首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
利用一件采自河北汉诺坝周坝地区变泥质岩包体样品,结合系统的低温和高温磁性测量结果,探讨了应用热磁实验鉴别样品中所含原生磁性矿物的多解性问题. 结果表明, 饱和等温剩余磁化强度(SIRM)在室温~250℃以及280℃~380℃的降低分别由高钛钛磁铁矿的剩磁解阻过程(一种物理过程)以及由磁赤铁矿转换成赤铁矿(一种矿物相变)引起.样品在500℃以后磁化率的升高则是由磁铁矿从钛磁赤铁矿中出溶所致.因此,κ T(即磁化率随温度变化)曲线中呈现约580℃居里点是由加热过程中次生的磁铁矿引起,而并非代表原始(即加热前)样品中的磁铁矿成分.  相似文献   

2.
Magnetic susceptibility (MS) of natural specimens of hematite and goethite is studied under continuous heating with various additives: with carbon (sugar), nitrogen (carbamide), and elemental sulfur. It is found that heating of hematite with carbon above 450°C results in the formation of single-domain magnetite, while the magnetic susceptibility rises by a factor of 165. The increase in magnetic susceptibility on heating of hematite with nitrogen above 540°C reflects the generation of a single-domain maghemite with the Curie point of about 650°C, which is stable to heating. After the first heating, the magnetic susceptibility increases by 415 times. The subsequent cycle of thermal treatment results in the transition of maghemite to hematite, a decrease of MS, and an increase of coercivity. Heating with sulfur produces a stable single-domain magnetite at a temperature above the Curie point, which is manifested in the cooling curves. Here, the MS increases by a factor of 400. The heating curves for goethite exhibit a sharp drop in susceptibility to a temperature of 350–360°C, which reflects the transition of hematite to goethite. Heating of hematite with carbon produces stable maghemite at above 530°C, and with sulphur and nitrogen, it produces magnetite. When heated with pyrite, hematite reduces to magnetite under the action of sulfur released from pyrite.  相似文献   

3.
We carried out thermomagnetic susceptibility analyses of fault rocks from core samples from Hole B of the Taiwan Chelungpu Fault Drilling Project (TCDP) to investigate the cause of high magnetic susceptibilities in the fault core. Test samples were thermally and mechanically treated by heating to different maximum temperatures of up to 900 °C and by high-velocity frictional tests before magnetic analyses. Thermomagnetic susceptibility analyses of natural fault rocks revealed that magnetization increased at maximum heating temperatures above 400 °C in the heating cycle, and showed three step increases, at 600 to 550 °C and at 300 °C during the cooling cycle. These behaviors are consistent with the presence of pyrite, siderite and chlorite, suggesting that TCDP gouge originally included these minerals, which contributed to the generation the magnetic susceptibility by thermomechanical reactions. The change in magnetic susceptibility due to heating of siderite was 20 times that obtained by heating pyrite and chlorite, so that only a small fraction of siderite decomposition is enough to cause the slight increase of the susceptibility observed in the fault core. Color measurement results indicate that thermal decomposition by frictional heating took place under low-oxygen conditions at depth, which prevented the minerals from oxidizing to reddish hematite. This finding supports the inference that a mechanically driven chemical reaction partly accounts for the high magnetic susceptibility. A kinetic model analysis confirmed that frictional heating can cause thermal decomposition of siderite and pyrite. Our results show that decomposition of pyrite to pyrrhotite, siderite and, to some extent, chlorite to magnetite is the probable mechanism explaining the magnetic anomaly within the Chelungpu fault zone.  相似文献   

4.
系统研究了河西走廊火烧沟组陆相红层200个采点岩石的热退磁行为和17个代表性样品的岩石磁学特征,结果表明有102个采点可以分离出A、B、C三个剩磁分量,有82个采点只有一个分量(C分量),16个采点只能分离出A、B分量.A、B分量分别由针铁矿和磁赤铁矿携带,C分量在砂岩中由磁铁矿携带,在泥质砂岩和泥岩中由磁铁矿和赤铁矿共同携带.A、B分量剩磁方向随机分布,不能获得置信水平的古地磁平均方向,为次生剩磁.它们的存在并不影响岩石原生剩磁的分离,也不影响原生剩磁信号的稳定性和获得的古地磁数据的可靠性.16个砂岩采点中不能分离出C分量,是由于后生的赤铁矿彻底改变了由磁铁矿携带的原生剩磁组分,在高密度采样的情况下剔除这些采点并不影响古地磁极性柱的构建和解释.  相似文献   

5.
The sandstones of the Ridge and Athleta members of Chari Formation(Callovian-Oxfordian)exposed at Jara have been analyzed for their petrographical and geochemical studies. Texturally, these sandstones are medium to coarse grained, poorly to well sorted, sub-angular to sub-rounded, and show low to medium sphericity.These sandstones were derived from a mixed provenance including granites, granite-gneisses, low and high-grade metamorphic, and some basic rocks of Aravalli range and Nagarparkar massif. The petrofacies analysis reveals that these sandstones belong to the continental block and recycled orogen tectonic regime. The studied sandstones are modified by paleoclimate, distance of transport, and diagenesis. Mineralogically and geochemically, sandstones are classified as quartzarenite, subarkose, arkose, sublithic arenite, and wacke, respectively. The A-CN-K ternary plot and CIA, CIW, PIA, and ICV values suggest that the similar source rocks suffered moderate to high chemical weathering under a hot-humid climate in an acidic environment with higher PCO_2. Generally good to strong correlations between Al_2O3 and other oxides in these sediments indicate clay mineral control. The K_2O/Na_2O versus SiO_2 diagram indicates that the studied samples occupy passive margin fields but the SiO_2/Al_2O_3 versus K_2O/Na_2O plot suggests that the Athleta Sandstone and Ridge Sandstone fall within the passive margin field, while Ridge Shale falls within the active continental margin field.  相似文献   

6.
Magnetic properties of samples from Bell Island sedimentary rocks have been studied. X-ray analysis indicates that the main magnetic mineral is hematite in all samples. The other iron-bearing minerals identified are siderite and chamosite. Microscope observations of thin sections suggest that the rocks consist of oolitic hematite in a matrix of siderite or calcite. The intensity of natural remanent magnetization (NRM) varies in the range of (0.03–0.4 A m?1), depending on the percentage of hematite. The thermal demagnetization curves of NRM show in some cases a sharp increase in magnetization at temperatures in the range 500–600°C. The peaks that occur in these demagnetization curves are due to a chemical change of siderite during repeated laboratory heating. X-ray analysis confirmed that the newly formed material is magnetite. Since the original NRM has been masked by the new intergrown material, this would result in a serious error in the determination of paleomagnetic pole positions. The samples showing this behaviour were not considered for paleomagnetic study. The samples containing oolitic hematite in a calcite matrix exhibit very high stability of NRM, including directional stability until almost 670°C. For these samples, a virtual pole position based on N = 6 samples (32 specimens) demagnetized to 665°C is 34°N, 114°E, not far from published Ordovician poles for the North American craton.  相似文献   

7.
三门峡盆地晚新生代沉积物磁性载体类型   总被引:3,自引:2,他引:3       下载免费PDF全文
对三门峡盆地晚新生代沉积岩样品进行岩石磁学研究,通过三轴饱和等温剩磁和剩磁矫顽力实验、交变退磁和热退磁实验及磁化率测定,发现黄土-古土壤、河湖相灰绿层和冲洪积层3种不同岩性的磁载体存在显著差异.即黄土-古土壤以磁铁矿为主,赤铁矿和磁赤铁矿很少;河湖相灰绿色沉积磁性矿物含量较低,主要为赤铁矿和磁铁矿,但磁铁矿较多,此外还有一些不稳定磁性矿物(如针铁矿、菱铁矿等);冲洪积物以磁铁矿和赤铁矿为主,磁铁矿相对较多.  相似文献   

8.
Mineral magnetic properties of soils and parent materials have been interpreted in terms of paleoclimate and rates of soil formation but it is important to understand which minerals contribute to the mineral magnetic signal. Citrate-bicarbonate-dithionite (CBD) treatment has been used to determine the amounts of fine-grained, often pedogenic, ferrimagnetic minerals relative to coarse-grained, often inherited, magnetic minerals. However, questions have been raised about the effect of particle size on the efficacy of CBD in dissolving magnetite and maghemite grains. In this paper we use magnetic susceptibility and its frequency dependence, and the low-temperature behavior of a saturation isothermal remanent magnetization, to track the dissolution of carefully sized magnetite grains. We found that the standard CBD procedure dissolves fine magnetite particles (ca. < 1 μm) but leaves larger particles (ca. > 1 μm) essentially intact. Thin oxidized coatings, presumably maghemite, are also dissolved by the CBD procedure. These results support previous interpretations that the CBD procedure can be used to distinguish between pedogenic and lithogenic magnetic grains, assuming that most pedogenic magnetic grains are sufficiently small (ca. < 1 μm) and most lithogenic magnetic grains are sufficiently large (ca. > 1 μm). These results also show that the standard procedure is too harsh to differentiate between 1 μm grains of magnetite and maghemite. A modified CBD extraction that uses half as much dithionite reduces the magnetic susceptibility of 1 μm magnetite grains by only 10%. This method may be useful in distinguishing between magnetite and maghemite grains in this size range.  相似文献   

9.
Morphological characteristics and microstructures of magnetic minerals extracted from Chinese loess and paleosols were investigated using powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Our results indicate that maghemite in loess–paleosol sequences was transformed from magnetite through oxidation of magnetite. Maghemite transformed from eolian magnetite during chemical weathering has low-angle grain boundaries among maghemite nano-crystals. Some nano-crystalline maghemites with nanoporous texture resulted from microbe-induced precipitation of magnetite or transformation of poorly crystalline ferric Fe (oxy)hydroxides in presence of Fe-reducing bacteria. Aggregates of euhedral maghemite nano-crystals were transformed from magnetite magnetosomes. Both microbe-induced nanoporous magnetite and microbe-produced magnetite magnetosomes are directly related to microbial activities and pedogenesis of the paleosols. It is proposed that the formation of nano-crystalline maghemite with superparamagnetic property in paleosol results in the enhancement of magnetic susceptibility, although the total amount (weight percent) of magnetic minerals in both paleosol and loess units is similar. Our results also show that nano-crystalline and nanoporous magnetite grains prefer to transform into maghemite in semi-arid soil environments instead of hematite, although hematite is a thermodynamically stable phase. This result also indicates that a decrease in crystal size will increase stability of maghemite. It is also inferred that surface energy of maghemite is lower than that of hematite.  相似文献   

10.
加热环境对人工合成磁赤铁矿热磁行为的影响   总被引:5,自引:1,他引:4       下载免费PDF全文
热磁测量,包括高温磁化率和高温磁化强度测量,是根据热磁曲线转折点的温度(居里点、尼尔点或相变点)鉴定样品中磁性矿物种类的有效方法.本文选取两个人工合成磁赤铁矿样品,利用四种热磁测量仪器分析不同的条件下测得的热磁曲线.依据样品与空气接触程度,将测量环境设为开放、封闭、封闭(通入氩气或氮气)三类.结果表明:热磁测量环境的开放程度对居里点和曲线可逆程度产生极大的影响.封闭环境下测得的居里点较开放环境下的低,分别对应磁铁矿和磁赤铁矿;开放系统的热磁曲线不可逆程度高于封闭系统.造成这些差异的原因是氧化还原条件的不同.本文的磁赤铁矿样品在封闭的条件下,加热至250 ℃左右开始转化为磁铁矿,因此无法通过居里点被正确识别;在开放的氧化环境下,加热的最终产物为赤铁矿,能够测得正确的居里点.本实验结果启发人们:在不同的加热环境下,磁性矿物可能表现出不同的热磁行为,根据单一的热磁曲线,很容易对样品中磁性矿物的种类造成误判.全面对比不同条件下的测量结果,才能够得出更为准确的结果.  相似文献   

11.
Understanding how physical properties and seismic signatures of present day rocks are related to ancient geological processes is important for enhanced reservoir characterization. In this paper, we have studied this relationship for the Kobbe Formation sandstone in the Barents Sea. These rocks show anomalous low shear velocities and high VP/VS ratios, which does not agree well with conventional rock physics models for moderately to well consolidated sandstones. These sandstones have been buried relatively deeply and subsequently uplifted 1–2 km. We compared well log data of the Kobbe sandstone with velocity–depth trends modelled by integrating basin modelling principles and rock physics. We found that more accurate velocity predictions were obtained when first honouring mechanical and chemical compaction during burial, followed by generation of micro-cracks during uplift. We suspect that these micro-cracks are formed as overburden is eroded, leading to changes in the subsurface stress-field. Moreover, the Kobbe Formation is typically heterogeneous and characterized by structural clays and mica that can reduce the rigidity of grain contacts. By accounting for depositional and burial history, our velocity predictions become more consistent with geophysical observables. Our approach yields more robust velocity predictions, which are important in prospect risking and net erosion estimates.  相似文献   

12.
对苏北盆地兴化1#钻孔岩心沉积物进行了质量磁化率、频率磁化率、变化曲线、等温剩磁和磁滞回线等参数的测试分析,结果表明,粘土质沉积物中的主要载磁矿物为磁铁矿和赤铁矿;砂质沉积物中的磁性矿物除了磁铁矿和赤铁矿外,还含有少量的磁赤铁矿和针铁矿.针铁矿普遍存在于钻孔下部的样品中.整个钻孔沉积物中的磁性矿物颗粒都是介于单畴和多畴之间的准单畴颗粒,但粘土质沉积物中的磁性矿物颗粒更趋近于单畴颗粒,而砂质沉积物中的磁性矿物颗粒更趋近于多畴.根据不同的磁性矿物组合特征,选择合理的温度和磁场强度区间对古地磁退磁结果进行分析,得到沉积物可靠的特征剩磁方向,为古地磁年代学提供依据.  相似文献   

13.
新疆南天山查岗诺尔大型磁铁矿矿床地质特征及矿床成因   总被引:1,自引:0,他引:1  
查岗诺尔铁矿床为新疆南天山近年来发现的大型磁铁矿床。该矿床产于南天山造山带下石炭统大哈拉军山组火山-碎屑-碳酸岩建造中,储量达到1.3亿吨。矿床由多个平行于地层层理的矿体组成,其主矿体位于隐爆角砾岩内。主要的矿物组合包括磁铁矿、磁赤铁矿、穆磁铁矿、赤铁矿、假象赤铁矿及极少量的镜铁矿等。通过对矿石的结构、构造以及矿石矿物化学成分的综合分析,表明该矿床的形成与火山通道附近的潜火山构造隐爆作用密切相关。该矿床的发现为区域上寻找同类矿床提供了广阔的找矿前景。  相似文献   

14.
The dominant magnetic minerals and carriers of magnetic signals within the Chinese Loess Plateau are magnetite, maghemite, hematite, and goethite. In this study, we investigated the provenance and evolution of magnetic minerals during loess pedogenesis, using X-ray diffraction (XRD) and optical and electron microscopy, including field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Our results reveal that single- and multiphase mineral assemblages among magnetic minerals in the loess-paleosol sequence have been formed. Partial oxidation of coarse eolian magnetite has occurred in the desert source area and the oxidation degree is enhanced after deposition of the dust upon the Chinese Loess Plateau. This mode of origin resulted in a microtexture consisting of an inner magnetite core surrounded by a hematite rim, and strongly affected the magnetic characteristics of the loess. Goethite coexists with hematite in the loess and paleosol, and nanometer-scale hematite is formed upon goethite rims via dehydration. Our study provides direct mineralogical evidence of the magnetic record and paleoclimatic implications of the loess-paleosol sequence of the Chinese Loess Plateau. Supported by National Natural Science Foundation of China (Grant Nos. 40772032 and 40573054) and National Basic Research Program (Grant No. 2007CB815603)  相似文献   

15.
本文利用奥陶系米钵山组砂岩地球化学分析,结合区域地质研究,探讨贺兰山中、晚奥陶世的构造环境。贺兰山中段奥陶系米钵山组砂岩的地球化学研究表明,砂岩的siO2平均含量为81.3%;A120。/Si02值0.07~0.11,平均值为0.08;K20/Na20值变化较大,最大60.7,一般介于4.79~7.81;Fe2O3+MgO含量较低,介于2.1%~2.81%。砂岩微量元素Nb丰度及V/(V+Ni)与Ce/La、Sr/Ba值均较高,说明砂岩沉积于湿热、还原、低盐度环境,具有大陆型沉积特征。砂岩稀土元素富集,含量在116×10^-6~195×10^-6之间,平均值为158×10~;8Eu为0.52~0.58,具显著的负铕异常。这些数据指示了米钵山组具有重力流快速堆积的特征和大量陆源补给,浊流沉积作用是重力流携带陆源物质的主要途径。通过多种构造环境判别图解分析,显示物源区地质构造具有被动大陆边缘性质。  相似文献   

16.
An intensive paleomagnetic investigation has been conducted on the Middle Triassic Leikoupo Formation on the Wangcang section (32.14°N, 103. 17°E). The results indicate the magnetic minerals are dominant by multidomain magnetite or maghemite, and the characteristic remnant magnetization revealed by stepwise thermal/alternating field demagnetization is close to the present-day geomagnetic direction of the sampling site. This suggests that dolomitization/thermal viscous magnetization is responsible for the remagnetization of this kind of rocks.  相似文献   

17.
临夏盆地在东亚新生代地层、古气候、古生物研究方面占有举足轻重的地位.本文对盆地东部的郭泥沟剖面进行了详细的岩石磁学和磁组构研究,以揭示从早中新世到早上新世临夏盆地的沉积演化过程.郭泥沟剖面沉积物中的磁性矿物有磁铁矿、磁赤铁矿、赤铁矿和针铁矿,但剩磁载体以磁铁矿和赤铁矿为主.从上庄组和东乡组的褐红色粉砂质粘土到柳树组和何王家组的褐黄色粘土,赤铁矿含量呈现降低的趋势,与沉积物颜色变化一致.郭泥沟剖面沉积物磁组构类型为正常沉积磁组构.结合岩石磁学结果和磁组构参数特征可揭示临夏盆地早中新世-早上新世沉积的演化过程:早中新世上庄组为稳定湖相沉积,古水流方向为NNW,与南北向的大夏河方向一致;中中新世气候发生较明显的干湿波动,形成了东乡组的褐红色湖相粉砂质粘土夹粉砂、砂和青灰色泥灰质粘土条带,古水流方向主要为NNW,沉积过程主要受大夏河控制;中中新世晚期,受青藏高原构造运动影响,沉积相由湖相细粒沉积物转变为虎家梁组河流相砂砾层;同时,盆地的水动力条件也发生改变,晚中新世柳树组湖相沉积过程同时受南北向大夏河和东西向洮河控制,两个方向近垂直的河流共同作用导致柳树组内沉积各向异性度较低,面理和线理均不发育,磁化率最大轴偏角分布比较分散,磁组构确定的古流向为东西向和南北向;早上新世期间,由于受青藏高原隆升影响,沉积了何王家组下部的河流相砂砾层;受构造抬升影响,大夏河重新主导何王家组上部洪泛平原相沉积过程,水动力条件较为单一稳定,古流向主要为N向,与大夏河流向一致.  相似文献   

18.

An intensive paleomagnetic investigation has been conducted on the Middle Triassic Leikoupo Formation on the Wangcang section (32.14°N, 103. 17°E). The results indicate the magnetic minerals are dominant by multidomain magnetite or maghemite, and the characteristic remnant magnetization revealed by stepwise thermal/alternating field demagnetization is close to the present-day geomagnetic direction of the sampling site. This suggests that dolomitization/thermal viscous magnetization is responsible for the remagnetization of this kind of rocks.

  相似文献   

19.
Magnetic measurements of soils are an effective research tool in assessing soil erosion. This approach is based on detecting layers showing different magnetic properties in vertical soil profiles and lateral catenas. The objective of this research is to compile data on magnetic susceptibility (MS) of soils in Eastern Ukraine to assess the soil erosion rates. The chernozems of Tcherkascy Tishki (Kharkov Region, Ukraine) have undergone a field crop rotation without proper soil conservation technologies being applied. We conducted an intrinsic element grouping of the magnetic susceptibility values and demonstrated that they can be used as MS cartograms in soil erosion mapping. The study showed a strong correlation between the MS values and the erosion index. MS and the erosion index were found to correlate with the humus content. Magnetic mineralogical analyses suggest the presence of highly magnetic minerals (magnetite and maghemite) as well as weakly magnetic goethite, ferrihydrite, and hematite. Stable pseudosingle-domain (PSD), single-domain (SD), and superparamagnetic (SP) grains of pedogenic origin dominate in the studied chernozems. Being an effective, quick and low cost alternative, magnetic methods can be successfully used in the soil erosion investigations.  相似文献   

20.
The Upper Triassic Langjiexue Group in southeastern Tibet has long been an enigmatic geological unit. It belongs tectonically to the northern Tethys Himalayan zone, but provenance signatures of the detritus it contains are significantly different from those of typical Tethys Himalayan sandstones. Because the Langjiexue Group is everywhere in fault contact with Tethys Himalayan strata, its original paleogeographic position has remained controversial for a long time. According to some researchers, the Langjiexue Group was deposited onto the northern edge of the Indian passive continental margin, whereas others interpreted it as an independent block accreted to the northern Indian margin only during final India-Asia convergence and collision in the Paleocene. This study compares the Langjiexue Group and coeval Upper Triassic strata of the southern Tethys Himalayan zone(Qulonggongba Formation). Our new provenance data indicate that Qulonggongba Formation sandstones contain common felsic volcanic rock fragments, minor plagioclase, and euhedral to subhedral zircon grains yielding Late Paleozoic to Triassic ages. These provenance features compare well with those of the Langjiexue Group. Because the Qulonggongba Formation certainly belongs to the Tethys Himalayan zone, the provenance similarity with the Langjiexue Group indicates that the latter is also an in situ Tethys Himalayan sedimentary sequence rather than part of an exotic block. Volcanic detritus including Late Paleozoic to Triassic zircon grains in both Langjiexue Group and Qulonggongba Formation are interpreted to have been derived from the distant Gondwanide orogen generated by Pan-Pacific subduction beneath the southeastern margin of Gondwana. The Qulonggongba Formation, deposited above marlstones of the lower Upper Triassic Tulong Group, is overlain by India-derived coastal quartzose sandstones of the uppermost Triassic Derirong Formation. Deposition of both the Qulonggongba Formation and the Langjiexue Group were most likely controlled by regional tectonism, possibly a rifting event along the northern margin of Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号