首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The association between exposure to arsenic in drinking water and lung cancer has been observed in some epidemiology studies, but dose–response data are limited. To assess the dose–response relationship and identify hot spots, we analyzed the national death registry data of Taiwan from 1971 to 2000. We adopted data on 311 townships gathered by a nationwide survey of drinking water and divided arsenic levels into three groups: below 0.05 mg/L, 0.05–0.35 mg/L, and above 0.35 mg/L. Using the direct standardization method to adjust for the effects of age, we calculated the standardized mortality rates of lung cancer in both genders and evaluated their associations with arsenic levels. We also used the geographical information system to identify the hot spots. During the 30-year study period, we identified 64,954 male and 27,039 female lung cancer deaths in the study townships. We found significant increases in lung cancer mortality associated with arsenic levels above 0.35 mg/L in both genders, but the increases associated with levels between 0.05 and 0.35 mg/L were statistically significant in men only. Using both 0.05 and 0.35 mg/L as the cut-offs, we found most of the hot spots were in the southwestern coast and northeastern areas, but the southwestern coast area had some hot spots where the percentages of high risk population were higher than any hot spots in the northeastern area.  相似文献   

2.
The Yangbajain geothermal field located in central Tibet is characterized by the highest measured reservoir temperature among all hydrothermal systems in China. The high-temperature geothermal fluid extracted from Yangbajain has been used for electricity generation for over 30 years. The geothermal wastewater generated by the Yangbajain power plants, with arsenic (As) concentrations up to 3.18 mg/L, drains directly into the Zangbo River, the major surface water at Yangbajain, which has elevated arsenic concentrations in the segments downstream of wastewater discharges. However, along the flow direction of the river, the arsenic concentration decreases sharply. Further inspection reveals that the concentrations of weakly bound arsenic, strongly adsorbed arsenic and total arsenic in riverbed sediment were affected by the drainage of geothermal wastewater, indicating that the sediment serves as a sink for geothermal arsenic. A logarithmic relationship between the integrated attenuation coefficients (IAC) for three river segments and the corresponding adsorption distribution coefficients of riverbed sediment samples also suggests that besides the dilution of geothermal arsenic in the Zangbo River, natural attenuation of arsenic may be caused by sorption to riverbed sediment, thereby reducing its health threat to local residents using the Zangbo River as a drinking water source.  相似文献   

3.
The present study investigates the bioavailability, soil to plant transfer and health risks of arsenic (As) in the coastal part of Chianan Plain in southwestern Taiwan. Groundwater used for irrigation, surface soils from agricultural lands and locally grown foodstuffs were collected from eight locations and analyzed for As to assess the risks associated with consuming these items. The concentration of As in groundwater ranged from 13.8 to 881 μg/L, whereas surface soil showed total As content in the range of 7.92–12.7 mg/kg. The available As content in surface soil accounted for 0.06–6.71% of the total As content, and was significantly correlated with it (R2 = 0.65, p < 0.05). Among the leachable fraction, the organic matter (3.23–54.8%) and exchangeable portions of oxides (6.03–38.4%) appear to be the major binding phases of As. The average As content in fourteen studied crops and vegetables varied from 10.3 to 151 μg/kg with maximum in mustard and minimum in radish. All the plants showed considerably higher As content (21.5 ± 3.64–262 ± 36.2 μg/kg) in their roots compared to the edible parts (9.15 ± 1.44–75.8 ± 22.9 μg/kg). The bioaccumulation factor (BAF) based on total As (ranging from 0.0009 to 0.144) and available As in soil (ranging from 0.039 to 0.571) indicate that mustard, rice, amaranth and spinach are the highest accumulators of As. Although the health risk index (HRI) of the studied crops and vegetables ranged from only 0.0068–0.454, with the maximum in rice, the combined HRI indicates an alarming value of 0.88. Therefore, the possible health risks due to long-term consumption of rice and other As-rich foodstuffs could be overcome by controlling the contamination pathways in the water–soil–plant system.  相似文献   

4.
《Applied Geochemistry》2006,21(1):83-97
Groundwater in the Gwelup groundwater management area in Perth, Western Australia has been enriched in As due to the exposure of pyritic sediments caused by reduced rainfall, increased groundwater abstraction for irrigation and water supply, and prolonged dewatering carried out during urban construction activities. Groundwater near the watertable in a 25–60 m thick unconfined sandy aquifer has become acidic and has affected shallow wells used for garden irrigation. Arsenic concentrations up to 7000 μg/L were measured in shallow groundwater, triggering concerns about possible health effects if residents were to use water from household wells as a drinking water source. Deep production wells used for public water supply are not affected by acidity, but trends of progressively increasing concentrations of Fe, SO4 and Ca over a 30-a period indicate that pyrite oxidation products extend to the base of the unconfined aquifer. Falling Eh values are triggering the release of As from the reduction of Fe(III) oxyhydroxide minerals near the base of the unconfined aquifer, increasing the risk that groundwater used as a drinking water source will also become contaminated with high concentrations of As.  相似文献   

5.
Sixteen bottled waters of various Sicilian brands, 11 natural mineral waters and five normal drinking waters, were analyzed for major and trace inorganic components by ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The bottled waters represent a variety of water types with significantly different compositions in terms of salinity, major components and trace elements. Chemically, they range from Ca–HCO3 and Ca–SO4 to Na–HCO3 types. Total dissolved solids ranges from 54 to 433 mg/L, total hardness from 25 to 238 mg/L CaCO3, and measured Na content from 5.7 to 57 mg/L. According to total dissolved ions, all the bottled waters were classified as oligomineral (50 < TDS < 500 mg/L). All the bottled waters analyzed here had elemental concentrations which did not exceed the guideline and directive values, although a high concentration of Al was noted for one bottled water (O7, central Sicily) and high Rb and V in a bottled water (O1) from the Etna volcanic area. With regard to trace elements, the chemical quality of bottled waters was assessed by a metal index (MI). Chemical characteristics were compared with 10 tap water samples from private houses or public places, representative of the public water supply in Palermo, the largest and most densely populated city in Sicily. The municipal waters analyzed, belonging to HCO3-alkaline earth and Cl–SO4-alkaline earth waters, showed concentrations of chemical inorganic components well within drinking water limits. The data also indicated that the water supplied by the municipal authority is of fair quality, although fairly hard and high in Na concentration. Several considerations indicate that there is no sufficient reason to prefer bottled waters to tap waters.  相似文献   

6.
Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3 dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr (87Sr/86Sr = 0.7097–0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.  相似文献   

7.
Arsenic species including arsenite, arsenate, and organic arsenic were measured in the porewaters collected from Poyang Lake, the largest freshwater lake of China. The vertical distributions of dissolved arsenic species and some diagenetic constituents [Fe(II), Mn(II), S(−II)] were also obtained in the same porewater samples in summer and winter. In sediments the concentration profiles of total As and As species bound to Fe–Mn oxyhydroxides and to organic matter were also determined along with the concentrations of Fe, Mn and S in different extractable fractions. Results indicate that, in the summer season, the concentrations of total dissolved As varying from 3.9 to 55.8 μg/L in sediments were higher than those (5.3–15.7 μg/L) measured in the winter season, while the concentrations of total As species in the solid phase varied between 10.97 and 25.32 mg/kg and between 7.84 and 30.52 mg/kg on a dry weight basis in summer and winter, respectively. Seasonal profiles of dissolved As suggest downward and upward diffusion, and the flux of dissolved As across the sediment–water interface (SWI) in summer and winter were estimated at 3.88 mg/m2 a and 0.79 mg/m2 a, respectively. Based on porewater profiles and sediment phase data, the main geochemical behavior of As was controlled by adsorption/desorption, precipitation and molecular diffusion. The solubility and migration of inorganic As are controlled by Fe–Mn oxyhydroxides in summer whereas they appear to be more likely controlled by both amorphous Fe–Mn oxyhydroxides and sulfides in winter. A better knowledge of the cycle of As in Poyang Lake is essential to a better management of its hydrology and for the environmental protection of biota in the lake.  相似文献   

8.
《Applied Geochemistry》2005,20(11):1985-2002
Elevated levels of dissolved arsenic (∼300 μg L−1) have been detected beneath and in groundwater plumes extending away from a closed landfill in southern Maine. This study sought to determine the source of arsenic to the aquifer, the processes responsible for arsenic mobilization, and to evaluate the effectiveness of remediation efforts that have occurred at this site. The As appears to originate in the natural (glacial) aquifer solids, which contain ∼5 mg kg−1 As on a dry weight basis. This conclusion is supported by the relatively uniform distribution of As in sediment samples, results of laboratory batch incubation experiments, and comparisons with groundwaters in nearby wetlands, which also have high levels of dissolved As that do not appear to originate within the landfill. The As is mobilized in the subsurface by strongly reducing conditions beneath the landfill and in nearby wetlands. In the aquifer beneath the landfill, the average oxidation–reduction potential (ORP) is −95 mV (Eh + 105 mV), and these reducing conditions were primarily induced by landfill leachate. Remediation efforts at this site have included installation of a low permeability clay cap; groundwater extraction, oxidation, and re-injection; and subsurface oxidation by injection of magnesium peroxide. The natural source of arsenic within the aquifer solids, coupled with widespread reducing conditions, has severely limited the effectiveness of these interventions on groundwater arsenic concentrations.  相似文献   

9.
Water analysis data of 54 groundwater samples from 18 uniformly distributed wells were collected during three campaigns (June, September and December 2004). Q-mode hierarchical cluster analysis (HCA) was employed for partitioning the water samples into hydrochemical facies. Interpretation of analytical data showed that the abundance of major ions was identified as follows: Ca ? Mg > Na > K and HCO3 ? Cl > SO4. Three major water facies are suggested by the HCA analysis. The samples from the area were classified as recharge area waters (Ca–Mg–HCO3 water), transition area waters (Mg–Ca–HCO3–Cl water), and discharge area waters (Mg–Ca–Cl–HCO3 water). Inverse geochemical modeling suggests that relatively few phases are required to derive the water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into two categories: (1) evaporite weathering reactions and (2) precipitation of carbonate minerals.  相似文献   

10.
Exposure dating using cosmogenic 36Cl demonstrates that the summit plateau of Scafell Pike (978 m) in the SW Lake District escaped erosion by glacier ice during the last glacial maximum (LGM; c. 26–21 kyr) and probably throughout the Devensian Glacial Stage (MIS 5d-2). Exposure ages obtained for ice-moulded bedrock on an adjacent col at 750–765 m confirm over-riding and erosion of bedrock by warm-based glacier ice during the LGM. The contrast between the two sites is interpreted in terms of preservation of tors, frost-shattered outcrops and blockfields on terrain above 840–870 m under cold-based ice. An exposure age of 17.3 ± 1.1 kyr for the col at 750–765 m suggests that substantial downwastage of the last ice sheet had occurred by c. 17 kyr, consistent with deglacial exposure ages obtained for other high-level sites in the British Isles. An exposure age of 12.5 ± 0.8 kyr obtained for a glacially transported rockfall boulder within the limits of later corrie glaciation confirms that the final episode of local glaciation in the Lake District occurred during the Loch Lomond Stade (c. 12.9–11.7 kyr). This research also demonstrated the difficulties of obtaining reliable exposure ages from rhyolite and andesite bedrock that has proved resistant to glacial abrasion.  相似文献   

11.
This study investigated the efficiency of a constructed wetland/filter basin (CW/FB) treatment system to improve the chemical composition of waste and surface waters. The system was constructed in closed phosphate mines used for clay settling and sand tailings. Monitoring was carried out for 18 months to evaluate the CW/FB performance under a variety of climatic conditions. Water samples were taken bi-monthly. To evaluate possible groundwater input into and water leaking out of the wetland 6 monitor wells were installed along the flow path and sampled monthly. In order to estimate the change of water chemistry along the wetland flow path, water samples along a transect were taken during the dry and rainy seasons. The samples were analyzed for pH, T, oxidation–reduction potential (ORP), conductivity, total dissolved solids (TDS), dissolved oxygen (DO), Fe(II), H2S, major anions, major cations, arsenic, fecal and total coliform.The study showed the following changes in water quality between the input and output: (1) Substantial decrease of water temperature (up to 10 °C); (2) Significant change in pH from about 9 to 6.5–7; (3) Negative ORP confirming the reducing conditions of the treatment system; (4) Substantial increase of H2S (up to 1060 µg/L); (5) Reduction of As from 5 to <2 µg/L (mostly <0.5); (6) Substantial reduction of SO4, F, Cl, NO3, NO2, Br, Na, K, Ca, and Mg; (7) Reduction of fecal and total coliform from 30–730 and 1000–7000 to <2 and <100 count/100 mL, respectively. In general, the performance of the CW/FB treatment system showed great potential to improve the water quality of industrial and municipal wastewater. Despite significant seasonal variations with respect to temperature, rainfall and humidity, the chemical/microbiological composition of the wetland output remained relatively constant.  相似文献   

12.
The surface properties of enargite as a function of pH were investigated. The zeta potential values increased from − 10 mV (pH = 3) to − 45 mV (pH = 12) and no isoelectric point (iep) was detected. The zeta potential of enargite was highly sensitive to pH and interesting peaks/valleys, unusual in common sulfide minerals, were observed. In the present study, these results were interpreted on the basis of the chemistry of enargite, which is a tetra-thioasenate of Cu(I). A thermodynamic approach, including the Eh–pH diagram for enargite, and the hydrolysis diagrams for arsenic, thioarsenic, and oxo-thioarsenic acids was employed. An interpretation based on the simultaneous ionization and dissociation reactions of the hydrolysis products of arsenic and thioarsenic acids on the enargite surface was discussed. On the other hand, covellite (CuS), under low concentrations of arsenate ions, showed similar zeta potential peaks. Additionally, enargite's zeta potential showed sign reversal for a certain pH range, with the addition of low concentrations of Cu(I) and Cu(II) ions, suggesting that other hydrolysis and precipitation reactions may also be involved.  相似文献   

13.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

14.
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA = 1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500 kPa and hydraulic conductivity was around 10−8 m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02–3500 mg/kg for Cd, 0.35–1550 mg/kg for Cu, 0.03–92 mg/kg for Pb, 0.01–3300 mg/kg for Ni, 0.02–4010 mg/kg for Zn, and 7–4884 mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants.  相似文献   

15.
Crnac is an intermediate sulfidation Pb–Zn–Ag epithermal deposit located within the Vardar suture zone of the Central Balkan Peninsula. The epithermal Pb–Zn–Ag mineralization consists of (i) a series of steeply-dipping veins hosted within the Jurassic amphibolites, and (ii) overlying hydrothermal-explosive breccia with angular (level IV) or rounded fragments of listwanite (surface) cemented by epithermal mineralization. The mineralization is related to the Oligocene quartz latite dykes that crosscut the Crnac antiform. Quartz latite rocks predominantly display a shoshonitic character. The obtained 40Ar/39Ar age of fresh quartz latite is 28.9 ± 0.3 Ma. Fine-grained sericite from altered quartz latite is dated at 28.6 ± 0.5 Ma. Early, alteration related fluid inclusions within quartz latite show coexistence of high-density brine and a low-density vapor-saturated phase that homogenized at 280–405 °C. Phase separation occurs at a paleodepth of 0.6 to 0.9 km.Epithermal mineralization developed in three stages: (i) early pyrite–arsenopyrite–pyrrhotite–quartz–kaolinite; (ii) main sphalerite–galena–tetrahedrite–chalcopyrite and (iii) late carbonate–pyrite–arsenopyrite assemblage. The onset of mineral deposition within epithermal veins was initiated by boiling of Na–Cl ± K ± Ca ± Mg fluid at a paleodepth of 0.6 to 0.9 km. Coexisting vapor and liquid-rich inclusions display salinities and trapping temperatures of 4 wt.% NaCl equiv., 280–370 °C and 2–27 wt.% NaCl equiv., 230–375 °C, respectively. Boiling continued throughout the deposition of the sphalerite-galena-tetrahedrite-chalcopyrite assemblage. Late stage carbonate was deposited from diluted, non-boiling, low-temperature Na–Ca–Mg–Cl ± CO2 fluid (0.2 to 4.8 wt.% NaCl equiv., 115–280 °C).About 100–150 m higher in the system, precipitation of listwanite breccia cement began as a result of boiling Na–Cl ± Ca ± Mg ± K fluid of medium salinities (2.6 to 12.1 wt.% NaCl equiv.) at temperatures of 245–370 °C. Boiling and dilution of fluids continue throughout the precipitation of the main sphalerite-galena-tetrahedrite and late, mainly carbonate assemblage. Surface listwanite breccia contain quartz phenocrysts deposited from a homogeneous fluid with a medium salinity (8–10 wt.% NaCl equiv.) and high temperatures (Th = 295–315 °C), whereas the early and main stage of a surface listwanite breccia cement precipitated from a boiling fluid of decreasing salinity and temperature. Aqueous ± CO2, high salinity (16 to 18 wt.% NaCl equiv.), low temperature (120 °C), homogeneously trapped fluid that precipitated late stage carbonates, is most likely a remnant of boiled off fluid. The epithermal assemblage of the surface listwanites precipitated at a paleodepth of 0.4 to 0.6 km.The δ13C values of the late stage ankerite range from − 4.2 to 4.1‰, whereas δ18O range from 9.6 to 17.5‰. The calculated δ18O of fluid that precipitated carbonates within epithermal veins, and listwanite breccia cement range from 6.3 to 11.3‰, indicating a contribution of magmatic water.Deposition of all mineralization types was initiated by neutralization of primary acidic magmatic fluid by water-rock reactions that caused widespread propylitization and sericitization. Extensive and long-lasting boiling combined with dilution by meteoric water increased the pH towards the final stage of hydrothermal activity.  相似文献   

16.
Ten gravity springs from the slopes of the Biokovo Mt, Adriatic coast of Croatia were investigated. Three of them are included in the regional water supply system. The aim of this study was to investigate hydrogeological and geochemical characteristics of watershed, presenting one of the most typical karstic areas in the world.Hydrogeological investigations were performed during two seasons with dye tracing, using Na-fluoresceine which was poured into two pits, observing springs at distances of 1.82–8.8 km. Apparent velocities were 0.21–0.51 cm s?1. Dye tracing was first time partially effective and second time ineffective, what could be due to immanent ore mineralization, which presents a natural barrier and was discovered by geochemical and mineralogical methods.Concentrations of 17 dissolved and total trace elements were determined first time in groundwater samples. Their concentrations were extremely low, more than 3 orders of magnitude less than allowed by the Croatian directives for the first category of groundwater and drinking water. The mass fractions of 60 elements were determined in 3 representative spring sediments. Highest concentrations of some metals in sediments (mg kg?1) are: lead 5440, chromium 118, manganese 935, zinc 116 and barium 238. Origin of some elements and mineralogy is discussed.  相似文献   

17.
At San Roque in Patagonia's Rio Negro Province, Argentina, an In–Au–Cu–Zn–Pb–Ag mineralization (< 0.24 wt.% In, < 7 ppm Au, < 0.45 wt.% Cu, < 14.1 wt.% Zn, < 0.55 wt.% Pb, < 60 ppm Ag) is bound to lava, and volcaniclastics of Triassic through Jurassic age. The polymetallic sulfidic and non-sulfidic indium mineralization is attributed to the low-sulfidation (LS) to intermediate sulfidation (IS) epithermal type of mineralization. Its vein-type and stockwork mineralization developed at 39.2 bars under hydrostatic conditions, corresponding to a depth of 400 m below the water level of the paleoaquifer. In the redox-controlled hypogene mineralization, the temperature increased from 130 °C up to as much as 250 °C at depth, while the pH regime changed from slightly acidic near surface to more alkaline conditions around pH 8 at a depth of approximately 150 m. The monophase mineral associations composed of sphalerite, Ag–Bi-enriched and inclusion-free galena (< 1.7 wt.% Ag, < 3.7 wt.% Bi), chalcopyrite, pyrite, gold, silver, digenite, various In–Cu- and Pb–Zn–Ag “intermediate products”, wittichenite, roquesite, sakuraiite, dzhalindite, brochantite, antlerite, cerussite, and “manganomelane” in a quartz and muscovite-rich gangue have been subdivided into three different stages: (1) Stockwork mineralization of LS to IS epithermal type (hypogene), (2) quartz vein mineralization (hypogene), and (3) salar mineralization (supergene–hypogene).Salt–mud flats controlled the youngest mineralization with Mn, Li, Ca, Mg, V, Sr, Cu, Ag and In bound to oxides, hydroxides, sulfates and subordinate carbonates. The quartz vein mineralization is made up of oxides, hydroxides prevailing over sulfides and containing W, Fe, Au, As, Pb, In, and Cu. It formed at the passage from the vadose into the phreatic zones under oxidizing to slightly reducing conditions. The level marks the boiling level of the hydrothermal solutions involved in the mineralizing process. The hypogene stockwork mineralization is exclusively made up of sulfides containing Zn, Pb, Cu, In, Ag and Bi in the phreatic zones. It developed under reducing conditions. Indium is present at all levels within the volcanic rocks and has been derived from sphalerite rich in Cd (< 1.6 wt.% Cd), In (< 7.3 wt.% In) and Cu (< 7.2 wt.% Cu) while the Fe contents are moderate in sphalerite (< 6.8 wt.% Fe). Indium reached economic grade only through the segregation of a Cu–In–S phase in the “indium window” which is defined by a Cd content of sphalerite in the range 0.2–0.6 wt.% Cd. This concentration of In is controlled by the crystal morphology and the lattice parameters of the minerals involved. It is described as a two-stage process with interdiffusion processes in an Fe-enriched system (stage I) and zoned replacement in an Fe-poor system enriched in indium (stage II). Cu-bearing sphalerite decomposed into sphalerite poor in trace elements and into Cu–In-bearing sphalerite. Further indium concentration took place, when roquesite and sakuraiite decomposed along with an increase in oxygen pressure under hypogene and supergene conditions into dzhalindite. The physical–chemical conditions of the mineralogy and chemical changes in the system In–Cu–Zn–Cd observed in nature have been approximated based upon the results obtained during laboratory studies in material sciences that were focused on solar energy.  相似文献   

18.
Black carbon decomposition under varying water regimes   总被引:1,自引:0,他引:1  
The stability of biomass-derived black carbon (BC) or biochar as a slow cycling pool in the global C cycle is an important property and is likely governed by environmental conditions. This study investigated the effects of water regimes (saturated, unsaturated and alternating saturated–unsaturated conditions) and differences in BC materials, produced by carbonizing corn residues and oak wood at two temperatures (350 °C and 600 °C) on BC degradation at 30 °C over 1 year in a full factorial experiment. Effects of water regime on C loss and potential cation exchange capacity (CECp at pH 7) significantly depended on biomass type. Corn BC was both mineralized (16% C loss for the first year) and was oxidized [1000 mmole(+) kg?1 C] significantly faster under unsaturated conditions than under other water regimes, whereas oak BC mineralized most rapidly (12%) under alternating saturated–unsaturated conditions with similar oxidation, irrespective of water regime. Over 1 year of saturated incubation, the O/C ratio values did not significantly (P > 0.05) increase even though BC was mineralized by 9% and CECp increased by 170 mmole(+) kg?1 C, in contrast to unsaturated and alternating saturated–unsaturated conditions. While mineralization and oxidation significantly decreased at higher charring temperature for corn, no difference was observed for oak (P > 0.05). Unsaturated and alternating conditions increased carboxylic and OH functional groups, while they decreased aliphatic groups. The pH increased by about one unit for corn BC, but decreased by 0.2 units for oak BC, indicating strong mineral dissolution of corn BC. Carbon loss strongly correlated with changes in O/C values of both corn BC and oak BC, indicating that oxidation of BC was most likely the major mechanism controlling its stability. However, under saturated conditions, additional mechanisms may govern BC degradation and require further investigation.  相似文献   

19.
The relatively stable concentrations of calcium (42.2–122.3 mg/l) and magnesium (48.9–88.1 mg/l) between 2012 and 2013 and their possible weathering paths identified by mass balance models for both soil solutions and stream water from a small salted (regular applications of winter road deicing salt) watershed in New Jersey, USA indicate that the weathering of feldspars and dissolution of carbonates are the primary sources for these cations. However, the relatively stable and lower concentrations of sodium and chloride in soil solutions (19.6–46.1 mg/l for Na and 12.7–88.3 mg/l for Cl) and their fluctuating and higher concentrations in stream water (14.6–103.1 mg/l for Na and 15.2–260.4 mg/l)) from the same watershed during the same period also indicate that road deicing salt is the primary source for sodium and chloride in stream water. Furthermore, positive correlations between calcium and sulfur concentrations (correlation coefficient r = 0.77) and magnesium and sulfur concentrations (r = 0.73) in stream water between 2009 and 2013, as well as positive correlations between sulfur and iron concentrations in soil compositions (r = 0.27), indicate that both the dissolution of gypsum and the oxidation of pyrite into hematite might be the primary sources of sulfate in the watershed. Analyses of water chemistry from the related and much larger Delaware River Watershed (DRW) show that sodium and chloride concentrations have increased steadily (2.7 times for Na and 4.56 times for Cl for 10-year average) due to the regular application of winter deicing salt from 1944 to 2011 for which data are available. The greater increase of stream water chloride concentrations compared with sodium concentrations also results in the steady decline of Na+/Cl molar ratios from 1.51 to 0.92 for the 10-year average during that time in the DRW and approximately 78% of the chloride in the DRW now being anthropogenic. In addition, the decline of sulfate concentration from 22.08 to 14.59 mg/l (∼34%) for the 10-year average from 1980 to 2011 in the DRW stream water may be attributed to the decline of sulfate levels in atmospheric deposition resulting from enhanced national and state environmental regulations and a shift in local economic activities. There also are more periods of low silica stream water concentrations in the DRW than in the past, perhaps as a result of recent increases in summer stream temperatures combined with an increase of impervious surface area in the region. Warmer stream water might cause the temporary bloom of biota requiring silica, particularly plankton, increasing its uptake from stream water, while an expanded impervious surface area increases the contribution of low-silica runoff water to total stream discharge, thereby lowering the silica concentration in stream water. The combined results of this study illustrate the possible changing anthropogenic factors that can control stream water chemistry in salted watersheds and that these factors need to be taken into account when future water quality regulations and policy are considered.  相似文献   

20.
Eclogites discovered in the eastern part of the East Kunlun Mountains, Western China, are primarily composed of garnet + omphacite + quartz + rutile. The garnets show end-member components of 48–55% almandine, 1–2% spessartine, 19–29% grossularite and 16–29% pyrope, and the omphacite has a jadeite content of 21–63%. The peak-metamorphic assemblage of eclogites records a P–T condition of > 1.6 GPa and 590 °C–650 °C. Zircon U–Pb dating of the inherited magmatic zircons from fine-grained eclogite reveals a Neoproterozoic age of 934 Ma, representing the protolith age of the eclogite. Zircons from the coarse-grained eclogite contain inclusions of garnet, omphacite and rutile, and yield a weighted mean age of 428 Ma, indicating the metamorphic age of eclogite. The eclogites, together with the Late Cambrian (508 Ma) high-pressure granulite to the west, constitute an Early Paleozoic high-pressure metamorphic belt in the East Kunlun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号