首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model for sedimentation by surging glaciers is developed from analysis of the debris load, sedimentary processes, and proglacial stratigraphy observed at the Icelandic surging glacier, Eyjabakkajökull. Three aspects of the behavior of surging glaciers explain the distinctive landformsediment associations which they may produce: (a) sudden loading of proglacial sediments during rapid glacier advances results in the buildup of excess pore pressures, failure, and glacitectonic deformation of the overridden sediments; (b) reactivation of stagnant marginal ice by the downglacier propagation of surges is associated with large longitudinal compressive stresses. These induce intense folding and thrusting during which basal debris-rich ice is elevated into an englacial position in a narrow marginal zone. As the terminal area of the glacier stagnates between surges, debris from this ice is released supraglacially and deposited by meltout and sediment flows; (c) local variations in overburden pressure beneath stagnant, crevassed ice cause subglacial lodgement tills, which are sheared during surges, to flow into open crevasses and form “crevasse-fill” ridges.  相似文献   

2.
This study of tills from the Eastern Alps, Austria, illustrates the insights obtained using microsedimentology on subglacial tills in the context of palaeogeographical reconstructions of glacier advances. Investigations of several sites with tills derived from both local glaciers and the ice‐sheet streaming of the Inn Glacier during the Last Glacial Maximum and its termination reveal a detailed picture of subglacial sedimentology that provides evidence of soft sediment subglacial deformation under polythermal conditions. All the tills exhibit microstructures that are proxy evidence of significant changes in till rheology. The tills originate from multiple sources, incorporating older tills and other deposits picked up by the subglacial deformation within a polythermal but dominantly warm temperate subglacial thermal regime. The analyses of till microstructures reveal a direct relationship between basal ice strain conditions and their development. A hypothesis is derived, from the various microstructures observed in these Austrian tills formed under soft sediment deforming basal ice conditions, that suggests that with basal thermal changes and fluctuations in clay content, pore‐water content and pressure, microstructures form in a non‐random manner. It is postulated that in clay‐deficient sediments, edge‐to‐edge events are most likely to occur first; and where clay content increases, grain stacks, rotation structures, deformation bands and, finally, shear zones are likely to evolve in an approximate sequential manner. After repeated transport, emplacement, reworking and, probably, further shearing and deformation events, an emplaced ‘till’, as observed in these Austrian tills, will form that carries most, if not all of these microstructures, in varying percentages. Finally, the impact of the Inn Glacier Ice Stream on these tills is not easily detected and/or differentiated, but indications of high pore water and probable dilatant events leading to reductions in the number of edge‐to‐edge events point to the impact of fast or thick ice upon these subglacial tills.  相似文献   

3.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

4.
The efficiency of subglacial drainage is known to have a profound influence on subglacial deformation and glacier dynamics with, in particular, high meltwater contents and/or pressures aiding glacier motion. The complex sequence of Middle Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast (Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet and contain widespread evidence for subglacial deformation during repeated phases of ice advance and retreat. During a phase of easterly directed ice advance, the glacial and pre-glacial sequences were pervasively deformed leading to the development of a thick unit of glacitectonic mélange. Although the role of pressurised meltwater has been recognised in facilitating deformation and mélange formation, this paper provides evidence for the subsequent development of a channelised subglacial drainage system beneath this part of the British Ice Sheet filled by a complex assemblage of sands, gravels and mass flow deposits. The channels are relatively undeformed when compared to the host mélange, forming elongate, lenticular to U-shaped, flat-topped bodies (up to 20–30 m thick) located within the upper part of this highly deformed unit. This relatively stable channelised system led to an increase in the efficiency of subglacial drainage from beneath the British Ice Sheet and the collapse of the subglacial shear zone, potentially slowing or even arresting the easterly directed advance of the ice sheet.  相似文献   

5.
Along the south coast of Ireland, a shelly diamict facies, the Irish Sea Till, has been variously ascribed to subglacial deposition by a grounded Irish Sea glacier or to glacimarine sedimentation by suspension settling and iceberg rafting. Observations are presented here from five sites along the south coast to directly address this question. At these sites, sedimentary evidence is preserved for the onshore advance of a grounded Irish Sea glacier, which glacitectonically disturbed and eroded pre‐existing sediments and redeposited them as deformation till. Recession of this Irish Sea glacier resulted in the damming of ice‐marginal lakes in embayments along the south coast, into which glacilacustrine sedimentation then took place. These lake sediments were subsequently glacitectonised and reworked by overriding glacier ice of inland origin, which deposited deformation till on top of the succession. There is no evidence for deposition of the Irish Sea diamicts by glacimarine sedimentation at these sites. The widespread development of subglacial deforming bed conditions reflected the abundance of fine‐grained marine and lacustrine sediments available for subglacial erosion and reworking. Stratigraphical and chronological data suggest that the advance of a grounded Irish Sea glacier along the south coast occurred during the last glaciation, and this is regionally consistent with marine geological data from the Celtic Sea. These observations demonstrate extension of glacier ice far beyond its traditional limits in the Celtic Sea and on‐land in southern Ireland during the last glaciation, and remove the stratigraphical basis for chronological differentiation of surficial glacial drifts, and thus the Munsterian Glaciation, in southern Ireland. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The Blackspring Ridge (BSR), located in south-central Alberta, Canada, is dominated by a prominent flute field. Flutes (elongated streamlined depressions) and ridges (elongate streamlined hills) are up to 15 km long and are composed of two material types: in situ bedrock, and in situ pre-Laurentide glaciation fluvial sand and gravel beds. The preglacial beds are Tertiary or early Quaternary in age. The beds are undisturbed, maintain primary bedding structures, and even maintain clast imbrication. No till overlies the gravel beds, although in places large granite boulder erratics lie on the surface, indicating that ice was present in the region in the past. Because the ridges are composed of preglacial materials, they are remnant erosional landforms rather than constructional landforms. Geomorphic and sedimentary evidence favor subglacial meltwater as the erosional agent, rather than ice. We suggest that the elevation of the BSR relative to basal ice would have resulted in confined subglacial meltwater flow, with associated flow acceleration and increased scouring resulting in flute formation. This meltwater stripped away any till cover, leaving behind only a few boulders. Observations at the BSR flute field preclude the possibility that flutes and remnant ridges are the result of deformation of soft clayey beds.  相似文献   

7.
Bedrock surfaces exposed around Llyn Llydaw, North Wales demonstrate contrasting styles of erosion beneath a Late Devensian ice sheet and a Loch Lomond Stadial (LLS) valley glacier. Ice sheet erosion involved lee-side fracturing, surface fracture wear and abrasive wear, while LLS erosion was primarily by abrasive wear. Preservation of ice sheet erosional features indicates limited rates of erosion during the LLS. Analysis of the geometry and distribution of erosional markings suggests that the low erosional capacity of the LLS glacier was due to a low basal sliding velocity. This prevented the formation of lee-side cavities, reduced the debris flux over the bed and minimised particle-bed contact loads. Reconstructions of the mass balance and geometry of the LLS glacier indicate that most of its balance velocity could be achieved by internal deformation alone. A combination of low subglacial water pressures and an unusually rough substrate explain the low sliding velocities. High bed roughness is due to the absence of leeside cavities and a change in flow orientation between ice sheet and LLS times, which meant that the LLS glacier was in contact with roughness elements which were generated in cavities beneath the ice sheet.  相似文献   

8.
冰川冰内及冰下水系研究综述   总被引:1,自引:0,他引:1  
冰内及冰下水系的形成与演化具有时空变化性,对冰川汇水储水及径流过程产生影响,与之紧密联系的冰下水文过程(水力状况)与冰川运动、冰川侵蚀及冰川洪水形成等过程息息相关。冰内及冰下水系空间结构和形态复杂,且不同于一般喀斯特水文系统,具有明显的季节变化性,其空间分布和水力状况会因外界水体输入(降水和冰雪融水)的变化而改变。冰内及冰下水系的变化通过影响汇流对冰川融水的径流过程产生影响,冰川区一些溃决洪水事件的发生与冰内及冰下蓄水的突然释放有很大关系。冰川蓄排水还通过改变冰下水力条件来影响冰川运动,反之冰川运动不仅影响蓄排水过程的转换效率,且通过改变冰川消融强度(冰体向下游消融区输送速率的变化)影响冰川排水系统的空间分布范围。在气候变暖及冰川变化的背景下,研究冰内冰下水系演化的时空特征及其影响具有重要科学意义。综述了目前国内外针对冰川冰内及冰下水系相关研究的进展及主要成果,并对该领域的研究前景进行了展望。  相似文献   

9.
The Kuannersuit Glacier surged 11 km between 1995 and 1998. The surge resulted in the formation of an ice cored thrust moraine complex constructed by subglacial and proglacial glaciotectonic processes. Four main thrust zones are evident in the glacier snout area with phases of compressional folding and thrusting followed by hydrofracture in response to the build-up of compressional stresses and the aquicludal nature of submarginal permafrost and naled. Various types of stratified debris-rich ice facies occur within the marginal zone: The first (Facies I) comprises laterally continuous strata of ice with sorted sediment accumulations, and is reworked and thrust naled ice. The second is laterally discontinuous stratified debris-rich ice with distinct tectonic structures, and is derived through subglacial extensional deformation and localised regelation (Facies II), whilst the third type is characterised by reworked and brecciated ice associated with the reworking and entrainment of meteoric ice (Facies III). Hydrofracture dykes and sills (Facies IV) cross-cut the marginal ice cored thrust moraines, with their sub-vertically frozen internal contact boundaries and sedimentary structures, suggesting supercooling operated as high-pressure evacuation of water occurred during thrusting, but this is not related to the formation of basal stratified debris-rich ice. Linear distributions of sorted fines transverse to ice flow, and small stratified sediment ridges that vertically cross-cut the ice surface up-ice of the thrust zone relate to sediment migration along crevasse traces and fluvial infilling of crevasses. From a palaeoglaciological viewpoint, marginal glacier tectonics, ice sediment content and sediment delivery mechanisms combine to control the development of this polythermal surge valley landsystem. The bulldozing of proglacial sediments and the folding and thrusting of naled leads to the initial development of the outer zone of the moraine complex. This becomes buried in bulldozed outwash sediment and well-sorted fines through surface ablation of naled. Up-ice of this, the heavily thrust margin becomes buried in sediment melted out from basal debris-rich ice and subglacial diamicts routed along thrusts. These mechanisms combine to deliver sediment to supraglacial localities, and promote the initial preservation of structurally controlled moraines through insulation, and the later development of kettled dead ice terrain.  相似文献   

10.
The 1982–1983 surge of Variegated Glacier involved the development, growth and downglacier propagation of a velocity peak associated with rapid basal sliding facilitated by high subglacial water pressures. Passage of the velocity peak through the glacier was preceded by an episode of longitudinal shortening and followed by an episode of elongation. The deformation history of the glacier ice was dependent upon location relative to the surge nucleus and the final position reached by the propagating velocity peak. Ice above the surge nucleus experienced continuous and cumulative elongation; ice below the final position of the velocity peak experienced continuous and cumulative shortening; ice between these two points experienced shortening followed by elongation and low cumulative strain. The large-scale pattern of ice structure development reflects these deformation histories. Surging is equivalent to thrust sheet emplacement by a combination of gravity gliding over a weakened basal layer and ‘push from behind’, with the gravity-driven motion of the surging part of the glacier providing the push which allows the surge front to propagate. The relationships established between the deformation history of surging glaciers and the development of ice structures may facilitate the interpretation of structures in thrust sheets.  相似文献   

11.
Structural, stratigraphic, and lithologic data from a section 69 m long of Catfish Creek drift (north shore of Lake Erie) tell a complex story of two competing glacial lobes. Stone surface features and orientations indicate that stones rotated in viscously deforming, fine-medium textured subglacial till prior to final emplacement. Fractures, shears, and attenuated sediment lenses in tills reveal that they experienced some brittle shear superposed on ductile shear during till dewatering and stiffening. The Huron-Georgian Bay lobe advanced first from the northwest, deforming interstadial sediments and depositing subglacial till. Next, southward confluent flow of the Huron, Georgian Bay, and Erie lobes carved subglacial troughs into sediments and deposited (then deformed) bouldery deformation till by squeeze flow. The northwest flowing Erie lobe then prevailed, depositing deformation till, subglacial aquatic sediments, and mudflows. Finally, a pavement-bearing, hybrid deformation-lodgement till covered the section. Till formation was mainly by subglacial viscous flow with minor lodgement superposed as water content decreased and some fines were probably winnowed. This implies that till deformation probably accounted for much of the glacier movement. Therefore, rapid ice flow could have occurred over the section, along the southern margin of the Laurentide Ice Sheet.  相似文献   

12.
Structural analyses were conducted in the basal zone of an Antarctic glacier. The studied basal ice sequence was retrieved from a 20-m-long subglacial tunnel dug at the margin of the glacier and is at the temperature of −17°C. For the first time, rotating clast systems embedded within debris-rich ice were thin-sectioned using specially designed cutting techniques. The observed structures reflect the occurrence of pervasive shearing at the base of the glacier, and can be used as shear sense indicators. In addition, some of these structures provide evidence for the presence of thin liquid films at the time of formation despite the marked freezing temperature of the ice. It is showed here that cautious analysis of deformation structures present in debris-bearing ice may bring insights not only into the flow dynamics of the embedding matrix, but also into the behaviour of the interstitial fluid network at the base of cold glaciers and ice sheets.  相似文献   

13.
《Geodinamica Acta》2013,26(3):177-195
Pluridisciplinary fieldwork highlights features generated by an extended ice-sheet in the Djado Basin during the Hirnantian. Two glacial palaeovalley systems associated with glacial pavements and separated by thin glaciomarine interstadial series are revealed. Rigid glacial pavements characterised by abrasion erosion are differentiated from soft glacial pavements characterised by soft-bed deformation. Glacial pavements are associated with subglacial bedforms such as megaflutes, flutes and meltwater channels. They are also associated with clastic dykes and glaciotectonic structures such as deformed flutes, subglacial folds and duplex structures. This record demonstrates that ice was warm-based and flowed rapidly on the highfluid- pressure soft substrate, as for ice streams. The erosional glacial landscape is typical of areal scouring, and the depositional sediment-landform assemblage corresponds to subglacial processes. These data afford a reconstruction of glacial events which is consistent with the two polyphased low-frequency glacial cycles inferred in previous studies. During interstadial and postglacial stages, grabens, normal faults, radial extensional microfaults and extensional dihedrons were generated by extensional tectonics during glacio-isostatic rebound. In sectors highly affected by this tectonics, doleritic dykes reflect a basal crust fusion increase induced by adiabatic decompression.  相似文献   

14.
Much previous research at surge-type glaciers has sought to identify features diagnostic of surge-type behaviour. However, in comparatively little work have subglacial landform–sediment characteristics been used to reconstruct changing basal processes and conditions during surge events. Subglacial bedforms described in this article are associated with the 1991 surge of Skeiðarárjökull, Iceland, and include a series of drumlins with superimposed flutes and basal crevasse-fill ridges. The drumlins were formed by the subglacial erosion of ice-contact fans. Sedimentary evidence indicates a shift from rigid-bed to soft-bed conditions during the surge. The presence of eroded but undeformed fan sediments suggests that they acted as a rigid bed when initially overridden. Subsequent deposition of a layer of deformation till resulted in a change to soft-bed conditions and the generation of flutes and subglacial crevasse-fill ridges. The lack of mixing between this till and the underlying stratified sediments indicates that subglacial sediment deformation was restricted to a thin layer and that its deposition resulted in a cessation of subglacial erosion. The drumlin is therefore a composite of both rigid-bed and soft-bed processes that illustrates changes in basal conditions and processes during the course of the event. The limited time frame in which the drumlin formed and the presence of kettleholes across its surface are distinctive features that may warrant further investigation in the search for features diagnostic of past surge events.  相似文献   

15.
16.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

17.
The morphology, sedimentology and architecture of an end moraine formed by a ~9 km surge of Brúarjökull in 1963–64 are described and related to ice‐marginal conditions at surge termination. Field observations and accurate mapping using digital elevation models and high‐resolution aerial photographs recorded at surge termination and after the surge show that commonly the surge end moraine was positioned underneath the glacier snout by the termination of the surge. Ground‐penetrating radar profiles and sedimentological data reveal 4–5 m thick deformed sediments consisting of a top layer of till overlying gravel and fine‐grained sediments, and structural geological investigations show that the end moraine is dominated by thrust sheets. A sequential model explaining the formation of submarginal end moraines is proposed. The hydraulic conductivity of the bed had a major influence on the subglacial drainage efficiency and associated porewater pressure at the end of the surge, thereby affecting the rates of subglacial deformation. High porewater pressure in the till decreased its shear strength and raised its strain rate, while low porewater pressure in the underlying gravel had the opposite effect, such that the gravel deformed more slowly than the till. The principal velocity component was therefore located within the till, allowing the glacier to override the gravel thrust sheets that constitute the end moraine. The model suggests that the processes responsible for the formation of submarginal end moraines are different from those operating during the formation of proglacial end moraines.  相似文献   

18.
At the Dänischer Wohld Peninsula coastal sections (North West Germany), subglacial deformation was found at three scales. At the smallest scale, features typical of deforming bed tills were found, i.e. small boudins, tectonic laminations and low fabric strength till. At an intermediate scale, large lenses of glaciolacustrine sediments were found within subglacially deformed till. At the largest scale, there were large (over 5 m high) subglacial folds. We suggest that these styles of sedimentation/deformation were associated with a series of readvances during overall glacial retreat: subglacial deformation occurred during each advance and glaciolacus trine sedimentation occurred during each retreat. This led to glaciolacustrine sediments and deforming bed tills being folded together during subsequent readvances. Where the rheology was relatively weak, the lacustrine sediments were totally incorporated into the diamicton and lost their previous identity. However, where the glaciolacustrine sediments were relatively strong, they survived. We suggest that this style of deformation is typical of the conditions just upglacier from the ice margin and is associated with a relatively thick deforming layer and a high input of subglacial sediment. We conclude that the evidence found at this site provides further indications that the southern margins of the Fenno-Scandinavian ice sheet were coupled with the glacier bed and underwent deforming bed conditions.  相似文献   

19.
《Quaternary Science Reviews》2003,22(8-9):915-923
We report evidence of deformation at sub-freezing temperatures beneath Hagafellsjökull-Eystri, an Icelandic surge-type glacier. The bed of a piedmont lobe that advanced during the 1999 surge comprises deformed blocks of glacier ice set within frozen sediment. This material has also been injected through overlying ice to form a network of crevasse-squeeze ridges. This layer contains evidence for two phases of deformation under contrasting rheological conditions: (1) deformation under relatively warm conditions, when the blocks of glacier ice acted as competent clasts within an unfrozen deforming matrix and (2) subsequent deformation at sub-freezing temperatures when the ice blocks were attenuated into the surrounding frozen matrix along fractures and planar shears enriched with excess ice. This suggests that the basal thermal regime of the advancing ice margin changed from warm-based to cold-based during the surge event. The persistence and potential prevalence of subglacial sediment deformation at sub-freezing temperatures has fundamental implications for our understanding of the dynamic behaviour, sediment flux and geomorphic ability of cold-based glaciers.  相似文献   

20.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号