%, respectively, and are based on values of saturation magnetization.  相似文献   

16.
Abstract— Mössbauer absorption areas corresponding to 57Fe in olivine, pyroxene, troilite, and the metallic phase in ordinary chondrites are shown to exhibit certain systematic behaviors. H chondrites occupy 2 distinct regions on the plot of metallic phase absorption area versus silicate absorption area, while L/LL chondrites fall in a separate region. Similar separation is also observed when pyroxene absorption area is plotted against olivine absorption area. The one‐dimensional plot for the ratio of olivine area to pyroxene area separates L and LL chondrites. Based on these systematics, a newly fallen meteorite at Jodhpur, India is suggested to be an LL chondrite.  相似文献   

17.
Abstract— The oxidized CV3 chondrites can be divided into two major subgroups or lithologies, Bali-like (CV3oxB) and Allende-like (CV3oxA), in which chondrules, calcium-aluminum-rich inclusions (CAIs) and matrices show characteristic alteration features (Weisberg et al, 1997; Krot et al, 1997d; Kimura and Ikeda, 1997). The CV3oxB lithology is present in Bali, Kaba, parts of the Mokoia breccia and, possibly, in Grosnaja and Allan Hills (ALH) 85006. It is characterized by the presence of the secondary low-Ca phyllosilicates (saponite and sodium phlogopite), magnetite, Ni-rich sulfides, fayalite (Fa>90), Ca-Fe-rich pyroxenes (Fs10–50Wo45–50) and andradite. Phyllosilicates replace primary Ca-rich minerals in chondrules and CAIs, which suggests mobilization of Ca during aqueous alteration. Magnetite nodules are replaced to various degrees by fayalite, Ca-Fe-rich pyroxenes and minor andradite. Fayalite veins crosscut fine-grained rims around chondrules and extend into the matrix. Thermodynamic analysis of the observed reactions indicates that they could have occurred at relatively low temperatures (<300 °C) in the presence of aqueous solutions. Oxygen isotopic compositions of the coexisting magnetite and fayalite plot close to the terrestrial fractionation line with large Δ18Ofayalite-magnetite fractionation (~20%). We infer that phyllosilicates, magnetite, fayalite, Ca-Fe-rich pyroxenes and andradite formed at relatively low temperatures (<300 °C) by fluid-rock interaction in an asteroidal environment. Secondary fayalite and phyllosilicates are virtually absent in chondrules and CAIs in the CV3oxA lithology, which is present in Allende and its dark inclusions, Axtell, ALHA81258, ALH 84028, Lewis Cliff (LEW) 86006, and parts of the Mokoia and Vigarano breccias. Instead secondary nepheline, sodalite, and fayalitic olivine are common. Fayalitic olivine in chondrules replaces low-Ca pyroxenes and rims and veins forsterite grains; it also forms coarse lath-shaped grains in matrix. Secondary Ca-Fe-rich pyroxenes are abundant. We infer that the CV3oxA lithology experienced alteration at higher temperatures than the CV3oxB lithology. The presence of the reduced and CV3oxA lithologies in the Vigarano breccia and CV3oxA and CV3oXB lithologies in the Mokoia breccia indicates that all CV3 chondrites came from one heterogeneously altered asteroid. The metamorphosed clasts in Mokoia (Krot and Hutcheon, 1997) may be rare samples of the hotter interior of the CV asteroid. We conclude that the alteration features observed in the oxidized CV3 chondrites resulted from the fluid-rock interaction in an asteroid during progressive metamorphism of a heterogeneous mixture of ices and anhydrous materials mineralogically similar to the reduced CV3 chondrites.  相似文献   

18.
CV (Vigarano type) carbonaceous chondrites, comprising Allende‐like (CVoxA) and Bali‐like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid‐assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside–hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe‐Ni‐sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca‐, Fe‐rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al‐rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large‐scale (>several cm) fluid transport. Published 53Mn‐53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice‐bearing asteroids by decay of 26Al, not shock metamorphism.  相似文献   

19.
Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low‐Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low‐Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high‐Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low‐Ti mare basalt 15555, the highest concentrations of Li occur in late‐stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low‐ and high‐Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low‐Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high‐Ti: δ7Li >6‰; δ56Fe >0.18‰; δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large‐degree, high‐temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late‐stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile‐poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between ?2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.  相似文献   

20.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号