首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
黄山层状云和对流云降水不同高度的雨滴谱统计特征分析   总被引:2,自引:1,他引:1  
李慧  银燕  单云鹏  金祺 《大气科学》2018,42(2):268-280
根据2011年6~7月在黄山不同高度采用PARSIVEL雨滴谱仪测得的雨滴谱数据,对不同海拔高度上两类(层状云和对流云)降水粒子谱的微物理特征量、Gamma函数拟合以及雨滴的下落速度进行对比分析,结果表明:对流云降水的雨水含量和降水强度、雨滴的各类尺度参数和数浓度都比相同位置上层状云降水的大,同类降水中,山腰的雨滴尺度大于山顶和山底,这可能与各观测点和云底相对位置的不同有关;随降水强度增加,雨滴的质量加权平均直径Dm逐渐增大,广义截距参数(log10Nw)的标准差逐渐减小。拟合结果表明各高度的雨滴谱都比较符合Gamma分布,由拟合参数分析雨滴谱的演变,发现相对于对流云降水,层状云降水粒子谱随高度的变化较小,雨滴谱的演变较为稳定。此外,本文还对两类降水中雨滴的下落速度及影响落速的因素进行了分析。  相似文献   

2.
雨滴谱的垂直变化特征对于认识降水过程、改进模式和雷达定量估计降水等具有重要意义。利用2016年6月1日-9月30日雨量筒、微雨雷达(micro rain radar,简称MRR)和PARSIVEL雨滴谱仪连续4个月的观测数据,在对比3种仪器观测结果的基础上,研究了层状云降水不同降水强度下微物理特征量和雨滴谱垂直演变特征。结果表明:MRR与PARSIVEL雨滴谱仪观测降水强度相关性较好,且两种仪器观测的雨滴谱在中等粒子段(0.5~2.5 mm)表现出较好的一致性,而对于小粒子段(雨滴直径小于0.5 mm)PARSIVEL雨滴谱仪观测的数浓度明显低于MRR。对于弱降水(降水强度R ≤ 0.2 mm·h-1),液水含量和降水强度随高度降低减小,雨滴在下落过程中蒸发明显。对于较强降水(R>2 mm·h-1),随高度降低,雷达反射率因子增大,小滴数浓度减小的同时大滴数浓度增加明显,雨滴下落过程碰并作用明显。所有高度直径不超过0.5 mm的小滴对数浓度贡献均为最大。高层雨滴直径不小于1 mm的小粒子对降水强度的贡献可达50%,小粒子对降水强度贡献随高度降低减小。  相似文献   

3.
胡雅君  张伟  张玉轩  温龙 《气象学报》2022,80(4):618-631
为研究华南前汛期季风爆发前后闽南地区的雨滴谱特征差异,利用2018—2019年厦门站和同安站4—6月的降水现象仪资料,对比分析了季风爆发前后闽南沿海层状云和对流云的雨滴谱分布及微物理参数差异。结果表明,华南前汛期闽南沿海层状云降水占比明显高于对流云降水,但对流云降水的滴谱分布更宽,峰值粒径以上的各粒径区间粒子浓度均大于层状云降水。不论层状云或是对流云降水,2018年季风爆发后均表现为质量加权平均直径(Dm)减小,广义截距参数(Nw)增大。2019年季风爆发后Dm增大,层状云的Nw减小,对流云Nw增大。两年整体呈现相反的演变趋势。层状云的降水率(R)和液态水含量(W)的演变趋势与Nw一致,而对流云的R和W与Dm一致。闽南沿海雨滴谱微物理参数接近于华南沿海,与华东区域相比,整体浓度更高,粒子尺度略小。Z-R关系拟合表明季风爆发前、后层状云与对流云的拟合系数、决定系数具有较大差异,其中对流云拟合效果相对更好。基于Z=300R1.4的定量降水估测对层状云降水和量级较小的对流云降水整体上存在不同程度的低估,对于量级较大的对流云降水存在高估。探讨了环流形势对雨滴谱的可能影响。结果表明绝对水汽含量可能会影响粒子数浓度,而西南风等动力条件和对流有效位能等热力条件会通过影响对流的高度和降水的微物理过程进而可能会影响雨滴谱分布。   相似文献   

4.
为了探讨利用雨滴谱数据验证雷达观测的回波强度的偏差和实时拟合反射率因子(Z)与降水强度(R)的关系(即Z-R关系)进行定量降水估测的可能性,以发生在江苏南部的三次大范围降水过程为例,首先分析雨滴谱数据、雷达数据和雨量计数据的一致性,然后利用雨滴谱仪网法和传统方法分别进行降水估测,并对比两种方法的降水估测效果。结果表明:雷达和雨滴谱仪观测的回波强度具有较好的一致性;采用雨量计数据和雨滴谱计算的平均降水强度存在一定差异,但其变化趋势基本一致。相对于层状云降水,两种方法对对流云降水估测的误差更大,对层状云降水的估测,雨滴谱仪网法略优于传统方法,但对对流云降水的估测,雨滴谱仪网法更具优势。总体上,雨滴谱仪网法估测的降水,其偏差和相对误差更小,估测值总量与雨量计观测雨量更接近,估测降水的效果更好。  相似文献   

5.
利用辽宁阜新国家站(121.7458°E,42.0672°N)的毫米波云雷达(8 mm)和微雨雷达(12.5 mm)对2020年8月12-13日东北冷涡影响下的一次降水过程进行了观测,分析了云降水的垂直结构特征并探讨了降水机制。结果表明:本次过程中,云水平方向发展不均匀,以层状云和层积混合云为主,云内有时还嵌有对流泡。云降水阶段性变化明显,先后出现了层状云降水、层积混合云降水和对流云降水。层状云降水和层积混合云降水均表现出明显的亮带特征,但层积混合云降水的雷达回波强度、回波顶高和降水强度明显大于层状云降水。对流云降水的雷达回波会因强降水而产生明显衰减,因此回波顶高不能表示出实际的云顶情况。层状云降水阶段,云雷达反射率随高度降低增长缓慢,雨滴在下落过程中受蒸发和碰并的共同作用,反射率降低。与层状云降水相比,层积混合云降水的碰并效应强,且由于前期降水对近地面的增湿作用,使云下蒸发弱。对流云降水阶段,反射率的增长主要发生在冰水混合层,有利于大滴的产生,拓宽了云滴谱,提高了碰并效率。  相似文献   

6.
层状云和对流云的雷达识别及在估测雨量中的应用   总被引:10,自引:1,他引:10  
参考“峰值法”建立了利用新一代多普勒天气雷达回波强度识别混合型降水过程中层状云和对流云的方法,分析了反射率阈值和影响半径的变化对识别效果的影响,检验了识别效果,并分析该方法在雷达估测降水中的应用。表明本文所建立的暴雨中层状云和对流云识别方法基本合理,配合云的垂直结构分析大部分地区识别的效果较好,同时通过该识别方法对合肥2002年6月19日一次强降水天气过程的估测降水的应用,表明只按层状云的Z-I关系估测的雨强,相对于识别对流云和层状云后分别按各自的Z-I关系估测的单点雨强,其最大差别约达37%,相应的面雨量也有一定的差别;对流云的多少对发展的中尺度对流系统的雨强有很大影响,这次混合型降水过程以对流云降水为主。对流云和层状云是形成暴雨的重要因素,准确地识别两者,对估测降水的精度会有积极作用。  相似文献   

7.
利用2020—2021年昭苏地区夏季的雨滴谱数据,研究层状云和对流云降水的微物理参量及雨滴谱特征。结果表明:对流云降水的粒子数浓度和粒子直径明显偏大,较大的粒子直径和粒子数浓度使得其降水强度和液态含水量远大于层状云降水。两类降水云的雨滴谱均为单峰结构,峰值直径主要分布在0.5~0.625 mm,对流云降水的雨滴谱谱宽明显大于层状云降水。两类降水云的雨滴直径和粒子数浓度与青藏高原中部的观测值相近,且昭苏地区的对流云滴谱更倾向于大陆性对流簇。研究结果有助于加深对昭苏地区降水的微物理特征及其演变规律的理解。  相似文献   

8.
沙修竹  丁建芳  程博 《气象》2019,45(11):1569-1578
采用河南省2016—2017年100个日降水资料,对比分析雨滴谱反演回波与雷达回波的差异、雨滴谱反演降水强度与雨量计观测降水强度的差异;进行雨滴谱Gamma拟合,以探究河南省雨滴谱分布及降水云系类型;进行Z-I关系拟合,以探究河南省降水回波与降水强度的关系。结果表明:(1)雨滴谱反演回波、雷达观测回波的变化趋势具有较好一致性。而前者普遍小于后者,其可能原因:一是雷达通过最低仰角观测到的地面雨滴谱仪上方回波与地面雨滴谱仪之间存在一定高度差,二是雨滴下落时的蒸发、破碎过程,使到达地面的雨滴直径减小。(2)雨滴谱反演的降水强度与雨量计观测的降水强度相比,存在一定差异,但无显著偏大或偏小规律性特征。(3)对流云及层积混合云的雨滴谱宽大于层状云,中等尺度雨滴数密度较大。层状云的小水滴数密度较大。河南省大部分降水过程为雨滴谱较窄的层状云降水。(4)河南省降水回波与降水强度的拟合公式:Z=262I~(1.34),层状云拟合公式:Z=219I~(1.30),对流云拟合公式:Z=307I~(1.38)。(5)雨滴数浓度较高月份为6—7月(1500个·m~(-3)左右),降水强度较高月份为8—10月(60 mm·h~(-1)),雨滴最大直径较高月份为4—8月(4.3~4.8 mm),雨滴平均直径较高月份为3—4月(3 mm左右)。雨滴数浓度、降水强度、最大直径、平均直径的月份特征变化无一致性。  相似文献   

9.
研究降水滴谱特征和谱分布对了解高原降水的微物理特征、雷达定量估测降水以及科学实施人工增雨作业尤为重要。本文选取2018年7月8—9日拉萨夏季一次典型降水过程,利用DSG5型降水现象仪和地面小时降水资料分析了高原夏季对流云和混合云降水的雨滴谱分布特征及〖WTBX〗Z I〖WTBZ〗关系。结果表明:降水现象仪和翻斗雨量计的降水变化趋势较为一致。对流云降水中2.0~3.0 mm的降水粒子对雨强的贡献最大,混合云降水雨强的主要贡献者是1.0~2.0 mm的粒子;混合云降水阶段的雨滴谱数浓度比对流云大一个量级。对流云和混合云降水的雨强与雨滴的质量加权平均直径和数浓度密切相关。拉萨地区雨滴谱适合〖WTBX〗Γ〖WTBZ〗分布,其拟合谱参数与青藏高原其他地区的差异表明高原地区雨滴谱分布存在时空差异;混合云降水谱参数〖WTBX〗N0、μ〖WTBZ〗和〖WTBX〗λ〖WTBZ〗与雨强的变化趋势相反。混合云降水〖WTBX〗Z I〖WTBZ〗关系的系数和指数均小于对流云降水。应用标准〖WTBX〗Z I〖WTBZ〗关系,对流云降水阶段雷达低估降水强度;混合云降水阶段,当雨强<2.3 mm雷达低估降水,否则雷达高估降水。  相似文献   

10.
程鹏  常祎  刘琴  王研峰  李宝梓  陈祺  罗汉 《大气科学》2021,45(6):1232-1248
祁连山是青藏高原东北部重要的生态屏障和冰川与水源涵养生态功能区,是黄河流域重要水源产流地,但针对该地区的云和降水过程研究很少。本文利用祁连山地区11个Parsivel2雨滴谱仪的观测数据,研究了祁连山地区春季一次层状云降水过程的雨滴谱分布及地形影响特征。此次降水过程主要受短波槽影响,降水时空差异较大。雨滴谱观测数据表明,此次降水过程的雨滴等效直径(Dm)较小,雨滴谱数浓度(NT)与Dm随海拔高度升高分别呈增加和减小的趋势,低海拔站点logNw(Nw为雨滴谱截断参数)和Dm分布有着明显的层状云降水特征,而整个祁连山地区在同样Dm下有着更低的Nw。低海拔站点由于碰并和小雨滴的蒸发,有着更少的小雨滴(<1 mm)和更多的大雨滴,而高海拔站点由于距离云底较近或位于云内,云滴尺度小且浓度大,Dm随R(R为降水强度)增大变化趋势不明显。M-P分布和Gamma分布在低海拔站点的拟合效果要优于高海拔站点,相较于Gamma分布,M-P分布对高海拔站点的小雨滴和大雨滴浓度有一定的高估和低估,因此更适用于高海拔站点雨滴谱的描述。对比于低海拔站点,高海拔站点的μ–Λ(μ、Λ分别为Gamma分布的形状参数和斜率参数)关系与相关研究的结果较为接近,但在Λ较小(<40 mm?1)时拟合结果较为接近。受海拔高度与云底的相对位置和地形的影响,祁连山地区的Z–R(Z为雷达反射率因子)关系与其他地区或研究有着较大的区别。  相似文献   

11.
勾亚彬  刘黎平  杨杰  吴翀 《气象学报》2014,72(4):731-748
基于雷达组网实时的定量降水估测(QPE)及实时评估系统在浙江省杭州市气象局成功实现了业务应用,在评估雷达定量降水估测业务应用效果的同时,根据雷达反射率因子垂直廓线(VPR)特征,探讨分析了不同类型降水过程中雷达定量降水估测的误差源。系统联合杭州、宁波、舟山、温州、金华及衢州6部新一代天气雷达的基数据资料,以及覆盖浙江省且经反距离加权(Inverse Distance Weights,IDW)法实时质量控制的雨量计观测资料,采用先雷达组网拼图再降水估测的方案,集成Z-R关系法和最优插值法反演与校准雷达定量降水估测数据场。4次不同类型降水过程的评估结果表明:(1)在地物遮挡严重的浙江西北部和雷达覆盖较差的浙江南部,降水估测的雷达反射率因子如果源于0℃层亮带,会导致雷达定量降水估测严重高估;如果源于浅薄层云云系的云顶,会造成雷达定量降水估测严重低估。(2)多种降水类型云系并存,但使用相对单一的Z-R关系,会导致梅雨和台风期间雷达定量降水估测的局部高估或低估。(3)伴随飑线系统的强对流以及台风系统的非对称性也是导致雷达定量降水估测误差的重要原因。(4)联合Z-R关系和最优插值法,有效地降低了雷达定量降水估测的系统误差,但仍然存在大量的局部误差。  相似文献   

12.
复杂地形下C波段雷达定量降水估计算法   总被引:1,自引:0,他引:1  
C波段雷达定量降水估计(QPE)精度受到很多因素的影响,主要包括:(1)雷达标定,(2)非气象回波的干扰,(3)降水物垂直空间变化,(4)地形或地物的严重遮挡,(5)Z-R关系的代表性,(6)雷达拼图的质量,(7)雷达观测回波衰减等。文中雷达定量降水估计算法基于陕西省C波段天气雷达展开,从雷达探测数据质量控制、地形遮挡、Z-R关系和雷达拼图等方面提高C波段天气雷达定量降水估计的精度,产生降水类型产品和1 h定量降水估计产品,产品空间分辨率为0.01°×0.01°,时间分辨率为6 min。通过对7次降水过程进行评估,结果表明:基于混合仰角反射率因子处理模块和降水类型分类模块进行雷达定量降水估计,得到的结果与地面雨量站观测降水接近,1 h累计降水量的统计评分指标均方根误差稳定在3 mm以下,相对误差稳定在50%左右,相对偏差保持在?30%以内,雷达定量降水估计产品的离散度和绝对偏差都较低,表明该算法得到的雷达定量降水估计稳定可靠。   相似文献   

13.
通过对比星载DPR雷达与地基CINRAD雷达的降雨测量值,评估星地雷达联合应用的潜力。为了提高对比的准确性,在尽可能高的时空分辨率下,以几何匹配与格点匹配相结合的方式,提取星地雷达降水样本数据。2015年6月30日降水过程的对比分析结果表明:泰州、常州CINRAD雷达反射率因子在两站中分剖面的平均值偏差0.94 dB,地基雷达之间有很好的一致性;在DPR雷达与常州、泰州CINRAD雷达同时覆盖的降雨区域,星地之间雷达反射率因子的平均值偏差分别为-1.2 dB和-1.6 dB,显示星地雷达也有较好的一致性;现有DPR雷达陆上衰减订正算法在缩小星地雷达偏差方面起到一定作用,平均订正量0.4 dB,只要回波覆盖充分,匹配样本的高度以及其到地基雷达的距离对对比结果没有明显影响,而衰减订正和匹配样本区回波覆盖率是影响星地雷达对比结果的重要因素。  相似文献   

14.
利用2018—2019年期间10 min定量降水估计(Quantitative Precipitation Estimation, QPE)实况观测,构建基于U-Net的分钟级临近降水预报模型,实现了京津冀地区未来0~2 h逐10 min降水量滚动预报。以TS、BIAS、POD、SR、FAR作为评价指标,通过检验2020和2021年6—9月长序列以及分析2020年8月12日和2021年7月1日两次强降水个例,表明U-Net模型预报接近实况,局部伴随着一定程度的空报,相较光流法、持续性预报及CMA-MESO模式预报效果有明显提升。具体表现为:当分钟级降水预报不超过10 mm/(10 min)时,U-Net模型明显优于光流法和持续性预报;当小时预报不超过25 mm·h-1,U-Net模型优于CMA-MESO模式和光流法。然而,当降水强度超过10 mm/(10 min)或 25 mm·h-1时,U-Net模型存在预报偏弱的情况,可能与强降水样本较少有关。  相似文献   

15.
激光雨滴谱仪测速误差对雨滴谱分布的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
该文研究PARSIVEL激光雨滴谱仪的测量误差并提出订正方法。对2014年在广东阳江的PARSIVEL激光雨滴谱仪采集的两次降水过程数据进行分析发现,雨滴下落速度V随粒径D变化与静止大气中雨滴下落末速度随粒径变化的Atlas-Ulbrich曲线分布趋势一致,但D < 1 mm及D > 3 mm的速度偏差较大。其主要原因是大粒径雨滴形变造成速度偏离较大,仪器测量误差造成小粒径测速偏大,激光雨滴谱仪所在高度的大气垂直运动影响雨滴下落速度。根据PARSIVEL激光雨滴谱仪测量原理,基于雨滴形变与粒径关系,给出形变订正后的Atlas-Ulbrich修正曲线,并用于对小粒径测速订正。比较订正前后的雨滴谱分布,订正后的小雨滴浓度明显增加,大雨滴浓度略有减小,订正后浓度参数和斜率参数均增加,形状参数变化不明显。  相似文献   

16.
为了提高雷达定量降水估测的精度,建立一套高精度的双偏振雷达定量降水估测方法,并对其在业务应用中的表现进行评估。本文利用雨滴谱仪数据使用非球形粒子的散射模型(T-Matrix模型)进行不同偏振量的模拟计算,根据计算结果对实测雨滴谱数据(DSD)进行分类拟合,实现对CSU-HIDRO(Colorado State University-Hydrometeor Identification Rainfall Optimization)优化降水估测算法的改进。为了评估改进后CSU-HIDRO优化算法(简称CSU-HIDRO_I)的应用效果,本文选取2016~2017年两年汛期发生于中国华南地区的6次大范围强降水过程为评估对象,分别采用单偏振雷达定量降水估测的R(ZH)关系法(WSR-88D Precipitation Processing System,简称PPS法)和CSU-HIDRO_I法进行小时降水量估测。按照不同降水率大小以及距离雷达20~60 km和60~100 km范围分别对两种降水估测方法进行评估,并将雷达估测的小时降水量同地面雨量计小时降水量资料进行对比,结果表明:(1)CSU-HIDRO_I法在应用评估过程中取得了较好的评估效果,其估测精度及稳定性均较好。(2)PPS法对小雨(降水率R<2.5 mm/h)存在一定的高估,对大雨及暴雨(R>8 mm/h)存在明显低估,而CSU-HIDRO_I法能够有效的降低强降水的低估情况,同时提高了小雨的估测精度。与PPS法相比,CSU-HIDRO_I法对小雨、中雨、大雨及暴雨的估测偏差分别降低了38%、24%、17%、15%。(3)PPS法在降水估测中对离雷达的距离更为敏感,相同降水率下不同距离处的相对误差波动较大,CSU-HIDRO_I法对距离敏感性较弱,相同降水率强度下,相对误差随距离的变化波动较小。  相似文献   

17.
进入内陆的两个台风降水特征对比分析   总被引:2,自引:0,他引:2  
2012年8月台风海葵和2014年7月台风麦德姆登陆进入安徽省后,均造成了区域性暴雨或大暴雨天气。利用常规观测资料、NCEP/NCAR再分析资料和雨滴谱资料,对这两个直接影响安徽省的台风移动路径和暴雨形成机制进行了对比分析。结果表明:(1)海葵和麦德姆的移动路径、停留时间和强降水分布特征有明显不同。与海葵相比,麦德姆的移动速度快、降水持续时间短、累计降雨量和暴雨范围较小;但其短时强降水持续时间长、暴雨中心降水强度更大。(2)海葵和麦德姆降水过程中均有强的水汽输送和辐合,但水汽输送方向的差异使得海葵和麦德姆的强降水空间分布分别呈纬向型和经向型特征。同时水汽辐合持续时间决定了麦德姆的降水持续时间比海葵短,但其较深厚的强水汽辐合使得麦德姆的短时强降水持续时间长、暴雨中心降水强度大。(3)海葵是以稳定性降水为主的混合型降水,麦德姆则呈现出明显的对流性降水特征;两次台风降水过程中均是短时间的对流性降水对总降雨量贡献最大,且强降水区域均位于风垂直切变的顺风切左侧。(4)麦德姆降水过程比海葵具有更高的雨滴数浓度和更大的降水粒子直径。当雨强小于10 mm/h时,两次台风降水过程均以小雨滴为主且数浓度较大;雨强>10 mm/h时,雨滴粒径增大但数浓度明显降低。(5)两次台风降水过程的雷达反射率因子-雨强(Z-R)均有较好的指数关系且拟合曲线比较一致,但在不同降水类型即层云降水和对流性降水中,其Z-R关系的a、b值差异较明显。因此,针对不同降水类型,应采用分型Z-R关系来进行雷达降水定量估测。   相似文献   

18.
常煜  樊斌  张小东 《气象科学》2018,38(2):229-236
利用1991—2015年夏季(6—8月)内蒙古地区111个国家气象站小时降水量资料,对内蒙古不同气候区(极干旱、干旱、半干旱、半湿润和湿润)短时强降水(1 h降水量≥20 mm)进行检验分析,采用累积概率方法定义内蒙古夏季不同气候区短时强降水。检验结果表明:内蒙古地区年平均降水量和小时降水量极值自西部极干旱区向东部半湿润、湿润区递增,高值区位于大兴安岭东部,次高值区位于阴山山脉以南。内蒙古极干旱区小时降水量极值低于20 mm,半湿润区和湿润区小时降水量极值高于50 mm,个别站点甚至达到100 mm以上。但在半湿润区和湿润区东部小时降水量超过20 mm年平均发生仅为1次,其余地区均1次。在内蒙古极干旱区、干旱区、半干旱区、半湿润区和湿润区小时降水量分别达到6.1、9.8、12.5、15.2和14.3 mm·h~(-1)属于极端降水事件,小时降水量≥20 mm不宜作为内蒙古短时强降水定义。综合上述研究,结合内蒙古地区地形、地貌等因素,将内蒙古极干旱区和干旱区短时强降水定义为5 mm·h~(-1),半干旱区、半湿润区和湿润区短时强降水定义为10 mm·h~(-1)。  相似文献   

19.
采用日本气象厅的最佳台风路径及强度资料、NCEP/NCAR逐6 h细网格再分析数据,分析了"利奇马"暴雨影响相关的云水含量、假相当位温、水汽通量散度、Q矢量、湿位涡等物理量;通过苏州雨滴谱资料,分析降雨强度、雨滴数密度、雨滴平均直径、雨滴含水量、雷达反射率因子、雨滴谱宽等微物理量特征。结果表明降水落区位于环境垂直风切变顺切的左侧。暴雨期间能量和水汽条件较好,低层Q矢量梯度使辐合上升增强,且其非对称性对暴雨落区有指示意义,湿位涡的发展也有利于暴雨的加强;另外,微物理分析表明冷云降水机制使降水效率大幅提高,雨滴谱能较好地反映台风降水特征,强降水主要由层状云中嵌入的对流降水引起。强降水时段雨滴谱的相关微物理量等都呈现较大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号