首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Oligocene and Lower Miocene sediments from High Folded Zone of Iraqi Zagros have been studied paleontologically at south of Sulaimaniyah, Kurdistan Region, NE Iraq. The identified fauna are consisted of (25) genera and species of benthonic and (16) species of planktonic foraminifera. The fauna comprises relatively abundant foraminiferal assemblages of moderate diversity. Based on the stratigraphic distribution of these species, two biozones have been recognized which are NummulitesRotalia and Globoquadrina dehiscens zones. These biozones indicate that the studied sections of Basara and Khewata are of Late Oligocene–Early Miocene age. Based on the microfossils, it has been found that the age of sediments is equivalent to or represents Anah and Serikagni Formations. Some previous studies described Oligocene rocks (Kirkuk Group) as interior sag basin. In the present study, the occurrence of the group inside High Folded Zone and its rich fauna content are used for the discussion of the sag basin versus normal marine water.  相似文献   

2.
The Malatya Basin is situated on the southern Taurus-Anatolian Platform. The southern part of the basin contains a sedimentary sequence which can be divided into four main units, each separated by an unconformity. From base to top, these are: (1) Permo-Carboniferous; (2) Upper Cretaceous–Lower Paleocene, (3) Middle-Upper Eocene and (4) Upper Miocene. The Upper Cretaceous–Tertiary sedimentary sequence resting on basement rocks is up to 700 m thick.The Permo-Carboniferous basement consist of dolomites and recrystallized limestones. The Upper Cretaceous–Lower Paleocene transgressive–regressive sequence shows a transition from terrestrial environments, via lagoonal to shallow-marine limestones to deep marine turbiditic sediments, followed upwards by shallow marine cherty limestones. The marine sediments contain planktic and benthic foraminifers indicating an upper Campanian, Maastrichtian and Danian age. The Middle-Upper Eocene is a transgressive–regressive sequence represented by terrestrial and lagoonal clastics, shallow-marine limestones and deep marine turbidites. The planktic and benthic foraminifers in the marine sediments indicate a Middle-Upper Eocene age. The upper Miocene sequence consists of a reddish-brown conglomerate–sandstone–mudstone alternation of alluvial and fluvial facies.During Late Cretaceous–Early Paleocene times, the Gündüzbey Group was deposited in the southern part of a fore-arc basin, simultaneously with volcanics belonging to the Yüksekova Group. During Middle-Late Eocene times, the Yeşilyurt Group was deposited in the northern part of the Maden Basin and the Helete volcanic arc. The Middle-Upper Eocene Malatya Basin was formed due to block faulting at the beginning of the Middle Eocene time. During the Late Paleocene–Early Eocene, and at the end of the Eocene, the study areas became continental due to the southward advance of nappe structures.The rock sequences in the southern part of the Malatya Basin may be divided into four tectonic units, from base to top: the lower allochthon, the upper allochthon, the parautochthon and autochthonous rock units.  相似文献   

3.
《Sedimentary Geology》2005,173(1-4):345-371
Facies and environmental setting of the Miocene coral reefs in the Late Cenozoic Antalya Basin are studied to contribute towards a better understanding of the time and space relationships of the reef development and the associated basin fill evolution in a tectonically active basin. The Antalya Basin is an extention–compression-related late post-orogenic basin that developed unconformably on a basement comprising a Mesozoic para-authocthonous carbonate platform overthrust by the Antalya Nappes and Alanya Massif metamorphics within the Isparta angle. The Late Cenozoic basin fill consists of thick Miocene to Recent clastic-dominated terrestrial and marine deposits with subordinate marine carbonates and extensive travertines. Late Miocene compressional deformation has resulted into three parts, referred as Aksu, Köprüçay and Manavgat sub-basins, bounded by north–south extending dextral Kırkkavak fault and the westward-verging Aksu thrust.Coralgal reefs are common within the Miocene sequences and are represented by coral assemblages closely similar to that of the circum-Mediterranean fauna. They occur as massive, small, isolated, patch reefs that developed in two contrasting depositional systems (progradational coastal alluvial fan and/or fan-delta conglomerates and transgressive shelf carbonates) during Early–Middle Miocene and Late Miocene. The Early–Middle Miocene reefs are represented by rich and high-diversity hermatypic corals, mainly comprising Tarbellastraea, Heliastraea, Favites, Favia, Acanthastraea, Porites, Caulastraea and Stylophora with occasional presence of solitary (ahermatypic) corals, Lithophyllia, Mussismilia and Leptomusso, locally reflecting relative changes in the bathymetry. Densely packed, massive, domal and hemispherical growth forms bounded by coralline algae and encrusting foraminifera Acervulina construct the reef framework. They occur in the fan-deltas and the transgressive open marine shelf carbonates of the Manavgat and the Köprüçay sub-basins. The Late Miocene reefs occur only in the Aksu sub-basin and are characterized by low-diversity hermatypic corals exclusively dominated by Porites and Tarbelastraea with minor Siderastraea, Favites and Platygyra. They developed on alluvial fan/fan-delta complexes and shallow marine shelf carbonates.The Miocene coral reef growth and development in the Antalya Basin are characterized by large- to small-scale, transgressive–regressive reefal cycles which are closely related to the complex interaction of sporadic influxes of coarse terrigeneous clastics derived from the tectonically active basin margins and the related sea-level fluctuations.  相似文献   

4.
The Shortland Islands lie in a northeast-southwest line across the western end of Solomon Islands, immediately adjacent to Bougainville. Three major islands dominate the group.Fauro and surrounding islands, in the northeast, have an altered basement suite comprising tholeiite, icelandite and tholeiitic dacite. This is intruded by a high-level calc-alkaline assemblage of microdiorite, hornblende andesite and rhyodacite and overlain by volcanogenic sandstones derived from an andesitic to dacitic volcano. Pyroclastics comprising high-alumina basalt and pyroxene andesite overlie the volcanogenic sandstones. The tholeiitic basement lavas may be of Late Oligocene to Early Miocene age, and the calc-alkaline rocks are probably also pre-Pliocene in age.Alu, in the centre of the group, also has an altered tholeiitic lava basement, which is intruded by a quartz diorite body and overlain by hypersthene-augite basaltic andesite. Pliocene siltstone and Quaternary shallow marine carbonates cover these igneous rocks over much of the island.Mono, in the southwest, has a small basement exposure of altered pillowed hawaiite, overlain by Miocene pelagic limestone, Pliocene siltstone and Quaternary reef limestone. Isolated clasts of pyroxene andesite and ?benmoreite occur in streams and on beaches.The younger, calc-alkaline suites on all islands were formed in an island arc environment, possibly related to subduction from the southwest beneath the New Britain Trench. The basement lavas on Alu are probably early island arc tholeiites, and both these lavas and the calc-alkaline rocks of Alu share a common trend on variation diagrams. The two igneous suites of Fauro, however, have distinctly different trends. The basement lavas have some chemical similarities with oceanic tholeiites, but an early island arc origin for these lavas cannot be ruled out. The altered hawaiite and benmoreite on Mono probably originated in an oceanic island environment.  相似文献   

5.
下扬子区加里东期构造古地理问题   总被引:9,自引:1,他引:8       下载免费PDF全文
吴浩若 《古地理学报》2005,7(2):243-248
一般将江绍断裂作为扬子地块和华夏地块在下扬子区的分界,但江绍断裂是晋宁期缝合带,二者在加里东期的关系需要解决。赣东北和皖南元古界变质岩构成复背斜核部,两翼的寒武-奥陶系由里向外由盆地-斜坡相转为台地相,相界线标志出扬子台缘位置在皖南石台-泾县一线,华夏台缘位置在浙西江山-开化-临安一线,中央的变质岩区应为当时江南海盆的一部分。奥陶纪末沉积格局有重大变化,显示这里的江南海盆转化为陆屑来源的楔形”江南隆起”。复背斜两翼寒武-奥陶系的构造变形则由外向里增强,直至同斜倒转的褶皱形态,表明江南隆起属加里东褶皱带。隆起两侧及东北方有很厚的志留系碎屑岩,沉积序列自下而上由浅海相转为滨海相和三角洲相以至陆相沉积。空间上往东北方江苏境内海相沉积更为发育,志留纪晚期仍有海相记录,与泥盆系之间为平行不整合接触,到印支期才发生构造变形。在下扬子区,扬子和华夏地块之间,加里东褶皱带和印支褶皱带并存。  相似文献   

6.
Past geomorphological models assume that erosion of sediments from old mountain belts occurred at a relatively constant rate, based on comparatively uniform isostatic adjustment caused by unloading. Late Miocene strata of the south‐eastern United States provide an example of pulsed tectonism resulting in a surge in siliciclastic sediment production and transport. Regional tectonism (uplift of the southern Appalachian Mountains) and climatic conditions during the Late Miocene resulted in the long‐distance (up to 1000 km) fluvial transport of coarse siliciclastic sediments onto a stable carbonate platform in southern Florida. The sediments are unusual in that they are significantly coarser than marine‐transported sands in southern Florida, with discoidal quartz and quartzite clasts up to 40 mm in diameter locally present, and have relatively high potassium feldspar contents (up to 16% in some sample fractions), whereas feldspar is rare in modern Florida beach sands. It is suggested that previously documented rejuvenation of the southern Appalachian Mountains during the Middle to Late Miocene time, coupled with the Messenian sea‐level low, generated the increased rate of sediment production and necessary hydraulic gradient to allow rapid transport of coarse sediments. Tectonic influence on the river pathway in Florida, as well as in the southern Appalachian Mountains, may have maintained the river on the narrow carbonate platform. The Florida Platform during the Late Miocene must also have had a sufficiently wet climate to cause episodic transport of the coarse sediments. Siliciclastic sediment transport on the Florida Platform during the Late Miocene greatly differed from Pleistocene to modern conditions, which are dominated by the transport of fine‐grained sands by longshore marine processes.  相似文献   

7.
In the Lake Frome area of South Australia there is a sedimentary sequence of non‐marine (or possibly distant marginal marine) pale‐green to grey, fine elastics and carbonates (Namba Formation). The base of these deposits is Medial Miocene in age and they are overlain unconformably by Pleistocene (and ? Pliocene) sediments. The Miocene sequence is equivalent to the Etadunna Formation of the Lake Eyre Basin, and the clay mineralogy is similar.

Combining evidence from mineralogy, palynology, and vertebrate palaeontology, a warm high‐rainfall climate operating on a subdued topography is indicated for the lower part of the Miocene Lake Frome sequence. This caused the illite‐chlorite‐kaolinite suite of the largely Precambrian provenance to be transformed to smectite and randomly‐interstratified clay. A palygorskite‐dolomite assemblage accumulated in alkaline lakes of extreme marginal marine situation during periods of seasonal dry intervals superposed on the previous climate.

A change to illite‐dominated clay, stratigraphically about halfway up the sequence, occurred simultaneously with initial uplift of the Flinders Ranges. These ranges were previously represented by, at the most, a region of low hills. Uplift, without intervention of climatic change, is sufficient to alter the clay mineralogy by promoting increased leaching. Higher in the sequence, and correlated with the major phase of uplift in the Flinders Ranges, smectite re‐appears. In this case the clay suite is believed to have resulted from increased aridity. The smectite‐rich sediments accumulated above the water table in extensive fan and mud‐flow deposits.

The Neogene sequence records a major palaeogeographic change from low energy rivers, swamps, and lakes in a low relief terrain, probably connected to the sea, to a landscape approaching that of the present during Miocene‐Pliocene times. When the Pleistocene Millyera Formation accumulated, the landscape resembled the present, though the ancestral Lake Frome was larger, and rainfall higher.  相似文献   

8.
This study describes the lithostratigraphic character of mid-Cenozoic (Oligocene-Pliocene) sequences in different parts of the northeastern Mediterranean area and offers a detailed stratigraphic correlation for this region. The sequences concerned are drawn from the Camardi area (south-central Anatolia), the Adana Basin, the Misis Mountains and the Kyrenia Range (northern Cyprus) and the submerged Florence Rise (west of Cyprus). The stratigraphic relationships identified here indicate the following: (a) Following the middle Eocene (Lutetian) regression there was uplift throughout the entire region; (b) Episodes of fluvial and lacustrine deposition in intramontane settings ensued in most of this region during the late Eocene/early Miocene interval; (c) Following a regionally extensive phase of tectonic compression, major marine transgression commenced in the late Oligocene in northern Cyprus and in the early Miocene in adjacent southern Turkey, with the exception of the Ecemi§ Fault Zone where continental deposition continued; (d) These Oligo-Miocene transgressive sequences comprise a broadly diachronous complex of both shallow and deeper marine facies, including reefal carbonates, littoral clastics, basinal shales and fan-turbidites; (e) Deeper marine Miocene facies persisted longer in the Misis area and in northern Cyprus; (f) A regional regression occurred throughout most of the area during the late Serravallian to Tortonian interval and is marked by the abrupt, locally discordant appearance of extensive shallow marine, deltaic and fluvial deposits; (g) Continued regression in the Messinian led to the formation of significant evaporite deposits in the western and southern parts of the region, but localized uplift of the Misis area is attested by the initial deformation of the Neogene rocks there and the absence of Messinian sediments from this area; (h) In the Pliocene there was extensive emergence of the northern parts of the region interrupted by brief marine incursions. The present-day drainage pattern was established at this time; (i) Marine conditions persisted longer in northern Cyprus, where emergence occurred only in the latest Pliocene.  相似文献   

9.
In the middle Miocene Badenian gypsum basin of the Carpathian Foredeep, west Ukraine, three main zones of gypsum development occur in the peripheral parts of the basin. Zone I consists entirely of stromatolitic gypsum formed in a nearshore zone. Zone II is located more basinward and is characterized by stromatolitic gypsum in the lower part of the section, overlain by a sabre gypsum unit. Zone III occurs in still more basinward areas and is characterized by giant gypsum intergrowths (or secondary nodular gypsum pseudomorphs of these) in the lowermost part, overlain by stromatolitic gypsum, sabre gypsum and then by clastic gypsum units. Correlation between these facies and zones has been achieved using lithological marker beds and surfaces. Of particular importance for correlation is a characteristic marker bed (usually 20–40 cm thick) of cryptocrystalline massive gypsum occurring in zones II and III. The marker was not distinguished in zone I, possibly because this bed is older than the entire gypsum section of that zone. These new results strongly suggest that the deposition of giant gypsum intergrowth facies and stromatolitic gypsum facies was coeval. In some sections of zones I and II, limestone intercalations have been recorded within the upper part of the gypsum sections. Considerable scatter of the δ18O and δ13C values of these limestones indicates variable diagenetic overprints of marine carbonates, but a marine provenance of the limestones is confirmed by microfacies analysis. Some of the limestones are coeval with an intercalation of gypsarenitic, mostly laminated gypsum occurring in the sabre gypsum unit of zones II and III. Badenian gypsum formed in extremely shallow‐water to subaerial environments on broad, very low relief areas of negligible brine depth, which could be affected by rapid transgressions. Stable isotope (δ34S, δ18O) studies of the gypsum demonstrate that the sulphate was of sea‐water origin or was derived from dissolution of Miocene marine evaporites. Investigations of individual inclusions in the gypsum indicate decreased water salinity when compared with modern marine‐derived, calcium sulphate‐saturated water. Groundwater influences are indicated by high calcium sulphate contents of the brines in the evaporite basin. The chemical composition of Badenian waters was thus a mixture of relic sea water (depleted in NaCl), groundwater (enriched in calcium sulphate) and surface run‐off.  相似文献   

10.
The Mid-Russian Dislocation Zone is a large within-plate structural element of the East European Platform, which extends for more than 1100 km from the Timan Foredeep to the Orsha Basin. This deep, long-lived zone was formed against a background of changeable geodynamic settings, including (1) Late Paleoproterozoic collision events, (2) Late Riphean-Early Vendian epicontinental rifting, (3) Late Vendian-Early Triassic intraplatform tectogenesis with formation of horst-like uplifts within the zone against the background of general subsidence, and (4) Mesozoic-Cenozoic within-plate reactivation. At the final Kimmerian-Alpine stage of its evolution, the Mid-Russian Zone developed as a left-lateral transpressional structure with penetrative dissipative shear deformation resulting in the general horizontal transfer of Phanerozoic sedimentary rocks. The dislocations were manifested as two dynamically conjugate structural forms: a zone of scattered shearing and a bedding-plane tectonic flow. The dynamic manifestation of the Mid-Russian and the conjugate Belomorian-Dvina zones, which make up a common arcuate structure (in plan view), allowed us to outline the Dvina-Sukhona plate-flow with horizontal mass transfer in the southeastern direction. The tectonics of the Mid-Russian Dislocation Zone is considered in this paper with particular emphasis on the structural and kinematic assemblies in sedimentary rocks of the Phanerozoic cover.  相似文献   

11.
《Geodinamica Acta》2001,14(1-3):147-158
Central Anatolia has undergone complex Neotectonic deformation since Late Miocene–Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE–SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone.Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N–S convergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE–SW-trending extensional basin developed on this plateau in Late Miocene–Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline–alkaline volcanics. The volcanic sequence is unconformably overlain by Pliocene lacustrine–fluviatile deposits intercalated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained clastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional Hırka–Kızılırmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene–Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazlığı pull-apart basins. The Sultansazlığı basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Dağı).The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedge-like Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate.  相似文献   

12.
Abstract

The oldest rocks in the Western Highlands of New Guinea are granite and metamorphic rocks, and these are unconformably overlain by an incomplete marine succession of Permian, Upper Jurassic, Cretaceous, Eocene, Oligocene and Miocene sediments with a maximum thickness of 34,000 ft. The sedimentary succession in the east of the region is much thicker than in the west. Jurassic seas transgressed from the east. Studies of the faunas and petrology of the sediments show that the western part of the region was out of range of the sources of Cretaceous vulcanism and slow pelagic sedimentation continued into the Lower Miocene. By the Middle Miocene a volcanic island arc had developed in the vicinity of the Lai Syncline and the sediments are of shallow-water type, rich in volcanic debris.

Both sediments and basement were folded into a number of anticlines and synclines at the end of the Pliocene. Vigorous erosion was followed by extensive Pleistocene vulcanism in the west. Pleistocene glaciation occurred in the Bismarck Range down to about 13,000 feet above sea-level.  相似文献   

13.
晚侏罗世承德盆地砾岩碎屑源区分析及构造意义   总被引:5,自引:0,他引:5  
河北承德及寿王坟盆地在晚侏罗世土城子期堆积了大量的粗碎屑沉积。砾石成分统计结果显示,承德-寿王坟盆地充填的土城子组碎屑母岩组合主要有三种,其中火山岩、花岗质岩石和变质岩组合在承德盆地占绝时优势,反映了当时盆地以北的"内蒙地轴"为主要的蚀源区。向北逆冲的双庙断裂将承德盆地分成南北两个部分,断裂两侧的砾石成分组合基本相同,显示出碎屑物质共同来源于北部,同时也暗示了该断裂在土城子期可能没有强烈的活动(强烈活动期可能在土城子组之后?)。分析表明,承德盆地南部的不对称向斜构造两侧砾石成分截然不同,说明该向斜构造控制了碎屑分布,是同沉积期形成的。该盆地南侧的碎屑供应量远远小于北侧,反映了控制盆地南缘发育的向北逆冲的灰窑断层可能是一条次要的同沉积断裂。在晚侏罗世整体向南推进的逆冲断裂系统中,灰窑断裂和双庙断裂应属于背向逆冲断层。承德盆地中大量的粗碎屑堆积与同期冲断带的耦合关系分析,指示了这一时期盆地北侧存在强烈的逆冲断裂活动。作为主要物源区,北部的"内蒙地轴"在晚侏罗世发生了强烈的隆升-剥蚀作用,推测当时在地貌上可能存在近E—W走向的古山系(或古高原?)。  相似文献   

14.
Mineral exploration drillholes and geoelectric prospecting provide for the first time evidence for thrusting of the South Carpathian Paleozoic basement over northerly adjacent Middle Miocene sediments. Investigations were carried out in two locations, 30 km apart, along the northern margin of the Poiana Rusca Mountains, Romania, southwestern Carpathians. Drill holes in both locations encountered weakly consolidated Middle Miocene clay, sand, and fine gravel below Paleozoic low-grade metamorphic rocks. Intersections from various drill holes demonstrate the presence of low-angle thrusting. Kinematic indicators are so far lacking, but with a thrust direction oriented roughly normal to strike of the Poiana Rusca Mountains, minimum displacement is 1–1.4 km in northwestern or northern direction, respectively. Thrusting occurred most likely during the Late Miocene–Pliocene, whereafter Quaternary regional uplift dissected the thrust plane. In the tectonic framework of Neogene dextral translation of the Tisza–Dacia Block against the southerly adjacent Moesian Platform, transtension appears responsible for Middle Miocene basin formation along the northern margin of the Poiana Rusca region. Proceeding collision of the Tisza–Dacia Block with the East European Craton introduced stronger impingement of the Tisza–Dacia Block against the Moesian Platform, leading to a Late Miocene–Pliocene transpressional regime, in which the northern Poiana Rusca basement was thrust over its adjacent Middle Miocene sediments.  相似文献   

15.
Palynological and palynofacies analyses were carried out on some Cretaceous samples from the Qattara Rim-1X borehole, north Western Desert, Egypt. The recorded palynoflora enabled the recognition of two informal miospore biozones arranged from oldest to youngest as Elaterosporites klaszii-Afropollis jardinus Assemblage Zone (mid Albian) and Elaterocolpites castelainii–Afropollis kahramanensis Assemblage Zone (late Albian–mid Cenomanian). A poorly fossiliferous but however, datable interval (late Cenomanian–Turonian to ?Campanian–Maastrichtian) representing the uppermost part of the studied section was also recorded. The palynofacies and visual thermal maturation analyses indicate a mature terrestrially derived organic matter (kerogen III) dominates the sediments of the Kharita and Bahariya formations and thus these two formations comprise potential mature gas source rocks. The sediments of the Abu Roash Formation are mostly dominated by mature amorphous organic matter (kerogen II) and the formation is regarded as a potential mature oil source rock in the well. The palynomorphs and palynofacies analyses suggest deposition of the clastics of the Kharita and Bahariya formations (middle Albian and upper Albian–middle Cenomanian) in a marginal marine setting under dysoxic–anoxic conditions. By contrast, the mixed clastic-carbonate sediments of the Abu Roash Formation (upper Cenomanian–Turonian) and the carbonates of the Khoman Formation (?Campanian–Maastrichtian) were mainly deposited in an inner shallow marine setting under prevailing suboxic–anoxic conditions as a result of the late Cenomanian and the Campanian marine transgressions. This environmental change from marginal to open (inner shelf) basins reflects the vertical change in the type of the organic matter and its corresponding hydrocarbon-prone types. A regional warm and semi-arid climate but with a local humid condition developed near/at the site of the well is thought to have prevailed.  相似文献   

16.
C and O isotope composition of Middle-Upper Miocene and Lower Pliocene carbonates from Kerch-Taman Region (Eastern Paratethys) have been studied in order to reconstruct palaeoenvironmental variability and post-sedimentation changes. The δ13C and δ18О values of the Upper Sarmatian to Lower Pliocene organogenic carbonates reflect the desalinization of paleobasins, global Late Miocene Cooling, and increase in seasonal temperature fluctuations. Isotopic composition of the Middle Sarmatian organogenic carbonates was strongly influenced by evaporation processes, high bioproductivity, and local submarine methane emissions. Warm climate and low bioproductivity together with unstable hydrological regime during the Late Chokrakian and the Karaganian times influenced the isotope composition of primary carbonates. Calcite shell of Spiratella sp. (δ13C =–0.4‰ and δ18О =–0.4‰) from Tarkhanian sediments was formed in warm marine environment. Dolomitization prevails over other secondary mineralization in the studied carbonate rocks. Two groups of secondary dolomites that are characterized by negative and positive δ13C values have been recognized. Lowe δ13C values (up to–31.4‰) in dolomites indicate the influence of both dissolved inorganic carbon (DIC) from oxidized organic matter (Сorg) and methane. Dolomites with positive δ13C values (7.0 and 7.8‰) associat with migration of CO2- and CH4-containing saline groundwater.  相似文献   

17.
Swan Island is a Honduran possession in the western Caribbean, located on the southeastern side of the Cayman Trench. Two sedimentary assemblages are found on the island: an older bedded sequence of mid-Tertiary age (Aquitanian or Burdigalian) and a younger sedimentary sequence of Late Pleistocene age. The older sequence is composed of a series of calcarenites, calcilutites, and siliciclastic mudstones; capping these are cliff-forming reefal carbonates of the younger sequence.The rocks of the older bedded sequence accumulated in deep water. Sedimentation consisted of a constant rain of pyroclastic debris interrupted by the episodic introduction of upslope carbonate material by turbidity currents. Uplift and deformation of this sequence was initiated sometime after the Early Miocene. By the Late Pleistocene, uplift had brought the rocks into water depths conducive to coral growth. Pleistocene sedimentation on the island was controlled by the interaction between tectonic uplift and eustatic sea-level changes. The primary controlling force on the tectonic history of the island is its proximity to the boundary between the North American and Caribbean plates.  相似文献   

18.
Augen gneisses, mica schists, and marbles of the Menderes Massif and its sedimentary cover rocks are exposed south of the Gediz graben. The augen gneisses form the structurally lowest part of the studied lithological sequence, and are overlain by a schist complex. The structurally highest part is formed by a series of marbles. The ages of this lithological sequence range from Precambrian to Early Paleocene. Furthermore, this sequence records the tectonic evolution since the Precambrian. The sedimentary cover of the Menderes Massif consists of two groups of sediments from Early Miocene to Quaternary. The lower group, the Alayehir group, consists of Early- to mid-Miocene-aged fluvial and limnic sediments which form the lower and the upper parts, respectively. The Alayehir group is overlain by mainly fluvial sediments of the Gediz group. Both the Alayehir and the Gediz groups are separated by an angular unconformity. Six deformational phases could be distinguished within the metamorphic rocks of the Menderes Massif and its Tertiary cover. The structures which were interpreted to belong to deformational events predating the Paleocene are summarized as deformational phase D1. D1 structures were nearly completely overprinted by the subsequent deformation events. The second deformational phase D2 occurred between Early Eocene and Early Oligocene. D2 occurred contemporaneously with a Barrovian-type regional metamorphism. The third deformational phase D3 is characterized by folding of the axial planes which formed at the end of Early Oligocene. The deformational event D4 occurred during the Late Oligocene and is related to an extensional period. The deposition of the sedimentary rocks which belong to the Tertiary cover of the Menderes Massif that started in the Early Miocene was interrupted by a compressional phase (D5) during the Late Miocene. Sediments which were deposited since the Early Pliocene record structures which were related to a young extensional phase (D6). This extensional phase has continued to the Present.  相似文献   

19.
Sedimentary history of the Tethyan basin in the Tibetan Himalayas   总被引:14,自引:0,他引:14  
After an epicontinental phase, the sedimentary rocks in the Tibetan Himalayas document a complete Wilson cycle of the Neo-Tethyan (Tethys Ill) evolution between the Gondwana supercontinent and its northward drifting margin (Lhasa block) from the Late Permian to the Eocene.During the Triassic rift stage, the basin was filled with a huge, clastic-dominated sediment wedge with up to > 5 000 m of flysch in the northern zone. Widespread deltaic clastics and shallow-water carbonates of late Norian to earliest Jurassic age in the southern zone mark, in conjunction with decreasing tectonic subsidence, the transition to the drift stage.Some 4 500 m of Jurassic and Early Cretaceous shallow-water carbonates and siliciclastics accumulated on the Tethyan Indian passive margin. Deepening-upward sequences with condensed beds at their tops alternate with repeated progradational packages of shelf sediments. Extensive abyssal sediments with basaltic volcanics in the northern deep-water zone reflect continued ocean spreading and thermal subsidence. Paleomagnetic data, gained separately for the northern Indian plate and the Lhasa block, indicate that the Neo-Tethys reached its maximum width about 110 Ma ago with a spreading rate of 4.8 cm/year, before it commenced to close again.During the remnant basin stage in the Late Cretaceous and Paleogene, a shallowing-upward megasequence, capped by a carbonate platform, developed in the southern inner shelf realm. In the northern slope/basin plain zone, turbidites and chaotic sediments, derived from both the acretionary wedge and the steepening slope of the passive margin, accumulated. The depositional center of the remnant basin shifted southward as a result of flexural subsidence and southward overthrusting.The sediments from the Triassic to the Paleogene are tentatively subdivided into five mega-sequences, which are controlled mainly by regional tectonics. Climatic influence (e.g., carbonate deposition), due to northward plate motion, is partially subdued by terrigenous input and/or increased water depth. During the Oligocene and Miocene, crustal shortening led to rapid uplift and the deposition of fluvial molasse in limited basins.  相似文献   

20.
Modal analysis, bulk-rock geochemistry and phase chemistry of sandstones of the Miocene Fat'ha and Injana formations, northern Iraq, show that the clastics were derived from heterogeneous sources that include basic igneous and metamorphic rocks as well as older sedimentary rocks. The sandstones are generally carbonate-rich lithic arenites. Their geochemistry supports the petrographic results and indicates that they are all Fe-rich, lithic or quartz arkosic sandstones. According to geochemical data, garnets are derived from metamorphic sources, hornblende is of igneous origin, and clinopyroxenes, are produced by basic igneous rocks. Epidote is most probably to be a product of disintegration of metamorphic rocks, essentially, metamorphosed igneous rocks. Rutile geochemistry implies low-grade metamorphic and basic to ultrabasic igneous sources. Chemical composition of chromian spinels indicates that they are derived from Alpine-type peridotite. The ophiolitic-radiolarite belts of Taurus-Zagros as well as the uplifted Cretaceous and Paleocene strata of north and northeastern Iraq are likely to be the major source of clastics to the Fat'ha–Injana basin, a foreland basin formed as a result of the continental Arabian and Turkish/Iranian plates collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号