首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
城市地质特定领域软件体系结构   总被引:7,自引:0,他引:7  
城市地质信息管理与服务系统是典型的面向特定领域的软件系统.为解决城市地质领域中信息系统软件构建重用问题, 将现代软件工程中特定领域软件体系结构设计思想引入城市地质信息系统研发中, 提出了城市地质特定领域软件体系结构: 异构结构风格、软件框架结构、总体业务处理流程等几个重要方面的内容.采用这一设计思想, 不同城市应用系统的构件重用程度相当高, 便于系统开发的组织管理, 可大大降低开发成本, 同时系统也具有较好的可扩展性.实践证明, 城市地质特定领域软件体系结构及其设计思想可应用于不同城市城市地质信息系统或类似大规模系统的开发工作当中.   相似文献   

2.
大数据为地球科学研究带来了新的思路和挑战。但由于存在描述规范不统一、共享机制不明、语义异构等问题,在数据集成、共享与复用等方面存在较大困难,使得大数据的众多优势在地球科学相关研究中难以充分发挥。知识图谱能够准确、清晰地表达概念及其相互之间的复杂语义关系,为机器所理解,是实现语义翻译、数据融合和复用的关键技术。文章对地球科学知识图谱的内涵和特点进行了深入的分析,归纳了地球科学知识图谱的主要构建方法,梳理了数据字典、知识体系和知识图谱之间的关系,对与地球科学知识图谱构建相关的专题数据库和领域本体的建设现状进行了回顾,指出了地球科学知识图谱构建中存在的主要问题,并阐述了地球科学知识图谱的应用前景,以期推动和完善地球科学知识图谱的建设和应用。  相似文献   

3.
We report here our experiences from using easily acquired web-cam components for collaborative ventures in the Earth sciences. We have used a variety of hardware and different software. We demonstrate from various locations in the U.S.A. the feasibility of using web-cam in multitudinous activities, relevant for conducting research and knowledge dissemination. We summarize the quality of the connections from the various combinations of communicating parties. Today, web-cams can be utilized as an economical and viable means of point-to-point communication in the Earth science community. Greater bandwidth is sorely needed for activities such as multi-party conferencing on the present internet network. We propose that web-cam can be readily deployed as a web-service for facilitating collaborative research over the GRID infrastructure, using the middleware Narada-Brokering. Web-cam will play an important role in the emerging field of geoinformatics.  相似文献   

4.
    
We report here our experiences from using easily acquired web-cam components for collaborative ventures in the Earth sciences. We have used a variety of hardware and different software. We demonstrate from various locations in the U.S.A. the feasibility of using web-cam in multitudinous activities, relevant for conducting research and knowledge dissemination. We summarize the quality of the connections from the various combinations of communicating parties. Today, web-cams can be utilized as an economical and viable means of point-to-point communication in the Earth science community. Greater bandwidth is sorely needed for activities such as multi-party conferencing on the present internet network. We propose that web-cam can be readily deployed as a web-service for facilitating collaborative research over the GRID infrastructure, using the middleware Narada-Brokering. Web-cam will play an important role in the emerging field of geoinformatics.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s10069-004-0018-1  相似文献   

5.
美国国家大气研究中心优先研究领域新特点   总被引:1,自引:0,他引:1  
美国国家大气研究中心于2005年11月提出了新的战略计划。该计划突出的新特点在于无论科学研究活动还是教育、观测设施等方面的战略目标和优先领域,都是以地球系统研究为中心。如在科学研究方面的战略目标确定为:认识地球系统的作用、准确预报地球系统的演变。相应的优先研究领域则为:研究和了解地球和太阳的自然变率;地球系统各分量的相互作用;地球系统预报;人类活动与地球系统的演变等。鉴于NCAR在国际大气科学界的地位,这种以地球系统为中心的优先研究领域对我国大气科学及地球科学研究有一定的借鉴意义,同时也将促使大气科学工作者摆脱传统天气、气候概念的束缚,站在更高的高度来科学审视学科的发展。  相似文献   

6.
“Open science,” where researchers share and publish every element of their research process in addition to the final results, can foster novel ways of collaboration among researchers and has the potential to spontaneously create new virtual research collaborations. Based on scientific interest, these new virtual research collaborations can cut across traditional boundaries such as institutions and organizations. Advances in technology allow for software tools that can be used by different research groups and institutions to build and support virtual collaborations and infuse open science. This paper describes Talkoot, a software toolkit designed and developed by the authors to provide Earth Science researchers a ready-to-use knowledge management environment and an online platform for collaboration. Talkoot allows Earth Science researchers a means to systematically gather, tag and share their data, analysis workflows and research notes. These Talkoot features are designed to foster rapid knowledge sharing within a virtual community. Talkoot can be utilized by small to medium sized groups and research centers, as well as large enterprises such a national laboratories and federal agencies.  相似文献   

7.
地球科学作为自然科学的一大门类,其发展速度十分惊人。地球科学的迅速发展一方面反映了人类生产的发展对资源和环境方面愈来愈高的要求,一方面得益于科学技术的普遍发展为地球科学研究提供的越来越有利的条件。关于技术方法对地球科学研究的推动作用,人们早有认识,而现在更为深刻。当今对地球科学研究影响最大的关键技术,包括空间技术,深部探测技术,高新分析测试技术和数据综合分析技术,均来源于现代科学技术的最新发展。为了推动地球科学研究,不但要注意引进各种高新技术,还要注意将这些技术与地学研究相结合,发展和创造适合于地学研究的高新技术,并善于综合应用它们,使它们在地学研究中发挥最有效的作用。  相似文献   

8.
关于我国开展地球系统研究战略概念模型的讨论   总被引:7,自引:3,他引:4  
自20世纪末以来,地球科学开始进入一个新的发展时期,地球系统科学理念逐渐成为引领新世纪地球科学的发展方向。世界各国在制定其地球科学战略时,均基于各自掌握的科学资源和实际需求,形成了各自的特色。我国地球科学发展的优势在于区域自然条件,以及社会经济快速发展产生的需求和机遇。基于我国的实际情况的分析,提出了一个地球系统科学研究的概念模型。在这一框架内,我国可以在两方面选择研究范例,并为地球系统科学的发展做出贡献:一是在地球系统物质、能量循环中关注我国具自然条件优势的关键环节;二是强化区域集成研究。同时,还需要加强地球系统观测和模拟的平台建设。  相似文献   

9.
In the past, efforts to prevent catastrophic losses from natural hazards have largely been undertaken by individual property owners based on site—specific evaluations of risks to particular buildings. Public efforts to assess community vulnerability and encourage mitigation have focused on either aggregating site—specific estimates or adopting standards based upon broad assumptions about regional risks. This paper develops an alternative, intermediate—scale approach to regional risk assessment and the evaluation of community mitigation policies. Properties are grouped into types with similar land uses and levels of hazard, and hypothetical community mitigation strategies for protecting these properties are modeled like investment portfolios. The portfolios consist of investments in mitigation against the risk to a community posed by a specific natural hazard. and are defined by a community's mitigation budget and the proportion of the budget invested in locations of each type.

The usefulness of this approach is demonstrated through an integrated assessment of earthquake—induced lateral—spread ground failure risk in the Watsonville, California area. Data from the magnitude 6.9 Loma Prieta earthquake of 1989 are used to model lateral—spread ground failure susceptibility. Earth science and economic data are combined and analyzed in a Geographic Information System (CIS). The portfolio model is then used to evaluate the benefits of mitigating the risk in different locations. Two mitigation policies, one that prioritizes mitigation by land use type and the other by hazard zone, are compared with a status quo policy of doing no further mitigation beyond that which already exists. The portfolio representing the hazard zone rule yields a higher expected return than the land use portfolio does; however, the hazard zone portfolio experiences a higher standard deviation. Therefore, neither portfolio is clearly preferred. The two mitigation policies both reduce expected losses and increase overall expected community wealth compared to the status quo policy.  相似文献   

10.
Progress made in promoting geodiversity in recent times is reviewed, concluding that it is now an established component of the Earth Sciences. However, it still lacks the status and standing of biodiversity in governmental, political and public forums. The paper assesses what can be learnt from the experience of the development and promotion of biodiversity. Based on this experience, eight suggestions for increasing the understanding and ownership of geodiversity beyond the Earth science community are provided as a basis for discussion.  相似文献   

11.
Autoplot is software developed for the Virtual Observatories in Heliophysics to provide intelligent and automated plotting capabilities for many typical data products that are stored in a variety of file formats or databases. Autoplot has proven to be a flexible tool for exploring, accessing, and viewing data resources as typically found on the web, usually in the form of a directory containing data files with multiple parameters contained in each file. Data from a data source is abstracted into a common internal data model called QDataSet. Autoplot is built from individually useful components, and can be extended and reused to create specialized data handling and analysis applications and is being used in a variety of science visualization and analysis applications. Although originally developed for viewing heliophysics-related time series and spectrograms, its flexible and generic data representation model makes it potentially useful for the Earth sciences.  相似文献   

12.
With the rise in the number of applications using geospatial data and the number of GIS applications, the number of people who come into contact with geospatial data is increasing, too. Despite many attempts to introduce standardized formats in this area, they are often ignored by software developers as well as the users themselves for various reasons. When creating or exporting geographical data, users choose the format with regard to the software they use, or for which the data are intended. Users then have to deal with conversion of data formats, and considering its use also the issue of their transformation to the appropriate spatial reference system. This work presents findings related to this issue, obtained from several years of operation of an online service for the conversion and transformation of geographical data which is heavily used by users from all over the world. It presents statistics of individual formats use and spatial reference systems of geospatial data use from the point of view of both input and output data. The results, besides other things, are shown in the form of a pie chart map in which various needs of users from a variety of countries can be seen. The results of this work can be used especially by developers of applications which use geospatial data; it will allow them to quickly understand current user needs.  相似文献   

13.
Making data useful for modelers to understand complex Earth systems   总被引:2,自引:1,他引:1  
The Arctic is changing rapidly with dramatic local and global effect. To understand that change requires understanding the Arctic as a system. Models of different processes and at various scales are necessary tools for analyzing and understanding the Earth system. Models are extremely diverse, yet they all require quality data. Through a series of case studies, augmented with ethnographic observation around the International Polar Year, this work examines how modelers assess, acquire, and prepare data for their models. By comparing specific case studies, common themes emerge that can be compared against broader observation. These themes, in turn, suggest data management techniques or requirements for data systems to improve access and use by modelers and generally improve understanding of the Arctic system. The study has an Arctic focus because of the rapid changes occurring in the Arctic, but the approach and results should apply generally to Earth system science. This case study based approach has proven to be a useful method for teasing out both general and specific data needs for different models. An overarching lesson is that greater short-term benefit to modelers and significant gains in efficiency can be achieved by improving the formats, convention, and consistency of the data rather than improved interfaces and analysis tools. A “data-first” philosophy can improve the data systems that support the overall interdisciplinary, integrative science necessary to understand the complex Earth system.  相似文献   

14.
The fact that mineral deposit attributes such as the size frequency of orogenic gold deposits in specific provinces exhibit power law distributions similar to forest fires, earthquakes, and fault size populations, is a compelling motivation to examine their genesis from a systems context. Based on well-studied Earth systems such as climate, the systems related to mineral deposits are likely to be complex and potentially include sensitive dependent components that vary simultaneously and in subtly interconnected ways.Although a “systems approach” was enunciated for mineral exploration by Fyfe and Kerrich as early as 1976, it is yet to be fully embraced by the geosciences community that commonly retain models dependent primarily on deposit-scale characteristics. Orogenic gold deposits are well studied and widely considered to represent a single class of deposit that has formed over much of Earth history in settings ranging from Archean granite-greenstone belts to Phanerozoic turbidite sequences. Accordingly, the deposit type is well suited for assessment within a systems context. If orogenic gold deposits do in fact represent a single class of deposits, then the simplest application of a systems approach highlights the fact that the nature of the host upper crustal succession cannot be a fundamental control, with specific granite suites and pyritic sediments not universal, or at least not essential, components of the system. Furthermore the scale of orogenic gold systems implicates processes capable of tapping sub-crustal source regions.Increasingly, advances in orogenic gold systems, and mineral systems in general, are linked to application of systems science that emphasize importance of system-driven criticality. Orogenic gold systems and other mineral systems are typically short in duration and linked in time and space to tectonic triggers. The latter promote a rapid release of energy (‘avalanches’) that overcome system thresholds and are strong indicators of complex systems that may show power-law behavior.Only a rigorous application of a systems approach can cut through the confusion that arises from conflicting models based on local deposit studies. Only a systems approach can evaluate the significance of rare or anomalous features in a small number of deposits. Truly predictive models for mineral exploration will ultimately be developed by workers who adhere to the systems approach.  相似文献   

15.
吕克解  周小刚 《地球科学进展》2006,21(10):1097-1100
地球系统科学是研究组成地球系统的子系统之间相互联系、相互作用的机制,研究地球整体结构、特征、功能和行为,研究地球系统变化的规律和控制这些变化机理的科学。对地观测、探测与分析技术的发展是地球科学创新思维来源的技术保障,同时对地球科学基础理论研究水平的提高起着重要的作用。21世纪地球科学的发展将更加重视发展地球系统科学的理论、方法与技术体系。“地球系统观测、探测新原理与新技术”被列入国家自然科学基金委员会地球科学部“十五”优先资助领域。回顾“十五”期间的资助情况,探讨该领域和地球系统科学的关系,将有利于“十一五”对该领域资助工作的调整与完善。  相似文献   

16.
中国加入综合大洋钻探(IODP)科学计划(2003-2013)   总被引:5,自引:2,他引:3  
将于2003年秋开始实施的IODP是一个比ODP更加庞大的国际地球科学合作计划。面对国际深海研究的新挑战,我国应抓紧时机,及早准备,扩大队伍、积聚力量,充分发挥我国自然条件和原有研究积累的优势,将深入国际深海前沿领域与国内的研究结合起来,力争实现中国海深海钻探的新航次,促进我国地球科学进入海陆结合的地球系统研究和全面走向国际的新局面。同时,通过国际合作与国内有关深海工作计划的结合,为维护我国海上权益、探索底资源和为环境、减灾以及发展海洋高新技术做出贡献。我国参加IODP要遵循"有所为,有所不为"的原则,在加入ODP以后取得进展的基础上,优先选择比较成熟和最为迫切的领域,以点带面进行重点突破,逐步扩大,继续加强古海洋学研究,并同时向洋中脊、深部生物圈等新领域发展。具体包括以下优先研究领域:深部生物圈及海底下的海洋,古环境研究,西太平洋大陆边缘岩石圈演化与震源带。希望有关部委积极支持我国有关大洋钻探的基础研究力量和深海资源、技术等项目之间的密切合作,在国内大联合的基础上参加国际计划,制定长远的国家计划,在国家层面上部署深海研究,组成"国家队"参与国际竞争。  相似文献   

17.
王训练  沈阳 《地质论评》2020,66(4):829-835
地球科学研究已进入地球系统科学时代,地球系统科学逐渐成为地球科学各分支学科重要的指导思想。本文论述了古生物资料在地质学诞生和发展中的重要作用及地球系统科学时代古生物资源调查的重要意义,分析了我国目前区域地质调查中存在的问题及其影响,对我国在区域地质调查中加强古生物资源调查提出了具体建议。  相似文献   

18.
Since its release in June 2005, Google Earth has been bringing satellite images of our planet into our homes, or at least to those homes with broadband connections. Computer users, excited by seeing their own houses from on high, or even their cars parked in the drive, have been raving about this impressive piece of software which can be downloaded to your PC (but not, as yet, your Mac) free of charge. After a weekend playing around with Google Earth, I can confirm that there is a whole range of potential applications for this software in teaching Earth science.  相似文献   

19.
Pinxian Wang 《地球科学进展》2017,32(12):1229-1235
At the IODP Forum 2017 in Shanghai, IODP-China proposed initiating the discussions on “IODP beyond 2023”, and the meeting supported China’s proposal to host and co-lead the activities for preparing the science plan of ocean drilling after 2023. The present paper started from an overview of the planning processes of ocean drilling science over the past decades, then analysed the scientific targets and perspectives of the future ocean drilling, and concluded with suggestions about how China should prepare the international discussions on “IODP beyond 2023”.Since half a century, the ocean drilling has played a role of locomotive in international Earth science community and of flagship in deep-sea research.China’s initiation and co-leadership in preparing its science plan for the next decade will promote the upgrading of Earth science in our country, yet the success of the endeavor heavily depends on active involvement of the scientific community , especially on its contribution with creative thinking.  相似文献   

20.
新一代对地观测系统的发展   总被引:7,自引:2,他引:7  
王毅 《地球科学进展》2005,20(9):980-989
对地观测系统(EOS,Earth Observation System)是获取空间对地信息、促进地球系统科学和空间信息科学等学科发展的支柱。长期以来,人们就期望着对自己居住的地球有一个全面深刻的了解,研究这种从几十年到几百年时间尺度的全球变化,依赖于观测系统和观测技术的发展。因此有必要建立一个对地球整体的观测系统,利用空间优势,获取有关地球体系及其各个组成部分的详细数据或信息。 近50年来,世界对地观测技术得到了迅猛的发展。NASA针对全球变化研究对建立长期的数据采集系统的实际需求,于20世纪80年代初开始规划地球观测系统(EOS)计划,并于90年代初实施。它包括一系列卫星、自然科学知识组成和一个数据系统,支持一系列极地轨道和低倾角卫星对地球的陆地表面、生物圈、大气和海洋进行长期观测。地球观测卫星系列是EOS计划的最基本和最重要的环节。EOS卫星系列计划在今后的10年内陆续发射一系列的太阳轨道环境遥感卫星,构成连续15年的数据采集系统,其规模在地球观测卫星发展史上是空前的。在EOS计划的基础上NASA规划了ESE战略计划,将继续发展国际新一代对地观测系统。迄今为止,Terra、Aqua和Arua卫星已经发射成功,引起地球遥感科学界的瞩目,为地球科学研究提供重要的数据资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号