首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– 40Ar/39Ar dating of recrystallized feldspar glass particles separated from clast‐rich impact melt rocks from the approximately 10 km Paasselkä impact structure (SE Finland) yielded a Middle to Late Triassic (Ladinian‐Karnian) pseudo‐plateau age of 228.7 ± 3.0 (3.4) Ma (2σ). This new age makes Paasselkä the first known Triassic impact structure dated by isotopic methods on the Baltic Shield. The new Paasselkä impact age is, within uncertainty, coeval with isotopic ages recently obtained for the Lake Saint Martin impact structure in Canada, indicating a new Middle to Late Triassic impact crater population on Earth. The comparatively small crater size, however, suggests no relationship between the Paasselkä impact and a postulated extinction event at the Middle/Late Triassic boundary.  相似文献   

2.
Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone‐bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8–10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast‐poor whole‐rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south‐central Finland and probably reflects the Keurusselkä impact, followed by impact‐induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.  相似文献   

3.
Seven impact melts from various places in the Nördlinger Ries were dated by 40Ar‐39Ar step‐heating. The aim of these measurements was to increase the age data base for Ries impact glasses directly from the Ries crater, because there is only one Ar‐Ar step‐heating spectrum available in the literature. Almost all samples display saddle‐shaped age spectra, indicating the presence of excess argon in most Ries glass samples, most probably inherited argon from incompletely degassed melt and possibly also excess argon incorporated during cooling from adjacent phases. In contrast, moldavites usually contain no inherited argon, probably due to their different formation process implying solidification during ballistic transport. The plateau age of the only flat spectrum is 14.60 ± 0.16 (0.20) Ma (2σ), while the total age of this sample is 14.86 ± 0.20 (0.22) Ma (isochron age: 14.72 ± 0.18 [0.22] Ma [2σ]), proofing the chronological relationship of the Ries impact and moldavites. The total ages of the other samples range between 15.77 ± 0.52 and 20.4 ± 1.0 Ma (2σ), implying approximately 2–40% excess 40Ar (compared to the nominal age of the Ries crater) in respective samples. Thus, the age of 14.60 ± 0.16 (0.20) (2σ) (14.75 ± 0.16 [0.20 Ma] [2σ], calculated using the most recent suggestions for the K decay constants) can be considered as reliable and is within uncertainties indistinguishable from the most recent compilation for the age of the moldavite tektites.  相似文献   

4.
Abstract— 40Ar/39Ar ages of four tektites (moldavites) from southern Bohemia (near ?eské Budějovice, Czech Republic) and a tektite from Lusatia (near Dresden, Germany) have been determined by 11 step‐degassing experiments. The purpose of the study was to enlarge the 40Ar/39Ar data base of moldavites and to check the age relations of the Bohemian and Lusatian samples. The mean plateau‐age of the Bohemian samples, which range from 14.42 to 14.70 Ma, is 14.50 ± 0.16 (0.42) (2σ) Ma (errors in parentheses include age error and uncertainty of standard monitor age). The plateau age of the Lusatian sample of 14.38 ± 0.26 (0.44) (2σ) Ma confirms the previously published 40Ar/39Ar age of 14.52 ± 0.08 (0.40) (2σ) Ma, and demonstrates that the fall of Lusatian and Bohemian tektites were contemporaneous. Because of their geochemistry and their ages there is no doubt that the Lusatian tektites are moldavites. Accepting that moldavites are ejecta from the Nördlinger Ries impact, the new ages also date the impact event. This age is slightly younger (about 0.2–0.3 Ma) than the age suggested by earlier K‐Ar determinations.  相似文献   

5.
In situ U‐Pb measurements on zircons of the Ries impact crater are presented for three samples from the quarry at Polsingen. The U‐Pb data of most zircons plot along a discordia line, leading to an upper intercept of Carboniferous age (331 ± 32 Ma [2σ]). Four zircons define a concordia age of 313.2 ± 4.4 Ma (2σ). This age most probably represents the age of a granite from the basement target rocks. From granular textured zircon grains (including baddeleyite and anatase/Fe‐rich phases, first identified in the Ries crater), most probably recrystallized after impact (13 analyses, 4 grains), a concordia age of 14.89 ± 0.34 Ma (2σ) and an error weighted mean 206Pb*/238U age of Ma 14.63 ± 0.43 (2σ) is derived. Including the youngest concordant ages of five porous textured zircon grains (24 spot analyses), a concordia age of 14.75 ± 0.22 Ma (2σ) and a mean 206Pb*/238U age of 14.71 ± 0.26 Ma (2σ) can be calculated. These results are consistent with previously published 40Ar/39Ar ages of impact glasses and feldspar. Our results demonstrate that even for relatively young impact craters, reliable U‐Pb ages can be obtained using in situ zircon dating by SIMS. Frequently the texture of impact shocked zircon grains is explained by decomposition at high temperatures and recrystallization to a granular texture. This is most probably the case for the observed granular zircon grains having baddeleyite/anatase/Fe‐rich phases. We also observe non‐baddeleyite/anatase/Fe‐rich phase bearing zircons. For these domains, reset to crater age is more frequently for high U,Th contents. We tentatively explain the higher susceptibility to impact resetting of high U,Th domains by enhanced Pb loss and mobilization due to higher diffusivity within former metamict domains that were impact metamorphosed more easily into porous as well as granular textures during decomposition and recrystallization, possibly supported by Pb loss during postimpact cooling and/or hydrothermal activity.  相似文献   

6.
Abstract— 40Ar-39Ar age measurements were made for three whole rock melt samples produced during impact events which formed the Dellen, Jänisjärvi, and Sääksjärvi craters on the Baltic Shield. An age of 109.6 ± 1.0 Ma was obtained for the Dellen sample based on an age spectrum plateau. The age spectrum shows a small (7%) loss of radiogenic 40Ar from low temperature fractions. Ages of 698 ± 22 Ma and 560 ± 12 Ma were obtained from isochrons for the Jänisjärvi and Sääksjärvi samples, respectively. Data obtained by laser degassing support the Sääksjärvi result. The presence of excess 40Ar is indicated in lower temperature fractions for both samples and is correlated with K concentrations in the Sääksjärvi sample. Models explaining these results may require a change in the local “atmospheric” Ar isotopic composition as cooling of melt rocks proceeded. However, it cannot be excluded that devitrification and/or alteration changed the Ar budget. A crater production rate on the Baltic Shield based on measured ages of 6 craters is (0.3 ± 0.2) · 10?14 20-km-and-larger craters per km2 per year, in satisfactory agreement with previous estimates.  相似文献   

7.
Abstract– 40Ar/39Ar dating of recrystallized K‐feldspar melt particles separated from partially molten biotite granite in impact melt rocks from the approximately 24 km Nördlinger Ries crater (southern Germany) yielded a plateau age of 14.37 ± 0.30 (0.32) Ma (2σ). This new age for the Nördlinger Ries is the first age obtained from (1) monomineralic melt (2) separated from an impact‐metamorphosed target rock clast within (3) Ries melt rocks and therewith extends the extensive isotopic age data set for this long time studied impact structure. The new age goes very well with the 40Ar/39Ar step‐heating and laser probe dating results achieved from mixed‐glass samples (suevite glass and tektites) and is slightly younger than the previously obtained fission track and K/Ar and ages of about 15 Ma, as well as the K/Ar and 40Ar/39Ar age data obtained in the early 1990s. Taking all the 40Ar/39Ar age data obtained from Ries impact melt lithologies into account (data from the literature and this study), we suggest an age of 14.59 ± 0.20 Ma (2σ) as best value for the Ries impact event.  相似文献   

8.
The hornblende‐ and biotite‐bearing R chondrite LAP 04840 is a rare kind of meteorite possibly containing outer solar system water stored during metamorphism or postshock annealing deep within an asteroid. Because little is known regarding its age and origin, we determined 40Ar/39Ar ages on hornblende‐rich separates of the meteorite, and obtained plateau ages of 4340(±40) to 4380(±30) Ma. These well‐defined plateau ages, coupled with evidence for postshock annealing, indicate this meteorite records an ancient shock event and subsequent annealing. The age of 4340–4380 Ma (or 4.34–4.38 Ga) for this and other previously dated R chondrites is much older than most impact events recorded by ordinary chondrites and points to an ancient event or events that predated the late heavy bombardment that is recorded in so many meteorites and lunar samples.  相似文献   

9.
The Rochechourt impact structure in south‐central France, with maximum diameter of 40–50 km, has previously been dated to within 1% uncertainty of the Triassic–Jurassic boundary, at which time ~30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic–Jurassic boundary at high precision, we have re‐examined the structure's age using multicollector ARGUS‐V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 ± 0.20/0.32 Ma (2σ, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic–Jurassic boundary by 5.6 ± 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported “paired” structures, the results provide no evidence for synchronous impacts in the Late Triassic. The widespread Central Atlantic Magmatic Province flood basalts remain the most likely cause of the Triassic–Jurassic mass extinction.  相似文献   

10.
Single crystal (U‐Th)/He dating has been undertaken on 21 detrital zircon grains extracted from a core sample from Ocean Drilling Project (ODP) site 1073, which is located ~390 km northeast of the center of the Chesapeake Bay impact structure. Optical and electron imaging in combination with energy dispersive X‐ray microanalysis (EDS) of zircon grains from this late Eocene sediment shows clear evidence of shock metamorphism in some zircon grains, which suggests that these shocked zircon crystals are distal ejecta from the formation of the ~40 km diameter Chesapeake Bay impact structure. (U‐Th/He) dates for zircon crystals from this sediment range from 33.49 ± 0.94 to 305.1 ± 8.6 Ma (2σ), implying crystal‐to‐crystal variability in the degree of impact‐related resetting of (U‐Th)/He systematics and a range of different possible sources. The two youngest zircon grains yield an inverse‐variance weighted mean (U‐Th)/He age of 33.99 ± 0.71 Ma (2σ uncertainties n = 2; mean square weighted deviation = 2.6; probability [P] = 11%), which is interpreted to be the (U‐Th)/He age of formation of the Chesapeake Bay impact structure. This age is in agreement with K/Ar, 40Ar/39Ar, and fission track dates for tektites from the North American strewn field, which have been interpreted as associated with the Chesapeake Bay impact event.  相似文献   

11.
Ar‐Ar isochron ages of EL chondrites suggest closure of the K‐Ar system at 4.49 ± 0.01 Ga for EL5 and 6 chondrites, and 4.45 ± 0.01 Ga for EL3 MAC 88136. The high‐temperature release regimes contain a mixture of radiogenic 40Ar* and trapped primordial argon (solar or Q‐type) with 40Ar/36ArTR ~ 0 , which does not affect the 40Ar budget. The low‐temperature extractions show evidence of an excess 40Ar component. The 40Ar/36Ar is 180–270; it is defined by intercept values of isochron regression. Excess 40Ar is only detectable in petrologic types >4/5. These lost most of their primordial 36Ar from low‐temperature phases during metamorphism and retrapped excess 40Ar. The origin of this excess 40Ar component is probably related to metamorphic Ar mobilization, homogenization of primordial and in situ radiogenic Ar, and trapping of Ar by distinct low‐temperature phases. Ar‐Ar ages of EH chondrites are more variable and show clear evidence of a major impact‐induced partial resetting at about 2.2 Ga ago or alternatively, prolonged metamorphic decomposition of major K carrier phases. EH impact melt LAP 02225 displayed the highest Ar‐Ar isochron age of 4.53 ± 0.01 Ga. This age sets a limit of about 25–45 Ma for the age bias between the K‐Ar and U‐Pb decay systems.  相似文献   

12.
The Puchezh‐Katunki impact structure, 40–80 km in diameter, located ~400 km northeast of Moscow (Russia), has a poorly constrained age between ~164 and 203 Ma (most commonly quoted as 167 ± 3 Ma). Due to its relatively large size, the Puchezh‐Katunki structure has been a prime candidate for discussions on the link between hypervelocity impacts and extinction events. Here, we present new 40Ar/39Ar data from step‐heating analysis of five impact melt rock samples that allow us to significantly improve the age range for the formation of the Puchezh‐Katunki impact structure to 192–196 Ma. Our results also show that there is not necessarily a simple relationship between the observed petrographic features of an impact melt rock sample and the obtained 40Ar/39Ar age spectra and inverse isochrons. Furthermore, a new palynological investigation of the postimpact crater lake sediments supports an age significantly older than quoted in the literature, i.e., in the interval late Sinemurian to early Pliensbachian, in accordance with the new radioisotopic age estimate presented here. The new age range of the structure is currently the most reliable age estimate of the Puchezh‐Katunki impact event.  相似文献   

13.
Abstract— Pursuing the exploration of the Araguainha impact structure (Engelhardt et al., 1992), we present 40Ar/39Ar ages (1) of biotite samples from the granite, which forms the central uplift of the structure, and (2) of a melt rock, formed by the impact. Total degassing ages of biotites from granite samples range from 326 to 481 Ma. The variation is explained by Ar losses due to the oxidation of divalent Fe and by removal of K. The K loss depends on the time that the granite was exposed to weathering at particular outcrops. The oldest age of the least oxidized biotite from a granite sample, collected at a site most recently exposed, signifies that the ascending granite passed the 300° isotherm earlier than 481 Ma ago. Early Devonian Furnas sandstones, the oldest sediments exposed by the impact, were deposited on this granite basement 410–396 Ma ago. The 40Ar/39Ar analyses of two size fractions of an impact melt rock, resulting in plateau ages of 245.5 ± 3.5 Ma and 243.3 ± 3.0 Ma, respectively, indicate that the Araguainha impact occurred close to the Permian-Triassic boundary.  相似文献   

14.
The Australasian tektites are quench melt glass ejecta particles distributed over the Asian, Australian, and Antarctic regions, the source crater of which is currently elusive. New 40Ar/39Ar age data from four tektites: one each from Thailand, China, Vietnam, and Australia measured using three different instruments from two different laboratories and combined with published 40Ar/39Ar data yield a weighted mean age of 788.1 ± 2.8 ka (±3.0 ka, including all sources of uncertainties) (P = 0.54). This age is five times more precise compared to previous results thanks, in part, to the multicollection capabilities of the ARGUS VI noble gas mass spectrometer, which allows an improvement of almost fourfold on a single plateau age measurement. Diffusion experiments on tektites combined with synthetic age spectra and Monte Carlo diffusion models suggest that the minimum temperature of formation of the Thai tektite is between 2350 °C and 3950 °C, hence a strict minimum value of 2350 °C.  相似文献   

15.
The Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp . Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.  相似文献   

16.
Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb geochronology of shocked zircon grains in a vesicular‐fluidal impact melt rock from the ≥54 km Charlevoix impact structure, Québec, Canada, suggests an Ordovician to Silurian age of 450 ± 20 Ma for the impact. This age is anchored by concordant U–Pb results of ~450 Ma for a U‐rich, cryptocrystalline zircon grain in the melt rock, interpreted as a recrystallized metamict zircon crystal; the U–Th–Pb system of the metamict grain was seemingly chronometrically reset by the Charlevoix impact, but withstood later tectonometamorphic events. The new zircon age for Charlevoix is in agreement with a stratigraphically constrained Late Ordovician maximum age of ~453 Ma and corroborates earlier suggestions that the impact occurred most likely in the Ordovician, and not ~100 Myr later, as indicated by previous K/Ar and 40Ar/39Ar geochronologic results. The latter may reflect postimpact thermal overprint of impactites during the Salinian (Late Silurian to Early Devonian) and/or Acadian (Late Devonian) orogenies. U–Pb geochronology of zircon crystals in anorthosite exposed in the central uplift of the impact structure yielded a Grenvillian crystallization age of 1062 ± 11 Ma. The preferred Ordovician age for the Charlevoix impact structure, which is partially overthrusted by the Appalachian front, suggests the impact occurred during a phase of Taconian tectonism and an episode of enhanced asteroid bombardment of the Earth. Our results, moreover, demonstrate that (recrystallized) metamict zircon grains may be of particular interest in impact geochronology.  相似文献   

17.
Abstract— For the ~65 km sized Kara impact structure close to the polar Ural, we report an age of 70.3 ± 2.2 Ma (2s?), defined by the mean of 40Ar-39Ar plateau ages for three glassy or crystalline impact melt rocks cleaned from mineral and rock clasts. The fine structure of the age spectra of these samples can quantitatively be simulated by modeling taking into account 39Ar recoil effects, without assuming the presence of excess Ar. The calculations corroborate our age results by showing that 39Ar recoil does not affect the plateau fractions. Previously, Kara has been proposed as a probable K/T impact site or was related to the Campanian-Maastrichtian boundary at 73 Ma. At the 2s? level, both suggestions are ruled out by the well-constrained age for the Kara impact structure.  相似文献   

18.
Northwest Africa (NWA) 7325 is an anomalous achondrite that experienced episodes of large-degree melt extraction and interaction with melt under reducing conditions. Its composition led to speculations about a Mercurian origin and provoked a series of studies of this meteorite. We present the noble gas composition, and results of 40Ar/39Ar and 129I-129Xe studies of whole rock splits of NWA 7325. The light noble gases are dominated by cosmogenic isotopes. 21Ne and 38Ar cosmic-ray exposure ages are 25.6 and 18.9 Ma, respectively, when calculated with a nominal whole rock composition. This 38Ar age is in reasonable agreement with a cosmic-ray exposure age of 17.5 Ma derived in our 40Ar/39Ar dating study. Due to the low K-content of 19 ± 1 ppm and high Ca-content of approximately 12.40 ± 0.15 wt%, no reliable 40Ar/39Ar age could be determined. The integrated age strongly depends on the choice of an initial 40Ar/36Ar ratio. An air-like component is dominant in lower temperature extractions and assuming air 40Ar/36Ar for the trapped component results in a calculated integrated age of 3200 ± 260 (1σ) Ma. This may represent the upper age limit for a major reheating event affecting the K-Ar system. Results of 129I-129Xe dating give no useful chronological information, i.e., no isochron is observed. Considering the highest 129Xe*/128XeI ratio as equivalent to a lower age limit, we calculate an I-Xe age of about 4536 Ma. In addition, elevated 129Xe/132Xe ratios of up to 1.65 ± 0.18 in higher temperature extractions indicate an early formation of NWA 7325, with subsequent disturbance of the I-Xe system.  相似文献   

19.
New petrography and 40Ar‐39Ar ages have been obtained for 1–3 mm sized rock fragments from Apollo 16 Station 13 soil 63503 (North Ray crater ejecta) and chips from three rocks collected by Apollo 16 and Apollo 17 missions. Selection of these samples was aimed at the old 40Ar‐39Ar ages to understand the early history of the lunar magnetic field and impact flux. Fifteen samples were studied including crustal material, polymict feldspathic fragmental breccias, and impact melts. The impact ages obtained range between approximately 3.3 and 4.3 billion years (Ga). Polymict fragmental breccia 63503,1 exhibits the lowest signs of recrystallization observed and a probable old relic age of 4.547 ± 0.027. The plateau age of 4.293 ± 0.044 Ga obtained for impact melt rock 63503,13 represents the oldest known age for such a lithology. Possibly, this age represents the minimum age for the South Pole‐Aitken (SPA) Basin. In agreement with literature data, these results show that impact ages >3.9 Ga are found in lunar rocks, especially within soil 63503. Impact exhumation of deep‐seated warm crustal material onto the lunar surface is considered to explain the common 4.2 Ga ages obtained for weakly shocked samples from soil 63503 and Apollo 17. This would directly imply that one or more basin‐forming events occurred at that time. Some rock fragments showing none to limited petrologic features indicate thermal annealing. These rocks may have lost Ar while resident within the hot‐ejecta of a large basin. Concurrent with previous studies, these results lead us to advocate for a complex impact flux in the inner solar system during the initial approximately 1.3 Ga.  相似文献   

20.
Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event ~5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of ~5 Ma favored by Cartwright et al. ( 2014 ) for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of ~1.3 Ga is in accord with Cartwright et al. ( 2014 ). For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86–88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号