首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing models for the evolution of sunspots and sunspot groups, describing the subsurface structure of the magnetic fields and their interactions with the convective motions, are briefly reviewed. It is shown that they are generally unable to account for the most recent data concerning the relationship between the large-scale solar magnetic field structures and the magnetic fields of active regions. In particular, it is shown that the former do not arise directly from the decay of the latter, as required by the Babcock model and all other models based on it. Other observations which are not adequately explained by current models are also cited.A new model is put forward based on the expulsion of toroidal magnetic flux by the dominant (i.e. giant) cells of the convection zone. The flux expelled above these cells forms the large-scale field and thus the configuration of this field provides a clue to the structure of the giant cell patterns. The flux expelled below the cells becomes twisted into a rope as in the Babcock model but a loop or stitch forms only in the region of upflow of the giant cells. The interaction of this loop with intermediate-sized cells as it rises to the surface determines the configuration and extent of the active region which appears at the surface. The compatibility of the model with other observations is discussed and its implications for theories of the solar cycle are noted.  相似文献   

2.
Filippov  B.  Koutchmy  S. 《Solar physics》2002,208(2):283-295
Recent EUV observations reveal that the `image' of the prominence overlaying coronal emission sometimes suddenly changes from absorption of EUV radiation to emission during the eruptive phase. This change reveals fast heating of the plasma within the prominence. We propose a kinetic mechanism of heating the fluid particles that transforms magnetic energy of the pre-eruptive magnetic configuration stored in the filament electric current into heat through collision processes of counteracting flows. The shape of the flux that the filament is made of should include upward concave segments to provide the counter flows within the erupting prominence. A typical twisted flux rope easily meets this requirement. Gas dynamic calculations are offered in addition to permit a quantitative evaluation of the relevant parameters and their time variations.  相似文献   

3.
Aurass  H.  Vršnak  B.  Hofmann  A.  Rudžjak  V. 《Solar physics》1999,190(1-2):267-293
We analyze radio observations, magnetograms and extrapolated field line maps, Hα filtergrams, and X-ray observations of two flare events (6 February 1992 in AR 7042 and 25 October 1994 in AR 7792) and study properties, evolution and energy release signatures of sigmoidal loop systems. During both events, the loop configuration seen in soft X-ray (SXR) images changes from a preflare sigmoidal shape to a relaxed post-flare loop system. The underlying magnetic field system consists of a quadrupolar configuration formed by a sheared arcade core and a remote field concentration. We demonstrate two possibilities: a sigmoidal SXR pattern can be due to a single continuous flux tube (the 1992 event). Alternatively, it can be due to a set of independent loops appearing like a sigmoid (the 1994 event). In both cases, the preflare and post-flare loops can be well reproduced by a linear force-free field and potential field, respectively, computed using preflare magnetograms. We find that thermal and non-thermal flare energy release indicators of both events become remarkably similar after applying spatial and temporal scale transformations. Using the spatial scaling between both events we estimated that the non-thermal energy release in the second event liberated about 1.7 times more energy per unit volume. A two-and-a-half times faster evolution indicates that the rate of the energy release per unit volume is more than four times higher in this event. A coronal type II burst reveals ignition and propagation of a coronal shock wave. In contrast, the first event, which was larger and released about a 10 times more energy during the non-thermal phase, was associated with a CME, but no type II burst was recorded. During both events, in addition to the two-ribbon flare process an interaction was observed between the flaring arcade and an emerging magnetic flux region of opposite polarity next to the dominant leading sunspot. The arcade flare seems to stimulate the reconnection process in an `emerging flux-type' configuration, which significantly contributes to the energy release. This regime is characterized by the quasiperiodic injection of electron beams into the surrounding extended field line systems. The repeated beam injections excite pulsating broadband radio emission in the decimetric-metric wavelength range. Each radio pulse is due to a new electron beam injection. The pulsation period (seconds) reflects the spatial scale of the emerging flux-type field configuration. Since broadband decimetric-metric radio pulsations are a frequent radio flare phenomenon, we speculate that opposite-polarity small-scale flux intrusions located in the vicinity of strong field regions may be an essential component of the energy release process in dynamic flares.  相似文献   

4.
In the present paper we present the results of measurement of magnetic fields in some sunspots at different heights in the solar atmosphere, based on simultaneous optical and radio measurements. The optical measurements were made by traditional photographic spectral observations of Zeeman splitting in a number of spectral lines originating at different heights in the solar photosphere and chromosphere. Radio observations of the spectra and polarization of the sunspot - associated sources were made in the wavelength range of 2–4 cm using large reflector-type radio telescope RATAN-600. The magnetic field penetrating the hot regions of the solar atmosphere were found from the shortest wavelength of generation of thermal cyclotron emission (presumably in the third harmonic of electron gyrofrequency). For all the eight cases under consideration we have found that magnetic field first drops with height, increases from the photosphere to lower chromosphere, and then decreases again as we proceed to higher chromosphere and chromosphere-corona transition region. Radio measurements were found to be well correlated with optical measurements of magnetic fields for the same sunspot. An alternative interpretation implies that different lines used for magnetic field measurements refer to different locations on the solar surface. If this is the case, then the inversion in vertical gradients of magnetic fields may not exist above the sunspots. Possible sources of systematic and random errors are also discussed.  相似文献   

5.
We present a new approach to the theory of large-scale solar eruptive phenomena such as coronal mass ejections and two-ribbon flares, in which twisted flux tubes play a crucial role. We show that it is possible to create a highly nonlinear three-dimensional force-free configuration consisting of a twisted magnetic flux rope representing the magnetic structure of a prominence (surrounded by an overlaying, almost potential, arcade) and exhibiting an S-shaped structure, as observed in soft X-ray sigmoid structures. We also show that this magnetic configuration cannot stay in equilibrium and that a considerable amount of magnetic energy is released during its disruption. Unlike most previous models, the amount of magnetic energy stored in the configuration prior to its disruption is so large that it may become comparable to the energy of the open field.  相似文献   

6.
We briefly discuss the observed features including the high flux density, short duration, narrow emission band, fast frequency drift, quasi-periodic oscillation and fast variation of polarized components, of 51 spike emission events observed at 2545/2645 MHz in the solar activity peak year, 1991 January–December, and carry out correlation analysis between these events and optical flares, magnetic field intensity and configuration of flare regions, and sunspot evolution types of active regions. In view of the fact that the observed and statistical characteristics of the spike emissions are very different from those of known types of solar radio burst and known solar radio components, we think that the spike emission in the peak years is probably a new type of radio burst excited by electron cyclotron maser instability under wave-particle resonance, or a new solar radio component.  相似文献   

7.
We examine a non-linear mechanism for a solar surge in which plasma regions of high electrical conductivity and macroscopic dimension can be rapidly accelerated without diffusion of magnetic field. The mechanism is suggested by Rust's observations, which show that surges occur near sunspots in regions of reversed magnetic polarity. For the purposes of numerical calculation, we replace the magnetic field near a polarity reversal in a sunspot by magnetic fields of current loops. The relaxation of the magnetic field generated by two antiparallel coaxial current loops in an incompressible plasma is traced by computer. The results suggest that plasma in the form of a vortex ring can be expelled at the Alfvén velocity from active solar regions.  相似文献   

8.
Pohjolainen  S. 《Solar physics》2003,213(2):319-339
A series of solar flares was observed near the same location in NOAA active region 8996 on 18–20 May 2000. A detailed analysis of one of these flares is presented where the emitting structures in soft and hard X-rays, EUV, H, and radio at centimeter wavelengths are compared. Hard X-rays and radio emission were observed at two separate loop footpoints, while soft X-rays and EUV emission were observed mainly above the nearby positive polarity region. The flare was confined although the observed type III bursts at the time of the flare maximum indicate that some field lines were open to the corona. No flux emergence was evident but moving magnetic features were observed around the sunspot region and within the positive polarity (plage) region. We suggest that the flaring was due to loop–loop interactions over the positive polarity region, where accelerated electrons gained access to the two separate loop systems. The repeated radio flaring at the footpoint of one loop was visible because of the strong magnetic fields near the large sunspot region while at the footpoint of the other loop the electrons could precipitate and emit in hard X-rays. The simultaneous emission and fluctuations in radio and X-rays – in two different loop ends – further support the idea of a single acceleration site at the loop intersection.  相似文献   

9.
Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME.  相似文献   

10.
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-\(V\) map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.  相似文献   

11.
Agalakov  B. V.  Ledenev  V. G.  Lubyshev  B. I.  Nefedyev  V. P.  Yazev  S. A.  Zubkova  G. N.  Kerdraon  A.  Urbarz  H. W. 《Solar physics》1997,173(2):305-318
Based on observations from the Siberian solar radio telescope, and invoking data from other observatories, we investigate preflare changes in the sunspot and floccular sources of radio emission and the development of an importance 2N flare in the chromosphere and corona in the active region on August 23, 1988.It has been ascertained that preflare changes became observable six hours prior to the flare onset and manifested themselves in intense flux fluctuations above the sunspot and in an enhancement of the source emission flux above the flocculus.It is shown that the flare onset is associated with a newly emerged magnetic flux in the form of a pore near the filament and with the appearance of radio sources above the filament. The flare was accompanied by type III radio bursts and a noise storm at meter wavelengths. Coronal mass ejection parameters are estimated from type III burst observations.  相似文献   

12.
We study a model of particle acceleration coupled with an MHD model of magnetic reconnection in unstable twisted coronal loops. The kink instability leads to the formation of helical currents with strong parallel electric fields resulting in electron acceleration. The motion of electrons in the electric and magnetic fields of the reconnecting loop is investigated using a test-particle approach taking into account collisional scattering. We discuss the effects of Coulomb collisions and magnetic convergence near loop footpoints on the spatial distribution and energy spectra of high-energy electron populations and possible implications on the hard X-ray emission in solar flares.  相似文献   

13.
The evolution of two adjacent bipolar sunspot groups is studied using Debrecen full-disc, white-light photoheliograms and H filtergrams as well as Meudon magnetograms. The proper motions of the principal preceding spots of both groups show quite similar patterns; the spots move along almost parallel tracks and change the direction of their motion on the same day at almost the same heliographic longitude. Also, three simultaneous emergences of magnetic flux were observed in both groups. These observations support the idea that these adjacent sunspot groups were magnetically linked below the photosphere. Matching the extrapolated magnetic field lines with the chromospheric fibril structure appears to be different in the two groups since they indicate quite different model solutions for each group, i.e., a near-potential magnetic field configuration in the older group (1) and a twisted force-free field configuration in the younger group (2). The latter configuration could be created by a considerable twist of the main bunch of flux tubes in Group 2, which is reflected in the relative sunspot motions. It is also showed how this twist contributed to the formation of a filament between the two groups.  相似文献   

14.
We analyze the multiwavelength observations of an M2.9/1N flare that occurred in the active region (AR) NOAA 11112 in the vicinity of a huge filament system on 16 October 2010. SDO/HMI magnetograms reveal the emergence of a bipole (within the existing AR) 50 hours prior to the flare event. During the emergence, both the positive and negative sunspots in the bipole show translational as well as rotational motion. The positive-polarity sunspot shows significant motion/rotation in the south-westward/clockwise direction, and we see continuously pushing/sliding of the surrounding opposite-polarity field region. On the other hand, the negative-polarity sunspot moves/rotates in the westward/anticlockwise direction. The positive-polarity sunspot rotates ≈?70° within 30 hours, whereas the one with negative polarity rotates ≈?20° within 10 hours. SDO/AIA 94 Å EUV images show the emergence of a flux tube in the corona, consistent with the emergence of the bipole in HMI. The footpoints of the flux tube were anchored in the emerging bipole. The initial brightening starts at one of the footpoints (western) of the emerging loop system, where the positive-polarity sunspot pushes/slides towards a nearby negative-polarity field region. A high speed plasmoid ejection (speed ≈?1197 km?s?1) was observed during the impulsive phase of the flare, which suggests magnetic reconnection of the emerging positive-polarity sunspot with the surrounding opposite-polarity field region. The entire AR shows positive-helicity injection before the flare event. Moreover, the newly emerging bipole reveals the signature of a negative (left-handed) helicity. These observations provide unique evidence of the emergence of twisted flux tubes from below the photosphere to coronal heights, triggering a flare mainly due to the interaction between the emerging positive-polarity sunspot and a nearby negative-polarity sunspot by the shearing motion of the emerging positive sunspot towards the negative one. Our observations also strongly support the idea that the rotation can most likely be attributed to the emergence of twisted magnetic fields, as proposed by recent models.  相似文献   

15.
We review recent progress on our understanding of radio emission from solar flares and coronal mass ejections (CMEs) with emphasis on those aspects of the subject that help us address questions about energy release and its properties, the configuration of flare?–?CME source regions, coronal shocks, particle acceleration and transport, and the origin of solar energetic particle (SEP) events. Radio emission from electron beams can provide information about the electron acceleration process, the location of injection of electrons in the corona, and the properties of the ambient coronal structures. Mildly relativistic electrons gyrating in the magnetic fields of flaring loops produce radio emission via the gyrosynchrotron mechanism, which provides constraints on the magnetic field and the properties of energetic electrons. CME detection at radio wavelengths tracks the eruption from its early phase and reveals the participation of a multitude of loops of widely differing scale. Both flares and CMEs can ignite shock waves and radio observations offer the most robust tool to study them. The incorporation of radio data into the study of SEP events reveals that a clear-cut distinction between flare-related and CME-related SEP events is difficult to establish.  相似文献   

16.
Sunspot number, sunspot area, and radio flux at 10.7 cm are the indices which are most frequently used to describe the long‐term solar activity. The data of the daily solar full‐disk magnetograms measured at Mount Wilson Observatory from 19 January 1970 to 31 December 2012 are utilized together with the daily observations of the three indices to probe the relationship of the full‐disk magnetic activity respectively with the indices. Cross correlation analyses of the daily magnetic field measurements at Mount Wilson observatory are taken with the daily observations of the three indices, and the statistical significance of the difference of the obtained correlation coefficients is investigated. The following results are obtained: (1) The sunspot number should be preferred to represent/reflect the full‐disk magnetic activity of the Sun to which the weak magnetic fields (outside of sunspots) mainly contribute, the sunspot area should be recommended to represent the strong magnetic activity of the Sun (in sunspots), and the 10.7 cm radio flux should be preferred to represent the full‐disk magnetic activity of the Sun (both the weak and strong magnetic fields) to which the weak magnetic fields mainly contribute. (2) On the other hand, the most recommendable index that could be used to represent/reflect the weak magnetic activity is the 10.7 cm radio flux, the most recommendable index that could be used to represent the strong magnetic activity is the sunspot area, and the most recommendable index that could be used to represent the full‐disk magnetic activity of the Sun is the 10.7cm radio flux. Additionally, the cycle characteristics of the magnetic field strengths on the solar disk are given. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We aim to explore the unusual flare event which took place in the solar atmosphere on September 22, 2011 and propose its theoretical interpretation. We analyze the process of energy release in the twisted magnetic flux-rope associated with the event, assuming the excitation of anomalous resistivity of turbulent plasma in the rope, and solve numerically nonlinear two-dimensional (2D) magnetohydrodynamic (MHD) equations. The analytical approach to the problem of flare-energy release show that the conditions of excitation of anomalous resistivity can be satisfied in the twisted magnetic flux-rope whose parameters fits well the SDO observational findings. One of the most remarkable properties of the flare phenomenon under the present consideration was the permanent sucking of the coronal/chromospheric gas from the very remote points to the flare filament, i.e. into the low-lying hot region of the flare energy release. This unusual phenomenon has been simulated by numerical methods in terms of ideal MHD. The numerical results reveal that siphon back-flow exhibits characteristic spatial signatures which mimic the observational findings. The flare-energy release region, as a part of strongly twisted magnetic flux-rope, is able to work as a vacuum-cleaner.  相似文献   

18.
Walsh  R.W.  Galtier  S. 《Solar physics》2000,197(1):57-73
X-ray and EUV observations of the solar corona reveal a very complex and dynamic environment where there are many examples of structures that are believed to outline the Sun's magnetic field. In this present study, the authors investigate the temporal response of the temperature, density and pressure of a solar coronal plasma contained within a magnetic loop to an intermittent heating source generated by Ohmic dissipation. The energy input is produced by a one-dimensional MHD flare model. This model is able to reproduce some of the statistical properties derived from X-ray flare observations. In particular the heat deposition consists of both a sub-flaring background and much larger, singular dissipative events. Two different heating profiles are investigated: (a) the spatial average of the square of the current along the loop and (b) the maximum of the square of the current along the loop. For case (a), the plasma parameters appear to respond more to the global variations in the heat deposition about its average value rather than to each specific event. For case (b), the plasma quantities are more intermittent in their evolution. In both cases the density response is the least bursty signal. It is found that the time-dependent energy input can maintain the plasma at typical coronal temperatures. Implications of these results upon the latest coronal observations are discussed.  相似文献   

19.
The radio emission from the solar corona is related to the configuration of the inner atmosphere. By studying the Sun at multiple frequencies, different layers of plasma in solar atmosphere are probed. We use the Mauritius Radio Telescope. The quiet Sun period, difference maps using synthesized 1D maps reveal a certain regular feature, the origin of which is not thoroughly understood and which is attributed to the solar differential rotation. For the active Sun period, the coronal emission is linked to the magnetic field configuration originating from the inner atmosphere. As expected, a strong correlation exists between the MRT 151 MHz and Nancay 164 MHz radio emission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A number of fundamental questions as regards the physical nature of sunspots are formulated. In order to answer these questions, we apply the model of a round-shaped unipolar sunspot with a lower boundary consisting of cool plasma and with strong magnetic field at the depth of about 4 Mm beneath the photosphere, in accordance with the data of local helioseismology and with certain physically sound arguments (the shallow sunspot model). The magnetic configuration of a sunspot is assumed to be close to the observed one and similar to the magnetic field of a round solenoid of the appropriate size. The transverse (horizontal) and longitudinal (vertical) equilibria of a sunspot were calculated based on the thermodynamic approach and taking into account the magnetic, gravitational, and thermal energy of the spot and the pressure of the environment. The dependence of the magnetic field strength in the sunspot center, B 0, on the radius of the sunspot umbra a is derived theoretically for the first time in the history of sunspot studies. It shows that the magnetic field strength in small spots is about 700 Gauss (G) and then increases monotonically with a, tending asymptotically to a limit value of about 4000 G. This dependence, B 0(a) includes, as parameters, the gravity acceleration on the solar surface, the density of gas in the photosphere, and the ratio of the radius of the spot (including penumbra), a p, to the radius of its umbra a. It is shown that large-scale subsurface flows of gas in the sunspot vicinity, being the consequence but not the cause of sunspot formation, are too weak to contribute significantly to the pressure balance of the sunspot. Stability of the sunspot is provided by cooling of the sunspot plasma and decreasing of its gravitational energy due to the vertical redistribution of the gas density when the geometric Wilson depression of the sunspot is formed. The depth of a depression grows linearly with B 0, in contrast to the quadratic law for the magnetic energy. Therefore, the range of stable equilibria turns out to be limited: large spots, with radius a larger than some limit value (about 12–18 Mm, depending on the magnetic field configuration), are unstable. It explains the absence of very large spots on the Sun and the appearance of light bridges in big spots that divide the spot into a few parts. The sunspots with B 0≈2.6÷2.7 kilogauss (kG) and a≈5 Mm are most stable. For these spots, taken as a single magnetic structure, the period of their vertical eigen oscillations is minimal and amounts, according to the model, to 10–12 hours. It corresponds well to the period derived from the study of long-term oscillations of sunspots using SOHO/MDI data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号