首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A global, flux-corrected climate model is employed to predict the surface wind stress and associated wind-driven oceanic circulation for climate states corresponding to a doubling and quadrupling of the atmospheric CO2 concentration in a simple 1% per year CO2 increase scenario. The model indicates that in response to CO2 increase, the position of zero wind stress curl in the mid-latitudes of the Southern Hemisphere shifts poleward. In addition, the wind stress intensifies significantly in the mid-latitudes of the Southern Hemisphere. As a result, the rate of water circulation in the subpolar meridional overturning cell in the Southern Ocean increases by about 6 Sv (1 Sv=106 m3 s−1) for doubled CO2 and by 12 Sv for quadrupled CO2, implying an increase of deep water upwelling south of the circumpolar flow and an increase of Ekman pumping north of it. In addition, the changes in the wind stress and wind stress curl translate into changes in the horizontal mass transport, leading to a poleward expansion of the subtropical gyres in both hemispheres, and to strengthening of the Antarctic Circumpolar Current. Finally, the intensified near-surface winds over the Southern Ocean result in a substantial increase of mechanical energy supply to the ocean general circulation.  相似文献   

2.
The Northern Hemisphere winter (DJF) stationary eddy response of a general circulation model (GCM) to a doubling of atmospheric CO2 is simulated with a linear steady state model as a response to anomalies in diabatic heating (latent, sensible and radiative), mountain and transient eddy effects. For this analysis the doubled CO2 experiment performed by Wilson and Mitchell (1987) is used. The linear simulations of the control and perturbation climate capture most of the important features of the GCMs stationary eddies. The simulation of the anomalous stationary eddy pattern in the Northern Hemisphere captures only some of the important features of the GCMs anomalies. The climate anomalies in the Southern Hemisphere are poorly simulated. In the Northern Hemisphere the climate anomalies are dominated by the effect of transient eddies and mountains. In low latitudes also the contribution of latent heating is important. The contributions of sensible and radiative heating are small.  相似文献   

3.
The environmental requirements for growth of winter, spring, and fallsown spring wheats in North America are specified and compared to temperature results from the control run of the Goddard Institute for Space Studies general circulation model (GISS GCM) and observed precipitation in order to generate a simulated map of current wheat production regions. The simulation agrees substantially with the actual map of wheat-growing regions in North America. Results from a doubled CO2 run of the climate model are then used to generate wheat regions under the new climatic conditions. In the simulation, areas of production increase in North America, particularly in Canada, due to increased growing degree units (GDU). Although wheat classifications may change, major wheat regions in the United States remain the same under simulated doubled CO2 conditions. The wheat-growing region of Mexico is identified as vulnerable due to high temperature stress. Higher mean temperatures during wheat growth, particularly during the reproductive stages, may increase the need for earlier-maturing, more heat-tolerant cultivars throughout North, America. The soil moisture diagnostic of the climate model is used to analyze potential water availability in the major wheat region of the Southern Great Plains.  相似文献   

4.
Climate change impacts on Laurentian Great Lakes levels   总被引:1,自引:1,他引:1  
Scenarios of water supplies reflecting CO2-induced climatic change are used to determine potential impacts on levels of the Laurentian Great Lakes and likely water management policy implications. The water supplies are based on conceptual models that link climate change scenarios from general circulation models to estimates of basin runoff, overlake precipitation, and lake evaporation. The water supply components are used in conjunction with operational regulation plans and hydraulic routing models of outlet and connecting channel flows to estimate water levels on Lakes Superior, Michigan, Huron, St. Clair, Erie, and Ontario. Three steady-state climate change scenarios, corresponding to modeling a doubling of atmospheric CO2, are compared to a steady-state simulation obtained with historical data representing an unchanged atmosphere. One transient climate change scenario, representing a modeled transition from present conditions to doubled CO2 concentrations, is compared to a transient simulation with historical data. The environmental, socioeconomic, and policy implications of the climate change effects modeled herein suggest that new paradigms in water management will be required to address the prospective increased allocation conflicts between users of the Great Lakes.GLERL Contribution No. 645.  相似文献   

5.
A global atmospheric model is used to calculate the monthly river flow for nine of the world's major high latitude rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4° × 5°, but the model's runoff from each grid box is quartered and added to the appropriate river drainage basin on a 2° × 2.5° resolution. A routing scheme is used to move runoff from a grid box to its neighboring downstream grid box and ultimately to the mouth of the river. In a model simulation in which atmospheric carbon dioxide is doubled, mean annual precipitation and river flow increase for all of these rivers, increased outflow at the river mouths begins earlier in the spring, and the maximum outflow occurs approximately one month sooner due to an earlier snow melt season. In the doubled CO2 climate, snow mass decreases for the Yukon and Mackenzie rivers in North America and for rivers in northwestern Asia, but snow mass increases for rivers in northeastern Asia.  相似文献   

6.
Since cultivated annual C3 field crops cover about50% of the land surface of the Canadian Prairie grassland eco-climatic zone, this vegetationinfluences the aridity of the climate during the growing season. The physiological response of these cropsto a doubling of the atmospheric concentration of CO2 may be a doubling of canopyresistance. If this physiological effect is not counteracted by interactive feedbacks, such as increasedleaf area, evapotranspiration rates could be reduced. To demonstrate the sensitivity of thearidity of the Prairie climate to this potential physiological effect, representative spring wheatgrowing-season soil moisture and Bowen ratio curves for a doubled canopy resistance(2 × CO2) scenario were compared with a control (1 × CO2) scenario.Lower evapotranspiration in the 2 × CO2 scenario: (1) Increased root-zone soilmoisture levels, and (2) weakened the atmospheric component of the hydrologic cycle by raisingBowen ratios, which reduces the convective available energy, and reduces the regionalcontribution to the atmospheric water vapour over the Prairies. A weakened hydrologic cycleimplies less rainfall, and possibly, lower soil moisture levels. Thus, the net impact of a doublingof the atmospheric concentration of CO2 on the aridity of the Canadian Prairies is uncertain.This simple sensitivity demonstration did not consider most of the potential feedback mechanisms,nor interactions of other processes. Nevertheless, the result illustrates that the physiologicaleffect should be explicitly included in climate change models for the Canadian Prairies.  相似文献   

7.
Abstract

The changes in normal precipitation amounts from 1931–60 to 1951–80 are examined for stations in Eastern Canada. The area covered comprises the Maritime Provinces and those parts of Ontario and Quebec south of a line approximately 200 km north of Lakes Erie and Ontario and the St Lawrence River. Changes are computed for each of the four seasons and for the entire year. On the whole, precipitation has increased, especially in winter and summer. However, there is considerable variation throughout the area, with precipitation decreasing in some regions. General circulation models that simulate the effect of doubling atmospheric CO2 also show an increase in precipitation.  相似文献   

8.
A simulation of the possible consequences of a doubling of the CO2 content of the atmosphere has been performed with a low resolution global climatic model. The model included the diurnal and seasonal cycles, computed sea ice amount and cloud cover, and used implied oceanic heat fluxes to represent transport processes in the oceans. A highly responsive 2-layer soil moisture formulation was also incorporated. Twenty year equilibrated simulations for control (1 × CO2) and greenhouse (2 × CO2) conditions were generated. The major emphasis of the analysis presented here is on the intra-annual and interannual variability of the greenhouse run with respect to the control run. This revealed considerable differences from the time-averaged results with occasions of marked positive and negative temperature deviations. Of particular interest were the periods of negative temperature departures compared to the control run which were identified, especially over the Northern Hemisphere continents. Temporal and spatial precipitation and soil moisture anomalies also occurred, some of which were related to the surface temperature changes. Substantial sea surface temperature anomalies were apparent in the greenhouse run, indicating that a source of climatic forcing existed in addition to that due to doubling of the CO2. Comparison of the intra-annual and interannual variability of the control run with that of the greenhouse run suggests that, in many situations, it will be difficult to identify a greenhouse signal against the intrinsic natural variability of the climatic system.  相似文献   

9.
Abstract

As part of a study on the effects of climatic variability and change on the sustainability of agriculture in Alberto, the modelling performance of the second‐generation Canadian Climate Centre GCM (general circulation model) is examined. For the region in general, the simulation of 1 × CO2 mean temperature is generally better than that for mean precipitation, and summer is the season best modelled for each variable. At the scale of individual grid squares, DJF (December, January, February) (temperature) and JJA (June, July, August) (precipitation) are the seasons best modelled. The GCM‐simulated increases in mean annual temperature resulting from a doubling of CO2 are of the order of 5 to 6°C in the Prairie region, with much of this increase resulting from substantial warming in the winter and spring. Increases in mean annual precipitation are of the order of 50 to 150 mm (changes of +5 to +15%), with the greatest changes again occurring in winter and spring. As far as the limited GCM run durations allow, temperature and precipitation variance generally show no significant changes from a 1 × CO2 to a 2 × CO2 climate. Increased precipitation in winter and spring does not result in greater snow accumulations owing to the magnitude of warming; and significant decreases in soil moisture content occur in summer and fall. The resulting effects on the growing season and moisture regime have the potential to affect agricultural practices in the area.  相似文献   

10.
The climate response to an increase in carbon dioxide and sea surface temperatures is examined using the Météo-France climate model. This model has a high vertical resolution in the stratosphere and predicts the evolution of the ozone mixing ratio. This quantity is fully interactive with radiation and photochemical production and loss rates are accounted for. Results from a 5-year control run indicate a reasonable agreement with observed climatologies. A 5-year simulation is performed with a doubled CO2 concentration using, as lower boundary conditions, mean surface temperatures anomalies and sea ice limits predicted for the years 56–65 of a 100-year transient simulation performed at Hamburg with a global coupled atmosphere-ocean model. The perturbed simulation produces a global mean surface air warming of 1.4 K and an increase in global mean precipitation rate of 4%. Outside the high latitudes in the Northern Hemisphere, the model simulates a strong cooling in the stratosphere reaching 10 K near the stratopause. Temperature increases are noticed in the lower polar stratosphere of the Northern Hemisphere caused by an intensification in the frequency of sudden warmings in the perturbed simulation. The low and mid-latitude stratospheric cooling leads to an ozone column enhancement of about 5%. Other features present in similar studies are exhibited in the troposphere such as the stronger surface warming over polar regions of the Northern Hemisphere, the summer time soil moisture drying in mid-latitudes and the increase in high convective cloudiness in tropical regions.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil Correspondence to: JF Mahfouf  相似文献   

11.
Increasing concentrations of atmospheric CO2 and other greenhouse gases are expected to contribute to a global warming. This paper examines the potential implications of a climatic change corresponding to a doubling of atmospheric concentrations of CO2 on crop production opportunities throughout Ontario, a major food producing region in Canada. The climate is projected to become warmer and drier, but the extent of these shifts are expected to vary from region to region within Ontario. The effect of this altered climate on crop yields and the area of land capable of supporting specific crops varies according to region, soil quality and crop type. Most notable are the enhanced opportunities for grains and oilseeds in the northern regions, and the diminished production prospects for most crops in the most southerly parts of Ontario.  相似文献   

12.
A Local Climate Model (LCM) is described that can provide a high-resolution (10 km) simulation of climate resulting from a doubling of atmospheric CO2 concentrations. A canonicalregression function is used to compute the monthly temperature (mean of daily-maximum-temperature) and precipitation for any point, given a set of predictor variables. Predictor variables represent the influence of terrain, sea-surface temperature (SST), windfields, CO2 concentration, and solar radiation on climate. The canonical-regression function is calibrated and validated using empirical windfield, SST, and climate data from stations in the western U.S. To illustrate an application of the LCM, the climate of northern and central California is simulated for a doubled CO2 (600 ppmv) and a control scenario (300 ppmv CO2). Windfields and SSTs used to compute predictor variables are taken from general circulation model simulations for these two scenarios. LCM solutions indicate that doubling CO2 will result in a 3 C° increase in January temperature, a 2 C° increase in July temperature, a 16 mm (37%) increase in January precipitation, and a 3 mm (46%) increase in July precipitation.  相似文献   

13.
A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30°–50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models that instantaneous CO2 doubling simulations may not be analogous in all respects to simulations with slowly increasing CO2.A portion of this study is supported by the US Department of Energy as part of its Carbon Dioxide Research Program  相似文献   

14.
We discuss equilibrium changes in daily extreme surface air temperature and precipitation events in response to doubled atmospheric CO2, simulated in an ensemble of 53 versions of HadSM3, consisting of the HadAM3 atmospheric general circulation model (GCM) coupled to a mixed layer ocean. By virtue of its size and design, the ensemble, which samples uncertainty arising from the parameterisation of atmospheric physical processes and the effects of natural variability, provides a first opportunity to quantify the robustness of predictions of changes in extremes obtained from GCM simulations. Changes in extremes are quantified by calculating the frequency of exceedance of a fixed threshold in the 2 × CO2 simulation relative to the 1 × CO2 simulation. The ensemble-mean value of this relative frequency provides a best estimate of the expected change while the range of values across the ensemble provides a measure of the associated uncertainty. For example, when the extreme threshold is defined as the 99th percentile of the 1 × CO2 distribution, the global-mean ensemble-mean relative frequency of extremely warm days is found to be 20 in January, and 28 in July, implying that events occurring on one day per hundred under present day conditions would typically occur on 20–30 days per hundred under 2 × CO2 conditons. However the ensemble range in the relative frequency is of similar magnitude to the ensemble-mean value, indicating considerable uncertainty in the magnitude of the increase. The relative frequencies in response to doubled CO2 become smaller as the threshold used to define the extreme event is reduced. For one variable (July maximum daily temperature) we investigate this simulated variation with threshold, showing that it can be quite well reproduced by assuming the response to doubling CO2 to be characterised simply as a uniform shift of a Gaussian distribution. Nevertheless, doubling CO2 does lead to changes in the shape of the daily distributions for both temperature and precipitation, but the effect of these changes on the relative frequency of extreme events is generally larger for precipitation. For example, around one-fifth of the globe exhibits ensemble-mean decreases in time-averaged precipitation accompanied by increases in the frequency of extremely wet days. The ensemble range of changes in precipitation extremes (relative to the ensemble mean of the changes) is typically larger than for temperature extremes, indicating greater uncertainty in the precipitation changes. In the global average, extremely wet days are predicted to become twice as common under 2 × CO2 conditions. We also consider changes in extreme seasons, finding that simulated increases in the frequency of extremely warm or wet seasons under 2 × CO2 are almost everywhere greater than the corresponding increase in daily extremes. The smaller increases in the frequency of daily extremes is explained by the influence of day-to-day weather variability which inflates the variance of daily distributions compared to their seasonal counterparts.  相似文献   

15.
Numerous studies have shown that increased atmospheric CO2 concentration is one of the most important factors altering land water balance. In this study, we investigated the effects of increased CO2 on global land water balance using the dataset released by the Coupled Model Intercomparison Project Phase 5 derived from the Canadian Centre for Climate Modelling and Analysis second-generation Earth System Model. The results suggested that the radiative effect of CO2 was much greater than the physiological effect on the water balance. At the model experiment only integrating CO2 radiative effect, the precipitation, evapotranspiration (ET) and runoff had significantly increased by 0.37, 0.12 and 0.31 mm year?2, respectively. Increases of ET and runoff caused a significant decrease of soil water storage by 0.05 mm year?2. However, the results showed increases of runoff and decreases of precipitation and ET in response to the CO2 fertilisation effect, which resulted into a small, non-significant decrease in the land water budget. In the Northern Hemisphere, especially on the coasts of Greenland, Northern Asia and Alaska, there were obvious decreases of soil water responding to the CO2 radiative effect. This trend could result from increased ice–snow melting as a consequence of warmer surface temperature. Although the evidence suggested that variations in soil moisture and snow cover and vegetation feedback made an important contribution to the variations in the land water budget, the effect of other factors, such as aerosols, should not be ignored, implying that more efforts are needed to investigate the effects of these factors on the hydrological cycle and land water balance.  相似文献   

16.
 Recent improvements to the Hadley Centre climate model include the introduction of a new land surface scheme called “MOSES” (Met Office Surface Exchange Scheme). MOSES is built on the previous scheme, but incorporates in addition an interactive plant photosynthesis and conductance module, and a new soil thermodynamics scheme which simulates the freezing and melting of soil water, and takes account of the dependence of soil thermal characteristics on the frozen and unfrozen components. The impact of these new features is demonstrated by comparing 1×CO2 and 2×CO2 climate simulations carried out using the old (UKMO) and new (MOSES) land surface schemes. MOSES is found to improve the simulation of current climate. Soil water freezing tends to warm the high-latitude land in the northern Hemisphere during autumn and winter, whilst the increased soil water availability in MOSES alleviates a spurious summer drying in the mid-latitudes. The interactive canopy conductance responds directly to CO2, supressing transpiration as the concentration increases and producing a significant enhancement of the warming due to the radiative effects of CO2 alone. Received: 16 March 1998 / Accepted: 4 August 1998  相似文献   

17.
 We assess two parametrisations of sea-ice in a coupled atmosphere–mixed layer ocean–sea-ice model. One parametrisation represents the thermodynamic properties of sea-ice formation alone (THERM), while the other also includes advection of the ice (DYN). The inclusion of some sea-ice dynamics improves the model's simulation of the present day sea-ice cover when compared to observations. Two climate change scenarios are used to investigate the effect of these different parametrisations on the model's climate sensitivity. The scenarios are the equilibrium response to a doubling of atmospheric CO2 and the response to imposed glacial boundary conditions. DYN produces a smaller temperature response to a doubling of CO2 than THERM. The temperature response of THERM is more similar to DYN in the glacial case than in the 2×CO2 case which implies that the climate sensitivity of THERM and DYN varies with the nature of the forcing. The different responses can largely be explained by the different distribution of Southern Hemisphere sea-ice cover in the control simulations, with the inclusion of ice dynamics playing an important part in producing the differences. This emphasises the importance of realistically simulating the reference climatic state when attempting to simulate a climate change to a prescribed forcing. The simulated glacial sea-ice cover is consistent with the limited palaeodata in both THERM and DYN, but DYN simulates a more realistic present day sea-ice cover. We conclude that the inclusion of simple ice dynamics in our model increases our confidence in the simulation of the anomaly climate. Received: 24 May 2000 / Accepted: 25 October 2000  相似文献   

18.
 Using output made with the National Center for Atmospheric Research (NCAR) Community Climate Model Version 1 (CCM1), the characteristics of blocking events over the Northern Hemisphere in a ten-year present day control simulation with a CO2 concentration of 330 ppm were compared to those in a previously analyzed observational three-year climatology. The characteristics of blocking events in a double present-day CO2 concentration simulation were then compared to those in the control simulation in order to evaluate how these characteristics might change in an increased CO2 atmosphere. The results demonstrated that in the Northern Hemisphere the CCM1 correctly simulated many characteristics of blocking events such as average annual number of occurrences, annual variations is size and intensity, and preferred formation regions. A more detailed analysis (i.e., by region and season) revealed some differences between the CCM1 and observed blocking events for characteristics such as mean frequency of occurrence, intensity, size and duration. In addition, the model failed to capture adequately the occurrence of blocking events over the western Asian continent. A comparison of the double CO2 concentration run to the control showed that, in general, blocking events were more persistent and weaker, but of similar size in the increased CO2 atmosphere. Also, some statistically significant regional and seasonally dependent changes were found in the frequency of occurrence, duration, and intensity. Finally, a correlation between block size and intensity, significant at the 99% confidence level, was found in each climatology. This result is similar to a correlation found in the analysis of observations. Received: 8 May 1995 / Accepted: 20 September 1996  相似文献   

19.
Regional climate changes as simulated in time-slice experiments   总被引:7,自引:0,他引:7  
Three 30 year long simulations have been performed with a T42 atmosphere model, in which the sea-surface temperature (SST) and sea-ice distribution have been taken from a transient climate change experiment with a T21 global coupled ocean-atmosphere model. In this so-called time-slice experiment, the SST values (and the greenhouse gas concentration) were taken at present time CO2 level, at the time of CO2 doubling and tripling.The annual cycle of temperature and precipitation has been studied over the IPCC regions and has been compared with observations. Additionally the combination of temperature and precipitation change has been analysed. Further parameters investigated include the difference between daily minimum and maximum temperature, the rainfall intensity and the length of droughts.While the regional simulation of the annual cycle of the near surface temperature is quite realistic with deviations rarely exceeding 3 K, the precipitation is reproduced to a much smaller degree of accuracy.The changes in temperature at the time of CO2 doubling amount to only 30–40% of those at the 3 * CO2 level and show hardly any seasonal variation, contrary to the 3 * CO2 experiment. The comparatively small response to the CO2 doubling can be attributed to the cold-start of the simulation, from which the SST has been extracted. The strong change in the seasonality cannot be explained by internal fluctuations and cold start alone, but has to be caused by feedback mechanisms. Due to the delay in warming caused by the transient experiment, from which the SST has been derived, the 3 * CO2 experiment can be compared to the CO2 doubling studies performed with mixed-layer models.The precipitation change does not display a clear signal. However, an increase of the rain intensity and of longer dry periods is simulated in many regions of the globe.The changes in these parameters as well as the combination of temperature- and precipitation change and the changes in the daily temperature range give valuable hints, in which regions observational studies should be intensified and under which aspects the observational data should be evaluated.  相似文献   

20.
Assuming a doubling of the atmospheric CO2 concentration, parameters of an empirical formula for calculating the daily net terrestrial radiation under the climatic conditions of Belgium are determined. The developed method takes into account information yielded by climate models about the CO2 impacts. Annual regimes of the energy-balance components are calculated for a drainage basin in Belgium. A daily step conceptual hydrological model (developed at the Royal Meteorological Institute of Belgium) was run to estimate the effective evapotranspiration and the soil moisture in the 2 × CO2 case; results of this simulation are compared with the present-day conditions.This research was supported by a Commission of the European Communities Grant [CLI-104B(RS)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号