首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
利用远震接收函数偏移成像方法获得青藏高原西部Hi-Climb项目剖面北段地壳结构转换波成像。结果显示班公-怒江缝合带下方拉萨地体上地壳向N仰冲,下地壳向N俯冲,而羌塘地块上地壳向S仰冲,下地壳向S俯冲,可能意味着青藏高原西部拉萨地块和羌塘地块具有复杂的拼合过程。结合前人的岩石学研究成果,建立了新特提斯北洋盆洋壳S向俯冲、距今60~50Ma印度板块与欧亚板块碰撞后,拉萨地块的下地壳向羌塘地块下俯冲,而后印度板块俯冲到羌塘地块下方的地块拼合模式  相似文献   

2.
体波波形反演对青藏高原上地幔速度结构的研究   总被引:10,自引:5,他引:5       下载免费PDF全文
采用波形反演方法对青藏高原地区震中距8°-38°范围内的宽频带炸波波形进行拟合,研究该地区上地幔平均速度结构以及上地幔纵、横波速度的横向不均匀性结果表明青藏高原地区的平均地壳厚度约为68km,上地幔盖层平均厚度约为30-40km,速度约为8.10km/s雅鲁藏布江附近地壳厚度最大,约80km,相应的上地幔Pn速度为8.15km/s左右,青藏高原中部地区的地壳平均厚度约68-70km.位于拉萨地块北部的羌塘地块S波速度相对较低,其地壳和上地慢的平均S波速度分别比拉萨地块低1%和2%以上34°N以北,90°E附近的区域存在明显的上地幔P波低速异常区,P波的平均速度小于7.8km/s据此结果及前人工作,推断印度板块的俯冲可能以雅鲁藏布江缝合带附近为界,青藏高原巨大的地壳厚度是由于欧亚板块碰撞造成地壳缩短与增厚引起.  相似文献   

3.
利用接收函数反演青藏高原西部地壳S波速度结构   总被引:2,自引:0,他引:2       下载免费PDF全文
相对于宽阔的腹地,青藏高原西部南北向宽度仅约600km,却记录了印度和欧亚板块汇聚的深部过程及其响应.本文用22台宽频带流动地震台站在西缘构建了一条南北向探测剖面(~80°E,TW-80试验).利用接收函数反演剖面下方S波速度结构,综合西部已有的宽频带探测结果,分析认为:印度板块向北俯冲可能已到达班公湖—怒江缝合带附近,俯冲过程中下地壳发生榴辉岩化;喀拉昆仑断裂带、班公湖—怒江缝合带、阿尔金断裂带均为切穿地壳的深断裂,莫霍面发生错断;喀拉昆仑断裂带和龙木错断裂带之间的中上地壳没有发现连续的S波低速体,说明可能缺乏解耦层,支持青藏高原西部地壳为整体缩短增厚模式.  相似文献   

4.
西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究   总被引:27,自引:14,他引:13       下载免费PDF全文
为了探测西藏高原南部雅鲁藏布江缝合带地区地壳浅部和深部构造沿东西和南北方向的变化特征,在雅鲁藏布江缝合带地区布设了三条南北向剖面(错那—墨竹工卡、亚东—雪古拉、吉隆—措勤),采用超宽频带大地电磁测深方法进行了地壳、上地幔电性结构探测研究,发现该区主要电性结构特征为:1. 雅鲁藏布江缝合带附近表层发育大规模的高阻体,岩体延伸最深达30km以上,是冈底斯花岗岩体的反映. 2. 雅鲁藏布江缝合带的南部有小规模的良导体,在其下方和北侧发育有大规模良导体. 3. 沿剖面从南往北壳内普遍发育良导体,各良导体主体间是不连续的,规模逐渐增大,总体北倾,在缝合带附近产状较陡. 4. 在雅鲁藏布江缝合带附近良导体由西往东规模逐渐增大,导电性逐渐变好,相对雅鲁藏布江在剖面上的位置逐渐南移. 这些重要的电性特征可能是印度板块向北俯冲所形成的,深部大规模的良导体特征沿东西向的差异可能是板块碰撞引起物质沿东西向运移作用的结果.  相似文献   

5.
印度地壳与岩石圈地幔的俯冲前缘和俯冲形态,对认识高原构造变形、隆升机制有重要意义.本文基于青藏高原西缘分布的流动宽频带地震台站(TW-80测线和Y2台网)记录的远震波形数据,通过接收函数H-κ网格搜索与CCP叠加方法,对研究区地壳结构进行成像.结果显示:(1)研究区西侧北西—南东向剖面(剖面1,2),狮泉河逆冲断裂带以南,深度67~80 km范围内均观测到连续的Moho界面;40~55 km范围内存在另一组横向上可连续追踪的界面,其形态与之下Moho面横向变化趋势近乎平行;(2)研究区东侧剖面3下方,Moho面从南端喀喇昆仑断裂带下方向北逐渐加深,在雅鲁藏布江缝合带附近增至大约67 km,进入拉萨块体至台站WT20和WT03下方至最深75~80 km,然后向北有所抬升.基于成像结果和岩石学研究成果推测藏南块体下方,自西向东均存在俯冲印度板块下地壳的榴辉岩化现象,可以用来指示印度板块地壳尺度的俯冲前缘,其在青藏高原西部(约80°E)位于班公湖—怒江缝合带附近,向东逐步递减至拉萨块体中部.  相似文献   

6.
青藏高原中东部地壳和上地幔顶部P波层析成像   总被引:1,自引:1,他引:0       下载免费PDF全文
为获取青藏高原中东部地壳和上地幔顶部的精细结构,本文基于1万4 484条天然地震的P波(Pg和Pn)到时数据,对青藏高原中东部地壳和上地幔顶部进行P波三维速度结构层析成像,获取了该区域内地壳P波、上地幔顶部Pn波的速度结构和地壳厚度信息。层析成像结果显示,青藏高原中东部地壳P波速度范围为5.2—7.2 km/s,上地幔顶部Pn波速度范围为7.7—8.4 km/s,地壳厚度范围为48.0—68.6 km,地壳和上地幔顶部存在强烈的横向不均匀性,与地质块体分布有较好的对应关系。地壳P波速度结构显示,研究区中、下地壳分布有较大范围的低速区,上地壳与中下地壳P波分布存在明显的差异:羌塘地块和巴颜喀拉地块在上地壳主要表现为高速异常,随着深度增加逐渐表现为低速异常;而柴达木地块在上地壳主要表现为低速异常,下地壳则表现为高速异常;柴达木地块和拉萨地块在上地幔顶部表现为较高的Pn波速度,最高约为8.4 km/s,而在巴颜喀拉地块和羌塘地块东部,Pn波总体上表现为低速,最低约为7.7 km/s。研究区内地壳厚度的总体特征表现为南厚北薄,其中羌塘地块东部和拉萨地块的地壳较厚,而柴达木地块和巴颜喀拉地块东部的地壳相对较薄,羌塘地块西部存在局部的地壳变薄现象,反映了印度板块对欧亚板块北向俯冲作用下的岩石圈变形特征。   相似文献   

7.
利用中美合作Hi-Climb项目北段吉隆-鲁谷剖面的天然地震探测数据,拾取2004~2005年期间5级以上地震事件的P波与4级以上地震的Pn波震相的走时,通过多震相层析成像反演获得青藏高原腹地的地下500 km以上的P波速度扰动结构.结果表明雅江地区为北向倾斜的低速扰动,班公-怒江断裂下方存在向南俯冲并被印度板块俯冲挤压而回折的高速体,建立了印度板块在冈底斯地块下方拆沉并被雅江低速体穿越的构造样式.说明印度板块俯冲在到达班公-怒江缝合带之前已经开始消减,与拆沉位置对比发现,印度板块的前锋深部呈现多期多级次特征,并受到地幔热循环作用的影响.  相似文献   

8.
中国境内天山地壳上地幔结构的地震层析成像   总被引:18,自引:5,他引:18       下载免费PDF全文
根据横跨中国境内天山的库车—奎屯宽频带流动地震台阵和区域地震台网记录的近震和远震P波走时数据,利用地震层析成像方法重建了沿该地震台阵剖面下方400 km深度范围内地壳上地幔的P波速度结构.结果表明:沿新疆库车—奎屯剖面,天山地壳具有明显的横向分块结构,且南、北天山地壳显示了较为强烈的横向变形特征,表明塔里木地块对天山地壳具有强烈的侧向挤压作用;在塔里木和准噶尔地块上地幔顶部有厚度约60~90 km的高速异常体,塔里木—南天山下方的高速异常体产生了较为明显的弯曲变形,而准噶尔—北天山下方的高速异常体向南一直俯冲到中天山南侧边界下方300 km的深度,两者形成了不对称对冲构造;在塔里木和准噶尔地块下方150~400 km深度存在上地幔低速体,其中塔里木地块一侧的上地幔低速物质上涌到南天山地块的下方;在塔里木—南天山200~300 km深度范围的上地幔存在高速异常体,它可能是地幔热物质向上迁移过程融断的塔里木岩石圈的拆离体. 上述结果表明,塔里木地块的俯冲可能涉及整个岩石圈深度,但其前缘仅限于南天山的北缘;青藏高原隆升的远程效应可能不但驱动塔里木岩石圈向北俯冲,同时还造成天山造山带南侧上地幔物质的涌入;天山造山带上地幔广泛存在的低速异常有助于其上地幔的变形,而上地幔物质的强烈非均匀性应有助于推动天山造山带上地幔小尺度地幔对流的形成;根据研究区地壳上地幔速度结构特征推断,新近纪以来天山快速隆升的主要力源来自青藏高原快速隆升的远程效应,相对软弱的上地幔为加速天山造山带的变形和隆升创造了必要条件.  相似文献   

9.
为研究日喀则市活动断裂深浅部构造关系及深部孕震机制,跨雅鲁藏布江谢通门—日喀则段部署了48个宽频大地电磁测深点,剖面长度为108 km。在二维反演的基础上对壳幔200 km深度范围内的电性结构进行了探测研究。剖面自南向北依次经过喜马拉雅地块、雅鲁藏布江缝合带和拉萨—冈底斯地块。喜马拉雅地块地壳表现为高阻特性,其北侧的仲巴—郎杰学陆缘移置混杂地体发育了深达上地幔盖层的巨厚的北倾低阻体;雅鲁藏布江主缝合带表现为喇叭状低阻通道,宽约10 km,存在深浅部两处低阻体,浅部南倾深部北倾,低阻通道南部发育近似直立或南倾的高阻日喀则蛇绿岩,北部发育近直立的高阻冈底斯花岗岩体,整体表现为两个高阻异常体中间夹一个连通壳幔的带状低阻通道;拉萨—冈底斯地块以高阻为主,中下地壳普遍发育低阻体。缝合带附近因板块俯冲作用导致壳幔局部增厚或减薄,表现为电性的梯度变化,表现为低阻特性的部分则是壳幔物质的运移通道。   相似文献   

10.
印度-欧亚碰撞与洋-陆碰撞的差异   总被引:1,自引:0,他引:1       下载免费PDF全文
观测的证据充分表明,印度——欧亚的缝合带雅鲁藏布江上存在自南向北的地壳俯冲带,它穿过莫霍面,深度大约达到100 km. 喜马拉雅中可能存在多重的地壳俯冲. 它们有别于海洋碰撞时所产生的整个岩石圈俯冲. 作者观测到雅鲁藏布江以北上地幔的板片构造,它可以解释为印度向欧亚俯冲时上地幔岩石圈的痕迹. 它们说明与洋——陆的俯冲不同,印度向欧亚俯冲时,地壳与上地幔岩石圈出现拆层现象. 综合现有的地壳上地幔构造,显示在不同地质年代中,印度与欧亚之间产生自南向北以及自北向南相反方向的俯冲,而且俯冲带周围出现某些速度异常区.   相似文献   

11.
对INDEPTH Ⅲ台站的接收函数进行扫描,利用Moho界面产生的转换波和多次波的走时信息,估计台站下方的地壳平均波速比VP/VS和地壳厚度.结果显示:(1)沿着INDEPTH Ⅲ剖面,地壳厚度整体变化不大,均为65±5km,其中拉萨地块Moho界面埋深较羌塘地体要深约5~6km.结合其他研究资料,我们推断,在整个班公-怒江缝合带存在约10km的Moho错断,为拉萨地体北缘的地幔盖层向北俯冲到羌塘地体之下所致.(2)青藏高原地壳平均波速比整体都较高,可能与青藏高原地壳广泛存在的流体/部分熔融岩浆有关.拉萨地体北部异常高的地壳VP/VS可能与嘉黎-崩错右旋走滑断裂相关;而另一个泊松比异常区位于羌塘中北部(st36~st40),它可能是由热的地幔引起的壳内部分熔融所致.  相似文献   

12.
在青藏高原东部沿30°N布设由26个台站组成的远震观测剖面.用远震P波接收函数反演方法获得了该剖面下方0~80km深度范围的S波速度结构.反演的结果揭示了沿剖面不同构造块体的地壳速度结构横向变化特征.从喜马拉雅东构造结北侧的林芝,往东北方向的地壳逐渐增厚;地壳厚度在班公.怒江缝合带为最大值,达72km;进入羌塘地块,减至65km;至巴颜喀拉地块,为57~64km;至四川盆地,仅为40—45km.剖面的巴塘以东部分与2000年完成的竹巴龙.资中人工地震测深剖面重合,由远震接收函数确定的S波地壳结构与由人工地震测深获得的P波地壳结构在莫霍界面和壳内主要界面的深度上有很好的一致性.在羌塘地块和巴颜喀拉地块,沿观测剖面的下地壳(30~60km深度范围内)普遍存在低速异常,而四川盆地下地壳则属于正常的速度分布.剖面通过的各构造单元地壳平均波速比(泊松比):拉萨地块1.73(σ=0.247),班公-怒江缝合带1.78(σ=0.269),羌塘地块1.80(σ=0.275),巴颜喀拉地块1.86(σ=0.294)和扬子地块1.77(σ==0.265).羌塘地块和巴颜喀拉地块具有下地壳S波低速异常、复杂的莫霍过渡带以及地壳高泊松比的特征,预示下地壳物质处于热和软弱状态,这是青藏高原东部存在下地壳流的深部环境.下地壳韧性物质的流动可能起因于从高原内部至外部上地壳内重力势能的变化.  相似文献   

13.
青藏高原东部的Pn波层析成像研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用INDEPTH/ASCENT台阵和其它布设在青藏高原的流动宽频带地震仪数据,反演了青藏高原东部和周边区域的上地幔顶层Pn波速度以及台站延迟.研究区域的平均Pn波速度是8.1 km/s,略高于中国大陆的平均Pn波速度.低速区主要分布在羌塘地块的西部和松潘-甘孜地块,高温异常的岩石圈上地幔很可能是导致这一低速区的原因.班公-怒江缝合带东端区域的Pn波速度达到8.35 km/s,这一高速区可能与向北俯冲的印度板块(东端)有关.另一Pn波高速区分布在祁连山和昆仑山之间,主要由柴达木盆地和共和盆地及其周边地区,两个并不完全连续的高速异常区组成,它可能对应于特提斯洋闭合时北部增生的克拉通地体;在后来的欧亚板块与印度板块的碰撞中,这一地体有可能阻挡了青藏高原向北的生长.相对密集的台站提供了高分辨率的速度结构横向分布和地壳厚度变化.台站延迟显示青藏高原北部和东部的地壳存在显著的减薄--松潘-甘孜地块东北缘的地壳厚度仅为约50 km,而羌塘地块东部唐古拉山地壳最厚,达到75 km,这可能是由于印度-欧亚板块碰撞引起的羌塘地块内部变形增厚所致.  相似文献   

14.
青藏高原是印度板块向欧亚板块碰撞俯冲的产物,其地壳上地幔结构复杂,深部结构是青藏高原隆升动力学机制研究的基础和关键。在近期的青藏高原地球动力学研究中,壳幔变形和耦合的问题是当前研究的热点之一。本文试图利用青藏高原及其周边的宽频带数字记录做Rayleigh面波的层析成像,以获得青藏高原及邻区从地壳到岩石圈地幔的群速度和方位各  相似文献   

15.
青藏高原因其复杂的结构和演化历史,一直都是研究大陆碰撞、构造运动及其动力学的热点区域。本文采用三重震相波形拟合技术,基于中国地震观测台网和大型流动台阵记录到的某地震P波垂向记录,获得了包括拉萨、南羌塘和松潘甘孜地块在内的青藏高原上地幔P波速度结构。结果表明:①拉萨和南羌塘地块下方地幔过渡带存在高速异常,推测是俯冲的印度板片滞留体,过渡带底部的板片残余温度较低,使得660-km相变滞后约3~8km。而松潘甘孜地块下方过渡带同样存在高速异常,可能是欧亚岩石圈发生拆沉进入地幔过渡带所致。这说明印度板块俯冲作用的影响已经到达地幔过渡带,其俯冲前缘位于班公怒江缝合带附近。②从拉萨、南羌塘到松潘甘孜地块,200km之上的地幔岩石圈高速盖层速度由南向北逐渐减小,松潘甘孜地块则出现盖层缺失。推测受小规模地幔对流或者热不稳定性的影响,在南羌塘和松潘甘孜地块,增厚的欧亚岩石圈发生拆沉作用,岩石圈被减薄和弱化,造成羌塘地块上地幔低速和松潘甘孜地块上地幔高速盖层缺失。拆沉的冷的欧亚岩石圈可能部分停留在410-km上方,使得410-km抬升约10km,部分沉入地幔过渡带,表现为松潘甘孜地块地幔过渡带中存在高速异常。低温造成660-km下沉约8km,导致地幔过渡带增厚。   相似文献   

16.
印度板块向欧亚俯冲前缘位于班公—怒江缝合带附近,但是印度岩石圈地幔的俯冲形态和形变过程仍然缺乏共识,在不同地区使用不同方法获得的结果之间存在明显差异.本文使用青藏高原中部INDEPTH-Ⅲ剖面远震S波波形数据,提取走时信息,通过层析成像方法获得剖面下方S波速度扰动图像.结果显示:在班公—怒江缝合带下方100至300km深度范围内存在一个高角度(约65°)北倾的S波高速体,推测可能是回退的印度岩石圈板片或/和小规模对流引起的岩石圈拆沉后残留的印度大陆岩石圈板片.  相似文献   

17.
青藏高原地壳的三维密度结构和物质运动   总被引:5,自引:2,他引:3       下载免费PDF全文
应用区域重力场小波多尺度分析和反演于青藏区后,得到6个地壳等效层密度扰动图件,刻划了地壳三维密度结构,为研究地壳构造和物质运动提供了重要佐证.研究表明在青藏高原地壳内密度变化有以下三个规律.1)从上地壳到下地壳,平面分布上低密度区的分布范围逐渐扩大;在下地壳只有刚性克拉通地体才有显示高密度.2)从上地壳到下地壳,平面分布上密度扰动区的尺度逐渐扩大;到下地壳高或低的密度区不仅数量大为减少,而且边界更加清晰.3)从上地壳到下地壳,青藏高原南部的低密度带不断向北移动,反映印度陆块向欧亚大陆的向北俯冲.青藏高原下地壳密度高的克拉通地体有羌塘、柴达木和巴颜喀拉三个;而昆仑山、阿尔金山、祁连山和冈底斯地块都属于低密度的中新生代构造活动单元.拉萨地块也是低密度地块,在中下地壳它与冈底斯地块相连,应归属于中新生代构造活动单元.松潘甘孜地块在下地壳为低密度,但在上中地壳逐步变为高密度,并与巴颜喀拉克拉通地体连接.这种情况可能反映巴颜喀拉地体的上地壳随印澳板块俯冲向东南方向挤出.青藏高原低密度的物质也由下地壳向上挤出,在中上地壳体积迅速减小.由于下地壳低密度的物质向上挤出,中地壳密度高的克拉通地体会相应发生裂解,使克拉通地块的数目增加.高原北缘的下地壳低密度物质侧向挤出的枝杈有三支;其中一支从西昆仑到天山,另一支从龙门山西秦岭到银川盆地.第三支从高原南缘理塘到大理.它们可能反映下地壳管道流,宽度约180~300km.7级以上地震震中都位于下地壳低密度物质侧向挤出枝杈周围,可能与下地壳管道流位置吻合.  相似文献   

18.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

19.
根据藏北色林错-雅安多510余公里长地震剖面上纵横波特征所识别的来自于莫霍反射及壳内反射震相,通过正演拟合解释了该纵剖面地壳纵横波速度与Poisson比结构.研究结果显示,雅鲁藏布江与班公湖-怒江两条缝合带之间地壳结构东西向变化剧烈,岩石圈结构在剖面中部厚度最深,达到80余公里;莫霍面东西向变化呈现“下凹”特征,自莫霍面“下凹”处沿剖面东西方向呈阶梯状抬升,且西向抬升速度较东向大;地壳内纵横波速度纵向(深度域)与横向(东西方向)均存在非均一性现象,且上地壳内27~34km深度处存在厚度约5~7km的低速层.上地壳内,剖面中段介质的Poisson比较剖面东段与剖面西段的低;下地壳内,剖面东段的Poisson比较剖面西段的Poisson比低.上地壳内介质的刚性变化特征不同于下地壳内介质的刚性变化特征,剖面东段下地壳内物质较剖面西段的刚度小,并蕴含着藏北地区下地壳物质伴随欧亚与印度板块碰撞而东向流动.藏北地区地壳结构东西向变化趋势与莫霍面“下凹”特征可能源于多期构造作用的叠加效应.  相似文献   

20.
青藏高原中南部Hi-Climb宽频地震探测剖面北段接收函数偏移和走时残差分析表明, 青藏高原中、西部岩石圈结构特征存在明显的不同. 青藏高原中部, 印度板块向北俯冲到羌塘地体之下, 在羌塘地体中南部达到最大的俯冲深度, 拆沉的印度岩石圈板片残留在拉萨地体中部附近之下, 深度可能超过上地幔转换带上界面; 青藏高原西部, 印度板块向北低角度俯冲, 可能俯冲到塔里木块体之下. 由于青藏高原中、西部印度板块俯冲模式的差异, 上涌地幔物质受到西部低角度俯冲印度岩石圈的阻挡, 使得地幔上涌物质更多的向东流动, 造成高原中部地区深部热物质向东侧向流动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号