首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
王鹏 《西北地质》2010,43(2):119-119
电感耦合等离子体光谱分析仪Inductively CoupledPlasma Atomic Emission Spectrometry(ICP—AES)是西安地质调查中心实验测试中心于2005年引进的。电感耦合等离子体发射光谱分析是一种新型原子发射光谱分析法,它是以电感耦合等离子体光源代替经典的激发光源(电弧、火花)。目前ICP—AES主要用于溶液分析,因其检出限低、精密度好、动态范围宽、基体效应小和无电极污染等特点,而获得广泛的应用。  相似文献   

2.
李冰 《岩矿测试》2007,26(3):208
内容简介:本书全面介绍了电感耦合等离子体质谱(ICP—MS)的仪器结构和基本原理,以四极杆ICP—MS为主,同时对近年来发展的其他类型的ICP—MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用。全书共分12章:绪论,包括ICP—MS的起源、现状与发展趋势;ICP—OMS仪器结构和基本原理;ICP—MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;激光剥蚀电感耦合等离子体质谱;ICP—MS中的干扰;常用的地质样品处理方法;地质样品中痕量超痕量元素分析;铂族元素分析;同位素比值分析;ICP—MS联用技术在形态分析中的应用。  相似文献   

3.
《岩矿测试》2007,26(1):12-12
内容简介:本书全面介绍了电感耦合等离子体质谱(ICP—MS)的仪器结构和基本原理,以四极杆ICP—MS为主,同时对近年来发展的其他类型的ICP—MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用。全书共分12章:绪论,包括ICP—MS的起源、现状与发展趋势;ICP—OMS仪器结构和基本原理;ICP—MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;激光剥蚀电感耦合等离子体质谱;ICP—MS中的干扰;常用的地质样品处理方法;地质样品中痕量超痕量元素分析;铂族元素分析;同位素比值分析;ICP—MS联用技术在形态分析中的应用。  相似文献   

4.
李冰 《岩矿测试》2006,25(2):118-118
本书全面介绍了电感耦合等离子体质谱(ICP—MS)的仪器结构和基本原理,以四极杆ICP—MS为主,同时对近年来发展的其他类型的ICP—MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用。全书共分12章:绪论,包括ICP—MS的起源、现状与发展趋势;ICP—QMS仪器结构和基本原理;ICP—MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;激光剥蚀电感耦合等离子体质谱;ICP—MS中的干扰;常用的地质样品处理方法;地质样品中痕量超痕量元素分析;铂族元素分析;同位素比值分析;ICP—MS联用技术在形态分析中的应用。  相似文献   

5.
采用高压超临界CO2地球化学反应器对CO2在煤储层中的地质埋藏进行模拟,利用电感耦合等离子体发射光谱仪(ICP-OES)以及电感耦合等离子体质谱(ICP-MS)分别对淋滤液和煤样中的10种微量元素进行测试,对煤中微量元素在CO2的地质埋藏过程中的迁移进行了实验研究。结果表明:在CO2的地质埋藏过程中对煤的有机组成和无机矿物等均具有改造作用,从而影响到煤中微量元素的赋存和迁移特征,Cr、Zn、Cu等元素迁移能力相对较强,而Co、Ba、V等元素相对较弱;元素迁移能力大小顺序为:CrZnCuNiCdMnCoBaV。  相似文献   

6.
电感耦合等离子体质谱分析仪Inductively Coupled Plasma Mass Spectrometry(ICP—MS)是西安地质调查中心实验测试中心于2006年引进的。电感耦合等离子体质谱分析仪能适用于广泛领域的各种样品的元素分析,尤其适用于各类复杂基体的环境、食品、矿物、动植物、卫生防疫等样品中各种无机元素的分析。  相似文献   

7.
李冰 《岩矿测试》2005,24(4):302-302
本书全面介绍了电感耦合等离子体质谱(ICP—MS)的仪器结构和基本原理,以四极杆ICP—MS为主,同时对近年来发展的其他类型的ICP—MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用。全书共分12章:绪论,包括ICP—MS的起源、现状与发展趋势;ICP—OMS仪器结构和基本原理;ICP—MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;  相似文献   

8.
运用石墨炉原子吸收光谱法、电感耦合等离子体发射光谱法和电感耦合等离子体质谱法对0.45μm滤膜过滤前后的地表水和地下水溶液中的微量元素铁、锰、锌、铅、铜、镍、铬和镉进行了定量分析。结果发现,由于微生物的存在及其对水中微量元素的吸附作用,经过滤的酸化水直接测定结果比其经消解处理的测定结果偏低。建议在水质分析前,对样品进行低温消解前处理。  相似文献   

9.
采用电感耦合等离子体质谱(ICP-MS)测试分析技术,对塔中地区10口井16个志留系沥青砂岩包裹体微量元素进行了分析,探讨了包裹体微量元素分布特征及变化规律,并深入分析了其所指示的地质意义。结果表明,所测得的微量元素丰度差异明显,同一井区内或不同井区之间,各井主要的微量元素分布规律表现出从构造低部位向构造高部位方向,微...  相似文献   

10.
无机地球化学研究的进展通常依赖于新的技术开发。电感耦合等离子体质谱(ICP—MS)技术可以进行高精度的同位素比值分析,使以前很难测定的元素的分析成为可能。牛津大学地球科学系已经越来越多地开展多接收器电感耦合等离子体质谱分析,着重于解决从宇宙至环境化学领域的诸多问题。目前主要研究Cr同位素,确定Cr对Jurassic—Triassic边界可能产生的影响事件,以及采用铀系列同位素进行海洋学研究。  相似文献   

11.
Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) is a high spatial resolution analytical method which has been applied to the analysis of silicic tephras. With current instrumentation, around 30 trace elements can be determined from single glass shards as small as ~ 40 µm, separated from tephra deposits. As a result of element fractionation during the ablation process using a 266 nm laser, a relatively complex calibration strategy is required. Nonetheless, such a strategy gives analyses which are accurate (typically within ±5%) and have an analytical precision which varies from ~ ±2% at 100 ppm, to ~ ±15% at 1 ppm. Detection limits for elements used in correlation and discrimination studies are well below 1 ppm. Examples of the application of trace element analysis by LA‐ICP‐MS in tephra studies are presented from the USA, New Zealand and the Mediterranean. Improvements in instrumental sensitivity in recent years have the potential to lower detection limits and improve analytical precision, thus allowing the analysis of smaller glass shards from more distal tephras. Laser systems operating at shorter wavelengths (e.g. 193 nm) are now more widely available, and produce a much more controllable ablation in glasses than 266 nm lasers. Crater sizes of <10 µm are easily achieved, and at 193 nm many of the elemental fractionation issues which mar longer wavelengths are overcome. By coupling a short wavelength laser to a modern ICP‐MS it should be possible to determine the trace element composition of glass shards as small as 20 µm and, providing sample preparation issues can be overcome, the determination of the more abundant trace elements in glass shards as small as 10 µm is within instrumental capabilities. This will make it possible to chemically fingerprint tephra deposits which are far from their sources, and will greatly extend the range over which geochemical correlation of tephras can be undertaken. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Round 23 of the GeoPT international proficiency testing scheme included the ferromanganese nodule powder FeMn‐1 which was distributed as an additional sample (23A). The aim of this initiative was to assess overall analytical performance for such a challenging oxide matrix with a view to the possible certification of such a material in accordance with ISO Guide requirements. To investigate inter‐method discrepancies, precision data and the method means for the most frequently used analytical methods (XRF, ICP‐MS and ICP‐AES) and sample preparation techniques were calculated and then compared using statistical tests of equivalence. For most major elements, XRF and ICP‐AES data dominated and these were found to give equivalent results. In contrast, for most trace elements significant discrepancies were detected between data obtained by different analytical methods. Possible causes are discussed with a view to attributing their origin to calibration strategy, sensitivity or interferences. It is assumed that the unusual oxide matrix generated unexpected interferences and thus method bias. Discrepancies observed between data from different analytical methods provide valuable information for the participating analysts, helping them to avoid systematic errors and thus minimising bias. They also suggest actions necessary to improve results for any future certification of such a material.  相似文献   

13.
Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high‐technology applications. In situ measurements of trace elements in natural sphalerite samples using LA‐ICP‐MS are hampered by a lack of homogenous matrix‐matched sulfide reference materials available for calibration. The preparation of the MUL‐ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single‐element ICP‐MS standard solutions and natural mineral powders. The resulting powder mixture was pressed to pellets and sintered at 400 °C for 100 h using argon as an inert gas. To confirm the homogeneity of major and trace element distributions within the MUL‐ZnS1 calibration material, measurements were performed using EPMA, solution ICP‐MS, ICP‐OES and LA‐ICP‐MS. The results show that MUL‐ZnS‐1 is an appropriate material for calibrating trace element determination in sphalerite using LA‐ICP‐MS.  相似文献   

14.
Previous laser ablation‐ICP‐MS bulk analyses have been confined to volcanic glasses and glass disks or powder pellets similar to those used for XRF analysis. This study proposes a method to determine twenty trace elements (fourteen rare earth elements, Sc, Y, Zr, Nb, Hf and Ta) by LA‐ICP‐MS directly from polished thick sections and rock slabs of six fine‐grained crystalline and aphanitic rocks (five volcanic rocks and one pelitic tillite). Laser scanning of eight to ten 20 mm long linear tracks using a spot size of 160 μm, with a total ablated area of 26–32 mm2, was performed. Quantification was carried out by (a) internal standardisation using Si and (b) without applying internal standardisation. In the latter method, external determination of one element in conventional LA‐ICP‐MS quantification is no longer needed. Although the fine‐grained rocks studied contained variable amounts of volatiles (up to 4%), this method gave results that agree within 10% relative with those obtained by internal standardisation using Si. Two USGS basalt glass reference materials (BCR‐2G and BHVO‐2G) were used for external calibration. The results and the associated trace element patterns and ratios of elemental pairs obtained from both methods of quantification showed good agreement with the results from solution nebulisation ICP‐MS within 20% (mostly within 10%) relative. Fine‐grained rocks are common and include volcanic, sedimentary and low‐grade metamorphic rocks (e.g., basalt, andesite, rhyolite, shale, mudstone, tillite, loess, pelite and slate) and their trace element contents and associated ratios are important geochemical tracers in studies focusing on the composition and evolution of the crust and mantle. Our method provides a simple and quantitative way to determine trace elements in fine‐grained rocks even with those displaying complex textures.  相似文献   

15.
Waters co‐produced during petroleum extraction are the largest waste streams from oil and gas development. Reuse or disposal of these waters is difficult due to their high salinities and the sheer volumes generated. Produced waters (PWs) may also contain valuable mineral commodities. While an understanding of produced water trace element composition is required for evaluating the associated resource and waste potential of these materials, measuring trace elements in brines is challenging due to the dilution requirements of typical methods. Alternatively, inductively coupled plasma‐optical emission spectrometry (ICP‐OES) has shown promise as being capable of direct measurements of trace elements within PWs with minimal dilution. Here, we evaluate direct ICP‐OES trace element quantification in PWs for seventeen trace elements (As, Al, Ba, Be, Cd, Cr, Co, Cu, Hg, Mo, Ni, Pb, Rb, Sb, U, V and Zn) within fifteen PWs from five U.S. continuous reservoirs. The total analytical uncertainties associated with the trace element levels determined using ICP‐OES were estimated to be better than ± 30% (2s) except for Rb, which could not be determined due to ionisation interferences. The ICP‐OES results are compared with trace element levels determined using inductively coupled plasma‐mass spectrometry from the same samples. Our results demonstrate the potential for direct analysis of high‐salinity waters using ICP‐OES with minimal dilution and provide trace element concentrations in waters from several important U.S. petroleum‐generating reservoirs where available data are sparse.  相似文献   

16.
稀土稀有稀散元素现代仪器测试全新方法的建立   总被引:1,自引:0,他引:1  
本文系统总结了自2011年以来在三稀矿产实验测试方面取得的新进展。重点介绍了离子相稀土单元素浸泡提取实验研究、稀土原产地Nd同位素与微量元素示踪技术研究、离子吸附型稀土样品野外现场快速定性定量手持X射线荧光(XRF)分析研究成果。结果表明,采用25%硫酸铵浸泡提取,电感耦合等离子体光、质谱(ICP- AES、ICP- MS)测定,可以清晰反映出各稀土元素的浸泡提取率;采用高精度多接收电感耦合等离子体质谱仪(MC- ICP- MS)进行稀土矿石中Nd143/Nd144同位素比值测定,其比值差异可以示踪不同稀土矿石产地;通过精确测试分析不同产地稀土精矿样品中的稀土和其他微量元素含量,并进行数据相关性分析和数据分类分析,通过Y、Be和Bi三种元素含量的比较,可以判断稀土精矿来源;野外现场快速分析,20分钟可完成1件样品测试,不仅可定性判断是否为离子吸附型稀土,同时可定量各离子相稀土单元素含量,与室内精确分析结果符合性良好,可为我国离子吸附型稀土矿床的找矿快速筛查提供技术支撑。 同时介绍了混合酸微波分解样品- 电感耦合等离子体光、质谱(ICP- AES、ICP- MS)同时测定钨矿石、钼矿石、铌钽矿石中的多种稀有稀散稀土元素含量的方案。该方案的特点在于采用了耐氢氟酸体系,尤其对高含量W、Nb、Ta样品更具优势,否则易产生水解,导致测定结果系统偏低。同时梳理总结了我国常见三稀矿石地质样品的特点,针对不同矿种、不同矿床样品类型与基体特点,以及所测试元素种类的不同,研究建立了专门针对“稀有、稀散、稀土元素”现代仪器分析的10个全新的配套方法及其相应的技术指标(准确度、精密度、检出限),可满足地质矿产实验室测试质量管理的规范要求,而且为我国三稀金属矿产资源的战略调查、国家重点研发计划“深地锂资源探测”和四川甲基卡等地找矿突破做出了贡献。  相似文献   

17.
采用ICP-MS测定了胶东焦家、马塘、东季和红布金矿床黄铁矿、石英及其群体包裹体的微量元素组成。结果表明,黄铁矿包裹体与石英包裹体均富集Cu、Pb和Zn等成矿元素,反映了成矿流体的特征;不同成矿阶段成矿流体特征有差异,石英黄铁矿化阶段、黄铁绢英岩化阶段、石英多金属矿化阶段石英及其包裹体微量元素含量均高于成矿较差的钾长石化阶段的石英及其包裹体;与陆壳微量元素丰度相比,黄铁矿及石英中Cu、Pb、Zn、Ag和Au等成矿元素富集;与地热卤水及斑岩铜矿卤水微量元素含量相比,黄铁矿及石英包裹体中以Cu为代表的成矿元素均较其它元素相对富集,反映了成矿流体中富集成矿元素的特征。上述结果表明,可以采用ICP-MS测定黄铁矿及石英包裹体微量元素来研究成矿流体的特征。  相似文献   

18.
邵坤  赵朝辉  刘卫 《岩矿测试》2014,33(1):29-33
高纯硝酸银中痕量杂质元素的存在会影响其性能和质量,为提高现代测试技术分析痕量杂质元素的准确度,需要解决的首要问题是通过加入沉淀剂或还原剂将银除去,克服基体元素的基体效应。本文提出采用10 mL 10 g/L柠檬酸-5 g/L乙醇酸作络合保护剂,12 mL 100 g/L氯化铵作沉淀剂,建立了沉淀基体分离-电感耦合等离子体质谱同时测定高纯硝酸银中15种痕量杂质元素的分析方法。探讨了络合剂和沉淀剂浓度及用量、质谱干扰及同位素选择、非质谱干扰及内标选择、实验空白值等因素对测定结果的影响。在最佳的实验条件下,Cu、Pb、Ni、Mn、Au、Pd、Pt、Rh、Ru、Ir元素在0~100 ng/mL,Fe、Hg、Bi、Cr、Sn元素在0~250ng/mL浓度范围内呈良好的线性关系。方法检出限(3σ)为0.005~0.062 ng/g,方法精密度(RSD,n=11)为0.6%~2.6%,加标回收率为94.1%~103.1%。与现行的分析方法相比,本方法采用的络合剂和沉淀剂能将基体元素与杂质元素完全分离而不影响测定结果;实验流程简单快速,检出限低,准确度和精密度均满足了实际样品的分析要求。  相似文献   

19.
To test whether the silicate reference glasses BAM‐S005‐A and BAM‐S005‐B from BAM (The Federal Institute for Materials Research and Testing, Germany) are suitable materials for microanalysis, we investigated the homogeneity of these reference glasses using the microanalytical techniques EPMA, LA‐ICP‐MS and SIMS. Our study indicated that all major and most trace elements are homogeneously distributed at micrometre sampling scale in both types of glass. However, some trace elements (e.g., Cs, Cl, Cr, Mo and Ni) seem to be inhomogeneously distributed. We also determined the composition of BAM‐S005‐A and BAM‐S005‐B. The EPMA data of major elements confirmed the information values specified by the certificate. With the exception of Sr, Ba, Ce and Pb, our trace element data by LA‐ICP‐MS were also in agreement with the certified values within the stated uncertainty limits. The reasons for the discrepancy in these four elements are still unclear. In addition, we report new data for twenty‐two further trace elements, for which the concentrations were not certified. Based on our investigation, we suggest that both of these materials are suitable for many microanalytical applications.  相似文献   

20.
Two Co‐rich seamount crust reference materials, MCPt‐1 and MCPt‐2, were prepared using ultra‐fine particle size milling technique and characterised for the platinum‐group elements (PGEs). The raw material for these two reference materials was collected separately from the Magellan seamounts of the western Pacific Ocean and the seamounts of the central Pacific Ocean by Russian and Chinese scientists. First, they were ground by ball mill to a ?200 mesh powder, then further processed by ultra‐fine jet mill and well‐mixed. The particle size distributions of the samples were tested by a laser particle analyser; the average particle size was 1.8 and 1.5 μm (equal to about 2000 mesh) respectively. The homogeneity of six major and minor elements in these two materials was tested at the milligram level of sampling mass by high‐precision wavelength dispersive X‐ray fluorescence (XRF) spectrometry and at the microgram level of sampling mass by electron probe microanalyser. The homogeneity of more than forty trace elements, including Pt, was tested at the microgram level of sampling mass by LA‐ICP‐MS. Except for Rh, all PGEs were determined by isotope dilution‐ICP‐MS. Platinum in MCPt‐1 and MCPt‐2 was characterised as certified values, whereas the other five PGEs in MCPt‐1 and MCPt‐2 were reported as reference values. In addition, the information values of sixty‐two major, minor and trace elements were obtained by XRF, ICP‐AES and ICP‐MS. The minimum sampling mass for the determination of PGEs was 1 g, while the minimum sampling mass for the determination of the other elements was 2–5 mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号