首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most, if not all forests in the Caribbean are subject to occasional disturbances from hurricanes. If current general circulation model (GCM) predictions are correct, with doubled atmospheric CO2 (2 × CO2), the tropical Atlantic will be between 1 °C and 4 °C warmer than it is today. With such a warming, more than twice as many hurricanes per year could be expected in the Caribbean. Furthermore, Emanuael (1987) indicates that in a warmed world the destructive potential of Atlantic hurricanes could be increased by 40% to 60%. While speculative, these increases would dramatically change the disturbance regimes affecting tropical forests in the region and might alter forest structure and composition. Global warming impacts through increased hurricane damage on Caribbean forests are presented.An individual tree, gap dynamics forest ecosystem model was used to simulate the range of possible hurricane disturbance regimes which could affect the Luquillo Experimental Forest in Puerto Rico. Model storm frequency ranged from no storms at all up to one storm per year; model storm intensity varied from no damage up to 100% mortality of trees. The model does not consider the effects of changing temperature and rainfall patterns on the forest. Simulation results indicate that with the different hurricane regimes a range of forest types are possible, ranging from mature forest with large trees, to an area in which forest trees are never allowed to reach maturity.  相似文献   

2.
Caribbean hurricanes: changes of intensity and track prediction   总被引:1,自引:0,他引:1  
The meteorological conditions of hurricanes passing near Puerto Rico (18N, 68W) are analyzed using composite daily reanalysis and satellite data. When an intense hurricane is present, the regional circulation is dominated by upper easterly flow over the Caribbean and central Atlantic and a surge of low-level westerly anomalies across the tropics. Warm SST anomalies extend along the coast of Venezuela, doubling the convective energy available to Caribbean hurricanes. Intensifying hurricanes tend to propagate westward with an atmospheric ridge over the Gulf Stream, in an environment with aerosol optical depth <0.6. Hurricanes form and strengthen in the east-shear phase of the Madden Julian Oscillation. Sinking motions and dry air appear in an anti-cyclonic gyre behind intensifying hurricanes. Numerical model 48-h forecasts of Caribbean hurricane tracks are analyzed over the period 2000–2010. A “slow right” bias is found east of Puerto Rico in comparison with observed.  相似文献   

3.
Hurricane winds present a significant hazard for coastal infrastructure. An estimate of the local risk of extreme wind speeds is made using a new method that combines historical hurricane records with a deterministic wind field model. The method is applied to Santa Rosa Island located in the northwestern panhandle region of Florida, USA. Firstly, a hurricane track is created for a landfall location on the island that represents the worst-case scenario for Eglin Air Force Base (EAFB). The track is based on averaging the paths of historical hurricanes in the vicinity of the landfall location. Secondly, an extreme-value statistical model is used to estimate 100-year wind speeds at locations along the average track based again on historical hurricanes in the vicinity of the track locations. Thirdly, the 100-year wind speeds together with information about hurricane size and forward speed are used as input to the HAZUS hurricane wind field model to produce a wind swath across EAFB. Results show a 100-year hurricane wind gust on Santa Rosa Island of 58 (±5) m?s?1 (90% CI). A 100-year wind gust at the same location based on a 105-year simulation of hurricanes is lower at 55?m?s?1, but within the 90% confidence limits. Based on structural damage functions and building stock data for the region, the 100-year hurricane wind swath results in $574 million total loss to residential and commercial buildings, not including military infrastructure, with 25% of all buildings receiving at least some damage. This methodology may be applied to other coastal areas and adapted to predict extreme winds and their impacts under climate variability and change.  相似文献   

4.
Atlantic Basin Hurricanes: Indices of Climatic Changes   总被引:7,自引:0,他引:7  
Accurate records of basinwide Atlantic and U.S. landfalling hurricanes extend back to the mid 1940s and the turn of the century, respectively, as a result of aircraft reconnaissance and instrumented weather stations along the U.S. coasts. Such long-term records are not exceeded elsewhere in the tropics. The Atlantic hurricanes, U.S. landfalling hurricanes and U.S. normalized damage time series are examined for interannual trends and multidecadal variability. It is found that only weak linear trends can be ascribed to the hurricane activity and that multidecadal variability is more characteristic of the region. Various environmental factors including Caribbean sea level pressures and 200mb zonal winds, the stratospheric Quasi-Biennial Oscillation, the El Niño-Southern Oscillation, African West Sahel rainfall and Atlantic sea surface temperatures, are analyzed for interannual links to the Atlantic hurricane activity. All show significant, concurrent relationships to the frequency, intensity and duration of Atlantic hurricanes. Additionally, variations in the El Niño-Southern Oscillation are significantly linked to changes in U.S. tropical cyclone-caused damages. Finally, much of the multidecadal hurricane activity can be linked to the Atlantic Multidecadal Mode - an empirical orthogonal function pattern derived from a global sea surface temperature record. Such linkages may allow for prediction of Atlantic hurricane activity on a multidecadal basis. These results are placed into the context of climate change and natural hazards policy.  相似文献   

5.
Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(SST).In this study,the contribution of TC track changes to the interannual variations of intense hurricane activity in the North Atlantic basin is evaluated through numerical experiments.It is found that that observed interannual variations of the frequency of intense hurricanes during the period 1958–2017 are dynamically consistent with changes in the large-scale ocean/atmosphere environment.Track changes can account for~50%of the interannual variability of intense hurricanes,while no significant difference is found for individual environmental parameters between active and inactive years.The only significant difference between active and inactive years is in the duration of TC intensification in the region east of 60°W.The duration increase is not due to the slow-down of TC translation.In active years,a southeastward shift of the formation location in the region east of 60°W causes TCs to take a westward prevailing track,which allows TCs to have a longer opportunity for intensification.On the other hand,most TCs in inactive years take a recurving track,leading to a shorter duration of intensification.This study suggests that the influence of track changes should be considered to understand the basin-wide intensity changes in the North Atlantic basin on the interannual time scale.  相似文献   

6.
毕明明  邹晓蕾 《气象科学》2022,42(4):457-466
极轨气象卫星S-NPP、MetOp-A和FY-3B上搭载的微波湿度计观测资料可以反映出台风周围水汽和云雨结构。本文使用权重函数峰值在800 hPa附近的微波湿度计通道观测资料和ERA5再分析资料全天空模拟亮温,以飓风Sandy和Isaac为例,对用方位谱台风中心位置定位方法得到的观测和模拟中心位置进行了比较。利用下午星S-NPP搭载的先进技术微波探测仪(Advanced Technology Microwave Sounder,ATMS)和上午星MetOp-A搭载的微波湿度计(Microwave Humidity Sounder,MHS)观测亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差35.8 km(32.9 km),但用ERA5全天空模拟亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差73.3 km(82.1 km)。若按照热带风暴和台风等级来划分,ATMS和MHS观测和模拟亮温得到的台风中心位置与最佳路径的平均距离对热带风暴分别是36.5 km和105.9 km,对台风分别是25.8 km和56.4 km。若用FY-3B搭载的微波湿度计(以MWHS表示)替换ATMS,所得结果类似。ERA5作为全球大气再分析资料的典型代表,用方位谱台风中心位置定位方法得到的台风中心位置误差较大的原因是ERA5再分析资料全天空模拟亮温在台风中的分布结构与观测亮温相差较大,而模拟亮温与冰水路径分布结构极为相似。研究对台风数值预报中的全天空模拟亮温资料同化具有一定的参考意义。  相似文献   

7.
Recent intense hurricane response to global climate change   总被引:1,自引:0,他引:1  
An Anthropogenic Climate Change Index (ACCI) is developed and used to investigate the potential global warming contribution to current tropical cyclone activity. The ACCI is defined as the difference between the means of ensembles of climate simulations with and without anthropogenic gases and aerosols. This index indicates that the bulk of the current anthropogenic warming has occurred in the past four decades, which enables improved confidence in assessing hurricane changes as it removes many of the data issues from previous eras. We find no anthropogenic signal in annual global tropical cyclone or hurricane frequencies. But a strong signal is found in proportions of both weaker and stronger hurricanes: the proportion of Category 4 and 5 hurricanes has increased at a rate of ~25–30 % per °C of global warming after accounting for analysis and observing system changes. This has been balanced by a similar decrease in Category 1 and 2 hurricane proportions, leading to development of a distinctly bimodal intensity distribution, with the secondary maximum at Category 4 hurricanes. This global signal is reproduced in all ocean basins. The observed increase in Category 4–5 hurricanes may not continue at the same rate with future global warming. The analysis suggests that following an initial climate increase in intense hurricane proportions a saturation level will be reached beyond which any further global warming will have little effect.  相似文献   

8.
Climate change could have major implications for the global tourism industry if changing environmental conditions alter the attractiveness of holiday destinations. Countries with economies dependent on tourism and with tourism industries reliant on vulnerable natural resources are likely to be particularly at risk. We investigate the implications that climate-induced variations in Atlantic hurricane activity may have for the tourism-dependent Caribbean island of Anguilla. Three hundred tourists completed standardised questionnaires and participated in a choice experiment to determine the influence hurricane risk has on their risk perceptions and decisions regarding holiday preferences. The hurricane season had been considered by 40?% of respondents when making their holiday choice, and the beaches, climate and tranquility of the island were more important than coral reef-based recreational activities in determining holiday destination choice. Choice models demonstrated that respondents were significantly less likely to choose holiday options where hurricane risk is perceived to increase, and significantly more likely to choose options that offered financial compensation for increased risk. However, these choices and decisions varied among demographic groups, with older visitors, Americans, and people who prioritize beach-based activities tending to be most concerned about hurricanes. These groups comprise a significant component of the island’s current clientele, suggesting that perceived increases in hurricane risk may have important implications for the tourism economy of Anguilla and similar destinations. Improved protection of key environmental features (e.g. beaches) may be necessary to enhance resilience to potential future climate impacts.  相似文献   

9.
Summary Two statistical models are created for the Caribbean during its dry season. Canonical correlation analysis (CCA) confirms that there is a robust El Ni?o Southern Oscillation (ENSO) signal in the region during the dry season and that the mode manifests itself as oppositely signed precipitation anomalies over the north and south Caribbean. The south-eastern Caribbean becomes dry in response to a warm event. The first statistical model consequently uses a rainfall index averaged over the south-eastern Caribbean as the predictand. A model which retains an ENSO proxy as one of two predictors shows reasonable skill with hindcast predictions for the region. A second model is created using a Jamaican rainfall index as predictand. Jamaica falls in the transition zone i.e. between the oppositely signed north-south precipitation anomalies characteristic of the ENSO dry season mode. In this case no ENSO related predictor is retained in the final model. Composite analysis of select atmospheric variables for anomalously high and low rainfall years (for the dry season) give an understanding of the dynamics of the Caribbean dry season during phases of the ENSO, particularly those which lead to the creation of the transition zone. Authors’ address: Tannecia S. Stephenson, A. Anthony Chen, Michael A. Taylor, Department of Physics, University of the West Indies, Mona, Jamaica.  相似文献   

10.
Summary Separate predictive models are created for the Caribbean early wet season (May–June–July) and late wet season (August–September–October). Simple correlations are used to select predictors for a Caribbean rainfall index and predictive equations are formulated using multiple linear regression. The process is repeated after long term trends are removed from the Caribbean rainfall index and the models validated using a number of statistical methods. Four variables are confirmed as predictors for the early season: Caribbean sea surface temperature anomalies, tropical North Atlantic sea level pressure anomalies, vertical shear anomalies in the equatorial Atlantic, and the size of the Atlantic portion of the Western Hemisphere Warm Pool. Only the first two are retained in the late season model. On the interannual time-scale, equatorial Pacific sea surface temperature anomalies become significant in both seasons. The NINO3 index is retained among the predictors for the early season, and zonal gradients of sea surface temperature between the equatorial Pacific and tropical Atlantic are retained for the late season. The results also indicate spatial variation in the importance of the seasonal predictors.  相似文献   

11.
Warm seawater is the energy source for hurricanes. Interfacial sea-to-air heat transfer without spray ranges from 100?W?m?2 in light wind to 1,000?W?m?2 in hurricane force wind. Spray can increase sea-to-air heat transfer by two orders of magnitude and result in heat transfers of up to 100,000?W?m?2. Drops of spray falling back in the sea can be 2–4?°C colder than the drops leaving the sea, thus transferring a large quantity of heat from sea to air. The heat of evaporation is taken from the sensible heat of the remainder of the drop; evaporating approximately 0.3?% of a drop is sufficient to reduce its temperature to the wet bulb temperature of the air. The heat required to evaporate hurricane precipitation is roughly equal to the heat removed from the sea indicating that sea cooling is due to heat removal from above and not to the mixing of cold water from below. The paper shows how case studies of ideal thermodynamic processes can help explain hurricane intensity.  相似文献   

12.
Present-day (1979–2003) and future (2075–2099) simulations of mean and extreme rainfall and temperature are examined using data from the Meteorological Research Institute super-high-resolution atmospheric general circulation model. Analyses are performed over the 20-km model grid for (1) a main Caribbean basin, (2) sub-regional zones, and (3) specific Caribbean islands. Though the model’s topography underestimates heights over the eastern Caribbean, it captures well the present-day spatial and temporal variations of seasonal and annual climates. Temperature underestimations range from 0.1 °C to 2 °C with respect to the Japanese Reanalysis and the Climatic Research Unit datasets. The model also captures fairly well sub-regional scale variations in the rainfall climatology. End-of-century projections under the Intergovernmental Panel on Climate Change SRES A1B scenario indicate declines in rainfall amounts by 10–20 % for most of the Caribbean during the early (May–July) and late (August–October) rainy seasons relative to the 1979–2003 baselines. The early dry season (November–January) is also projected to get wetter in the far north and south Caribbean by approximately 10 %. The model also projects a warming of 2–3 °C over the Caribbean region. Analysis of future climate extremes indicate a 5–10 % decrease in the simple daily precipitation intensity but no significant change in the number of consecutive dry days for Cuba, Jamaica, southern Bahamas, and Haiti. There is also indication that the number of hot days and nights will significantly increase over the main Caribbean basin.  相似文献   

13.
Summary In the past, various field experiments were conducted using special aircrafts to enhance the observational database of hurricanes. Dropwindsondes (or “dropsondes”) are generally deployed to collect additional observations in the vicinity of the hurricane center. In addition to dropsondes, during the Third Convection and Moisture Experiment (CAMEX-3), which was conducted over the Atlantic Ocean and Gulf of Mexico during August–September 1998, LASE was also used to measure vertical moisture profiles. Four hurricanes: Bonnie, Danielle, Earl and Georges were targeted during this campaign. This paper describes the resulting impact of CAMEX-3 data, especially the LASE moisture profile data, on the hurricane analysis and forecast. The data were analyzed using a spectral statistical interpolation technique and the forecasts were made using the FSUGCM at T126 resolution with 14 σ-vertical levels. Results indicate that the LASE data had a significant impact on the moisture analysis. The reanalysis was slightly drier away from the hurricane center and wetter close to the center. Spiraling bands, both dry and wet, of moisture were clearly seen for hurricane Danielle. The LASE data did not affect the wind analysis significantly, however when it was used along with dropsonde observations the hurricane intensity and its structure were well represented and the forecast track produced from the reanalyzed initial condition had less forecast errors. The LASE and dropsonde observations were in good agreement. Received February 27, 2001 Revised July 31, 2001  相似文献   

14.
Little is known about the influence of hurricanes on precipitation extremes (PEs) in Southern Ontario, Canada. We examine PEs and their spatial–temporal link with hurricanes events in Southern Ontario during the period of 1950–2000. On average, 5.4 PEs or 11 % of the 50 wettest days in the selected five locations occurred under the influence of hurricanes within this 51-year period. Our results indicate hurricane-influenced PEs are most frequent in September and derive from storms that had reached major hurricane status (>50 m/s) at some point during their lifetime. An absence of landfalling hurricanes in Southern Ontario during the 1960s to 1980s suggests either that the direct impact of hurricanes occurs on a multidecadal time scale or that recent years are experiencing unprecedented change.  相似文献   

15.
Recently some indications have appeared that several purely meteorological processes in the terrestrial atmosphere are dependent upon magnetosphere variations. To analyse the possible relationship with North Atlantic hurricane intensification, the authors examine geomagnetic data for ten days prior to all hurricanes over the last 50 years (1950–1999). A significant positive correlation between the averaged Kp index of global geomagnetic activity and hurricane intensity as measured by maximum sustained wind speed is identified for baroclinically-initiated hurricanes. Results are consistent with a mechanism whereby ionization processes trigger glaciation at cloud top which leads to hurricane intensification through upper tropospheric latent heat release.  相似文献   

16.
Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s\(^{-1}\)). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (<200 m above sea level). To provide these data, we use large-eddy simulations to produce wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.  相似文献   

17.
Links between hurricane track changes and upper atmospheric potential vorticity (PV) anomaly patterns were identified qualitatively and analytically between 1990 and 2005 in the Western Atlantic. Strong track changes of hurricanes, particularly the constellations that triggered northward acceleration of the storm systems, were associated with upper-air PV patterns characterized by strongly positive anomalies to the northeast in combination with weak PV to the north of the system center. Constellations that triggered eventual eastward acceleration were associated with strongly positive PV anomalies to the northwest in combination with weak PV to the northeast of the system center. These results may assist hurricane forecasters and modelers in identifying possible signatures of future tropical cyclone tracks.  相似文献   

18.
19.
The impact is studied of small land areas on the configuration and structure of the tropical cyclone as well as on the variations of different characteristics of hurricanes (wind field, kinetic energy, and vorticity) during their passage over islands. The results of computations based on the regional numerical atmospheric ETA model for the hurricanes of the Caribbean Sea and typhoons of the Northwestern Pacific revealed that the disturbance of the symmetric circulation in the vortex accompanied by significant kinetic energy losses takes place when crossing the archipelagos or separate islands. It is demonstrated that the vortex intensity depends not on the energy loss due to the underlying surface roughness only but on the heat flux from it as well. The kinetic energy generation in the hurricane sharply decreases as a result of the decrease in the pressure gradient over the land that is caused, in turn, by the tropical cyclone moving away from the oceanic heat source. At the recurring appearance of the cyclone over the warm ocean waters, its deepening and intensification recommence.  相似文献   

20.
Hurricane Wind Power Spectra, Cospectra, and Integral Length Scales   总被引:1,自引:0,他引:1  
Atmospheric turbulence is an important factor in the modelling of wind forces on structures and the losses they produce in extreme wind events. However, while turbulence in non-hurricane winds has been thoroughly researched, turbulence in tropical cyclones and hurricanes that affect the Gulf and Atlantic coasts has only recently been the object of systematic study. In this paper, Florida Coastal Monitoring Program surface wind measurements over the sea surface and open flat terrain are used to estimate tropical cyclone and hurricane wind spectra and cospectra as well as integral length scales. From the analyses of wind speeds obtained from five towers in four hurricanes it can be concluded with high confidence that the turbulent energy at lower frequencies is considerably higher in hurricane than in non-hurricane winds. Estimates of turbulence spectra, cospectra, and integral turbulence scales presented can be used for the development in experimental facilities of hurricane wind flows and the forces they induce on structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号