首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, it is determined physicochemical properties of the groundwater and the spatial variability of physicochemical properties of the groundwater in the Amik plain and as well as assess its suitability for drinking and irrigation. A total 92 groundwater samples were collected from drilled well in June 2012. In addition, the 42 of 92 drilled wells were also sampled in September 2012 to evaluate the changes of groundwater properties. According to t test values, the mean Ca2+, SO4 2?, Mg2+ and TH values in the June period were significantly lower than those of the September period. On the other hand, the mean (CO 3 2?  + HCO3 ?) and RSC and MR values in the June period were significantly higher than those of the September period. The order of relative abundance of major cations in the groundwater (in mg L?1) is in order Na> Mg2+ > Ca2+ > K+. The order of the anions abundance (mg L?1) is SO4 2? > Cl? > HCO3 ? > CO3 2? in this research. Log and square-root transformation were carried out for the most of the water properties before the calculation of semivariance. The nugget ratio showed all the variables were strongly spatial dependent except for K+ and Mg2+ and (CO3 2? + HCO3 ?) which showed moderate spatial dependence (ratio ranging from 28 to 49.9 %). Spatial distribution analysis of groundwater quality indicated that The EC, TDS values and Na and Cl? contents which is important water quality parameters increase from northern towards southern. The total hardness values increase also from northwestern towards southwestern.  相似文献   

2.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

3.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

4.
The integration of the statistical approaches and GIS tools with the hydrogeological and geological contexts allowed the assessment of the processes that cause groundwater quality deterioration in the great important deltaic aquifer in the northeastern Tunisia (Medjerda Lower Valley Aquifer). The spatial variation of the groundwater parameters and the molar ratio (Cl?/Br?) were also used to determine the possible impacts from seawater intrusion and from the septic tank leachate. Sixty shallow groundwater samples were collected in 2014 and analyzed for major and trace ions over an area of about 1090 km2 to determine the suitability for drinking or agricultural purposes. The total dissolved solids (TDS) content ranges from 1005 to 19,254 mgl?1 with a mean value of 3477.18 mgl?1. The chemistry is dominated by the sodium–chloride waters (55%). Mapping of TDS, Cl?, Na+, SO42? and NO3? using kriging method shows a clear increase in salinity toward the coastline accompanied by Na+ and Cl? increase which may be related to seawater intrusion and halite dissolution. Locally, higher nitrate concentration is related to the agricultural activities inducing contribution of chemical fertilizers and irrigation with treated wastewater. The saturation indices indicate that all carbonate minerals tend to reach saturation equilibrium confirming water–rock interactions, while evaporitic minerals are still in sub-saturation state and may increase the salinity of the groundwater. The principal component analysis proves the occurrence of groundwater contamination principally by seawater intrusion in the factor I (74.15%) and secondary by an anthropogenic source in the factor II (10.35%).  相似文献   

5.
Hydrogeochemical controlling factors for high rate of groundwater contamination in stressed aquifer of fractured, consolidated rocks belonging to semi-arid watershed are examined. The groundwater in mid-eastern part of Prakasam district confining to Musi-Gundlakamma sub-basins is heavily contaminated with nitrate and fluoride. Distinct water chemistry is noticed among each group of samples segregated based on concentration of these contaminants. The nitrate is as high as 594 mg/l and 57 % of the samples have it in toxic level as per BIS drinking water standards, so also the fluoride which has reached a maximum of 8.96 mq/l and 43 % of samples are not fit for human consumption. Nitrate contamination is high in shallow aquifers and granitic terrains, whereas fluoride is in excess concentration in deeper zones and meta-sediments among the tested wells, and 25 % of samples suffer from both NO3 ? and F? contamination. Na+ among cations and HCO3 ? among anions are the dominant species followed by Mg2+ and Cl?. The NO3 ?-rich groundwater is of Ca2+–Mg2+–HCO3 ?, Ca2+–Mg2+–Cl? and Na+–HCO3 ? type. The F?-rich groundwater is dominantly of Na+–HCO3 ? type and few are of Na+–SO4 2? type, whereas the safe waters (without any contaminants) are of Ca2+–Mg2+–HCO3 ?– and Na+–HCO3 ? types. High molecular percentage of Na+, Cl?, SO4 2? and K? in NO3 ? rich groundwater indicates simultaneous contribution of many elements through domestic sewerage and agriculture activity. It is further confirmed by analogous ratios of commonly associated ions viz NO3 ?:Cl?:SO4 2? and NO3 ?:K+:Cl? which are 22:56:22 and 42:10:48, respectively. The F? rich groundwater is unique by having higher content of Na+ (183 %) and HCO3 ? (28 %) than safe waters. The K+:F?:Ca2+ ratio of 10:5:85 and K+:F?: SO4 2? of 16:7:77 support lithological origin of F? facilitated by precipitation of CaCO3 which removes Ca2+ from solution. The high concentrations of Na+, CO3 ? and HCO3 ? in these waters act as catalyst allowing more fluorite to dissolve into the groundwater. The indices, ratios and scatter plots indicate that the NO3 ? rich groundwater has evolved through silicate weathering-anthropogenic activity-evapotranspiration processes, whereas F? rich groundwater attained its unique chemistry from mineral dissolution-water–rock interaction-ion exchange. Both the waters are subjected to external infusion of certain elements such as Na+, Cl?, NO3 ? which are further aggravated by evaporation processes leading to heavy accumulation of contaminants by raising the water density. Presence of NO3 ? rich samples within F? rich groundwater Group and vice versa authenticates the proposed evolution processes.  相似文献   

6.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

7.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

8.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

9.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

10.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

11.
Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl? and between Mg2++ Ca2+ and SO4 2??+?HCO3 ?, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)–(SO4 2??+?HCO3 ?) and (Na++ K+)–Cl? with a slope of ?0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.  相似文献   

12.
The present study attempts to model the spatial variability of three groundwater qualitative parameters in Guilan Province, northern Iran, using artificial neural networks (ANNs) and support vector machines (SVMs). Data collected from 140 observation wells for the years 2002–2014 were used. Five variables, X and Y coordinates of the observation well, distance of the observation well from the shoreline, areal average 6-month rainfall depth, and groundwater level at the day of water quality sampling, were considered as primary input variables. In addition, nine qualitative variables were also considered as auxiliary input variables. Electrical conductivity (EC), sodium concentration (Na+), and sulfate concentration (SO4 2?) of the groundwater in the region were estimated using ANNs and SVMs with different input combinations. The results showed that both ANNs and SVMs work well when the only primary input variable is the well location. The ANN yielded an RMSE of 1.03 mEq/l for SO4 2?, 1.05 mEq/l for Na+, and 203.17 μS/cm for EC, using the X and Y coordinates of the observation wells in the study area. In the case of SVM, these values were, respectively, 0.87, 0.87, and 176.68. Considering the auxiliary input variables (pH, EC, and the concentrations of Na+, K+, Ca2+, Mg2+, Cl?, SO4 2?, and HCO3 ?) resulted in a significant decrease in the RMSE of both ANNs (0.22, 0.30, and 33.04) and SVMs (0.26, 0.34, and 36.23). Comparing these RMSE values with those of cokriging interpolation technique (0.59, 0.98, and 177.59) indicated that ANNs and SVMs produced more accurate estimates of the three qualitative parameters. The relative importance of auxiliary input variables was also determined using Gamma test. The output uncertainty of ANNs and SVMs were determined using p-factor and d-factor. The results showed that SVMs have less uncertainty than ANNs.  相似文献   

13.
A survey on quality of groundwater was carried out for assessing the geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India, where the area is underlain by Peninsular Gneissic Complex. The results of the groundwater chemistry show a variation in pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ? and F?. The chemical composition of groundwater is mainly characterized by Na+?HCO3 ? facies. Hydrogeochemical type transits from Na+–Cl?–HCO3 ? to Na+–HCO3 ?–Cl? along the flow path. Graphical and binary diagrams, correlation coefficients and saturation indices clearly explain that the chemical composition of groundwater is mainly controlled by geogenic processes (rock weathering, mineral dissolution, ion exchange and evaporation) and anthropogenic sources (irrigation return flow, wastewater, agrochemicals and constructional activities). The principal component (PC) analysis transforms the chemical variables into four PCs, which account for 87% of the total variance of the groundwater chemistry. The PC I has high positive loadings of pH, HCO3 ?, NO3 ?, K+, Mg2+ and F?, attributing to mineral weathering and dissolution, and agrochemicals (nitrogen, phosphate and potash fertilizers). The PC II loadings are highly positive for Na+, TDS, Cl? and F?, representing the rock weathering, mineral dissolution, ion exchange, evaporation, irrigation return flow and phosphate fertilizers. The PC III shows high loading of Ca2+, which is caused by mineral weathering and dissolution, and constructional activities. The PC IV has high positive loading of Mg2+ and SO4 2?, measuring the mineral weathering and dissolution, and soil amendments. The spatial distribution of PC scores explains that the geogenic processes are the primary contributors and man-made activities are the secondary factors responsible for modifications of groundwater chemistry. Further, geochemical modeling of groundwater also clearly confirms the water–rock interactions with respect to the phases of calcite, dolomite, fluorite, halite, gypsum, K-feldspar, albite and CO2, which are the prime factors controlling the chemistry of groundwater, while the rate of reaction and intensity are influenced by climate and anthropogenic activities. The study helps as baseline information to assess the sources of factors controlling the chemical composition of groundwater and also in enhancing the groundwater quality management.  相似文献   

14.
15.
In this study, hydrochemical and isotope investigations were conducted in the Yanqi Basin to determine the chemical composition, and to gain insight into the groundwater recharge process in the Yanqi Basin. It mainly used hydrochemistry, environmental isotopes, and a series of comprehensive data interpretation, e.g., statistics, ionic ratios, and Piper diagram to obtain a better understanding of the functioning of the system. The following hydrochemical processes were identified as the main factors controlling the water quality of the groundwater system: weathering of silicate minerals, dissolution, ion exchange, and to a lesser extent, evaporation, which seemed to be more pronounced down gradient of the flow system. As groundwater flows from the recharge to discharge areas, chemical patterns evolve in the order of Ca2+–HCO3 ?, Ca2+/Mg2+–HCO3 ? to Ca2+–Mg2+–Cl?–SO4 2?, Na+–K+–Cl?–SO4 2? and Na+–Cl? according to lithology. The environmental isotope (δ 18O, δ 2H, 3H) measurements further revealed that precipitation was the main recharge source for the groundwater system; some local values indicated high levels of evaporation. Tritium and CFC analysis were used to estimate the ages of the different groundwater; the tritium values of the groundwater samples varied from 2.82 to 29.7 TU. The age of the groundwater at depths of <120 m is about 30–50 years. CFC values obtained for six samples to determine groundwater age; the age of the groundwater is about 20–50 years.  相似文献   

16.
The chemical analysis of 19 water wells in Ferdows area, Northeastern Iran, has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. In the study area, the order of cation and anion abundance is Na+ > Ca2+ > Mg2+ > K+ and Cl? > SO 4 ?2  > HCO3 ? > NO3 ?, respectively, and the dominating hydrochemical types are Na–Cl. Most metal concentrations in water depend on the mineral solubility, and pH, Eh, and salinity of the solution. Their ΣREE concentrations showed excellent correlations with parameters such as TDS and pH. North American Shale Composite (NASC)-normalized REE patterns are enriched in the HREEs relative to the LREEs for all groundwaters. They all have positive Eu anomalies (Eu/Eu* = 0.752–3.934) and slightly negative Ce anomalies (Ce/Ce* = 0.019–1.057). Reduction–oxidation, complexation, desorption, and re-adsorption alter groundwater REE concentrations and fractionation patterns. The positive Eu anomalies in groundwaters are probably due to preferential mobilization of Eu2+ relative to the trivalent REEs in the reducing condition.  相似文献   

17.
Assessment of groundwater quality is an important aspect of water security, which is the key to ensure sustainable development. The objective of the study is to bring out an integrated approach for assessment of groundwater quality for drinking and irrigation purposes. Gogi region, Karnataka, India was chosen as the study area due to the effect of the presence of medium-grade uranium deposits. An integrated approach including the concentration of major ions, trace elements and uranium was employed to investigate the quality of groundwater. Totally, 367 groundwater samples were collected periodically from 52 wells distributes over the Gogi region and the parameters such as pH, electrical conductivity, total dissolved solids (TDS), Ca2+, Mg2+, Na+, K+, Cl?, SO4 2?, NO3 ?, Zn, Pb, Cu, and uranium of groundwater were analysed. Spatial distribution maps of various chemical constituents were prepared using geographic information system and its temporal variation was plotted in box and whisker plot. The analytical data were compared with Bureau of Indian Standards and World Health Organisation standards to determine drinking water quality and parameters such as salinity hazard, alkalinity hazard and percent sodium were estimated to assess the irrigation quality. Multivariate statistical analysis by cluster analysis was also performed which results in two groups consisting of wells with unsuitable water for drinking purposes. Groundwater in about 15% of the sampling wells were found to be unsuitable for domestic purpose based on TDS and about 17% were unsuitable based on uranium concentration. Finally, integration of spatial variation in TDS and uranium reveals that about 25% of the wells were unsuitable for domestic purposes. It is suggested that such an integrated approach needs to be formulated considering major ions, trace elements and radioactive elements for proper assessment of water quality. Implementation of managed aquifer recharge structures in the study area is suggested since it would potentially reduce the concentration of ions.  相似文献   

18.
The present study research investigation is aimed to assess the groundwater quality for the urban area in Khan Younis City, southern Gaza Strip, for multi-domestic purposes. The physicochemical analysis of the groundwater wells shows the major ions in the order of Na+ > Mg2+ > Ca2+ > B3+ > K+ and Cl? > HCO3 ? > SO4 2? > NO3 2? > F? > PO4 3?. Groundwater quality is classified as very hard-brackish water type. Ninety-five percent of the wells are classified as saline water type with high NO3 2? concentrations. Based on water quality index (WQI), the groundwater falls into one of three categories: fair water (10%), poor water (15%), very poor (45%), and worst (30%). The high WQI values are because of high Na+, Cl?, SO4 2?, and NO3 2? concentrations, while synthetic pollution index (SPI) values indicate that most about 80% of the wells are seriously polluted. Langelier Saturation Index (LSI) indicates that most of data are either slightly scale forming or corrosive water or slightly corrosive but non-scale forming, and 75% of the wells are suitable for construction purposes (have SO4 2? concentrations <300 mg/L). The groundwater reaches alarming situation, where almost chemically unsuitable for drinking purposes and the water to be used after proper treatment such as desalination.  相似文献   

19.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   

20.
Aquifer-based groundwater quality assessment offers critical insight into the major hydrochemical processes, and aids in making groundwater resources management decisions. The Texas Rolling Plains (TRP), spanning over 22 counties, is a major agro-ecological region in Texas from where highest groundwater nitrate (NO3 ?) levels in the state have been reported. In this study, we present a comparative assessment of major hydrochemical facies pertaining to NO3 ? contamination and a host of species such as sulfate (SO4 2?), chloride (Cl?), and total dissolved solids (TDS) in different water use classes in the Seymour and Blaine aquifers, underlying the TRP. Aquifer-stratified groundwater quality information from 1990 to 2010 was obtained from the Texas Water Development Board and aggregated over decadal scale. High groundwater salinization was found in the municipal water use class in the Blaine aquifer with about 100, 87 and 50 % of observations exceeding the secondary maximum contaminant level for TDS, SO4 2?, and Cl?, respectively in the 2000s (2000–2010). The NO3-contamination was more alarming in the Seymour aquifer with 82 and 61 % of observations, respectively, exceeding the maximum contaminant level (MCL) in the irrigation and municipal water use classes in the 2000s. Salinization was more influenced by SO4 2? and Cl? in the Blaine aquifer and by NO3 ? in the Seymour aquifer. High NO3 ? (>MCL) observations in the Seymour aquifer occurred in the Ca–HCO3 and Ca–Mg–HCO3 facies, the domains of fresh water recharge and anthropogenic influences (e.g., agricultural activities, waste disposal). High SO4 2?, Cl? and TDS observations in the Blaine aquifer dominated the Ca–Cl, Na–Cl, and mixed Ca(Mg)–SO4(Cl) facies indicating evaporite dissolution, mixing and solute exchange, and lack of fresh recharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号