首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
The coastal Changle-Nan’ao tectonic zone of SE China contains important geological records of the Late Mesozoic orogeny and post-orogenic extension in this part of the Asian continent. The folded and metamorphosed T3–J1 sedimentary rocks are unconformably overlain by Early Cretaceous volcanic rocks or occur as amphibolite facies enclaves in late Jurassic to early Cretaceous gneissic granites. Moreover, all the metamorphic and/or deformed rocks are intruded by Cretaceous fine-grained granitic plutons or dykes. In order to understand the orogenic development, we undertook a comprehensive zircon U–Pb geochronology on a variety of rock types, including paragneiss, migmatitic gneiss, gneissic granite, leucogranite, and fine-grained granitoids. Zircon U–Pb dating on gneissic granites, migmatitic gneisses, and leucogranite dyke yielded a similar age range of 147–135 Ma. Meanwhile, protoliths of some gneissic granites and migmatitic gneisses are found to be late Jurassic magmatic rocks (ca. 165–150 Ma). The little deformed and unmetamorphosed Cretaceous plutons or dykes were dated at 132–117 Ma. These new age data indicate that the orogeny lasted from late Jurassic (ca. 165 Ma) to early Cretaceous (ca. 135 Ma). The tectonic transition from the syn-kinematic magmatism and migmatization (147–136 Ma) to the post-kinematic plutonism (132–117 Ma) occurred at 136–132 Ma.  相似文献   

2.
The Miao'ershan uranium ore district is one of the most important granite-hosted uranium producers in South China. There are several Triassic granite plutons in the Miao'ershan batholith, but uranium ore deposits mainly occur within the Douzhashan granitic body. Precise zircon U–Pb dating indicated that these Triassic granite plutons were emplaced during 204 to 215 Ma. The Douzhashan U-bearing granite lies in the central part of the Miao'ershan batholith, and has higher U contents (8.0 to 26.1 ppm, average 17.0 ppm) than the nearby Xiangcaoping granite (5.0 to 9.3 ppm, average 7.0 ppm) and the Yangqiaoling granite (6.4 to 18.3 ppm, average 11.5 ppm) in the south part of the batholith. The Douzhashan granite is composed of medium-grained two-mica granite, whereas the Xiangcaoping and Yangqiaoling granites are composed of porphyritic biotite granite. Both the Xiangcaoping and Douzhashan granites have high A/CNK ratios (> 1.10), high (87Sr/86Sr)i ratios (> 0.720) and low εNd(t) values (− 11.3 to − 10.4), suggesting that they belong to strongly peraluminous S-type granites. The Douzhashan granite has low CaO/Na2O ratios, high Rb/Sr and Rb/Ba ratios, indicating a partial melting origin of clay-rich pelitic rocks. In contrast, the Xiangcaoping granite formed from clay-poor psammite-derived melt. The Yangqiaoling granite shows different geochemical characteristics with the Douzhashan and Xiangcaoping granites, indicating a different magma source. The Yangqiaoling granite has higher εNd(t) of − 9.4 to − 8.3 and variable A/CNK values from 0.98 to 1.19, suggesting a mixture source of meta-sedimentary rocks and meta-igneous rocks. Crystallization fractionation is not the main mechanism for U enrichment in the Douzhashan granite. We suggest that U-rich pelitic rock sources may be the key factor to generate peraluminous U-bearing granites in South China. Searching for those granites which are reduced, strongly peraluminous and were derived from U-rich pelitic rocks, is the most effective way for exploring granite-hosted U deposits.  相似文献   

3.
We report in the paper integrated analyses of in situ zircon U–Pb ages, Hf–O isotopes, whole-rock geochemistry and Sr–Nd isotopes for the Longlou granite in northern Hainan Island, southeast China. SIMS zircon U–Pb dating results yield a crystallization age of ∼73 Ma for the Longlou granite, which is the youngest granite recognized in southeast China. The granite rocks are characterized by high SiO2 and K2O, weakly peraluminous (A/CNK = 1.04–1.10), depletion in Sr, Ba and high field strength elements (HFSE) and enrichment in LREE and large ion lithophile elements (LILE). Chemical variations of the granite are dominated by fractional crystallization of feldspar, biotite, Ti–Fe oxides and apatite. Their whole-rock initial 87Sr/86Sr ratios (0.7073–0.7107) and εNd(t) (−4.6 to −6.6) and zircon εHf(t) (−5.0 to 0.8) values are broadly consistent with those of the Late Mesozoic granites in southeast China coast. Zircon δ18O values of 6.9–8.3‰ suggest insignificant involvement of supracrustal materials in the granites. These granites are likely generated by partial melting of medium- to high-K basaltic rocks in an active continental margin related to subduction of the Pacific plate. The ca. 73 Ma Longlou granite is broadly coeval with the Campanian (ca. 80–70 Ma) granitoid rocks in southwest Japan and South Korea, indicating that they might be formed along a common Andean-type active continental margin of east–southeast Asia. Tectonic transition from the Andean-type to the West Pacific-type continental margin of southeast China likely took place at ca.70 Ma, rather than ca. 90–85 Ma as previously thought.  相似文献   

4.
The Baoshan Cu-polymetallic deposit is a recently discovered skarn deposit in the northern Lesser Xing’an Range, NE China. The orebodies are mainly hosted in the contact zone between granitic intrusions and Lower Cambrian dolomitic crystalline limestones or skarns. We present here zircon U–Pb and molybdenite Re–Os age data, whole-rock geochemistry, and zircon Hf isotopic data to constrain the geodynamic mechanisms of igneous activity and metallogenesis within the Baoshan Cu–polymetallic deposit. LA–ICP–MS zircon U–Pb dating suggests that a hornblende–quartz monzonite and porphyritic biotite granite were emplaced at 252.45 ± 0.70 Ma and 251.10 ± 0.98 Ma, respectively. Molybdenite separated from ore-bearing quartz veins or skarn-type ores yields a weighted mean model age of 250.3 ± 3.4 Ma, which coincide with the emplacement of the igneous rocks. These data suggest that the Late Permian-Early Triassic magmatic and mineralization event led to the formation of the Baoshan Cu–polymetallic deposit. Granitic intrusions are closely associated with this mineralization and have high contents of SiO2 (60.90–68.98 wt.%), Al2O3 (15.15–16.98 wt.%) and K2O (2.77–4.17 wt.%), with A/CNK ratios of 0.86–0.96. These granites are classified as metaluminous and high-K calc-alkaline I-type granites, and are enriched in Rb, Th, U, and K, and depleted in Nb, Ta, P, and Ti. Moreover, Moreover, the hornblende–quartz monzonite and porphyritic biotite granite have geochemical characteristics similar to adakites and island arc calc-alkaline rocks, respectively. In situ zircon Hf isotope data on the hornblende–quartz monzonite samples show εHf(t) values from +0.1 to +3.1, and porphyritic biotite granite samples exhibit heterogeneous εHf(t) values from −5.4 to +1.1. The geochemical and isotopic data for the Baoshan intrusions indicate that the Late Permian–Early Triassic continental–continental collision caused over thickening and delamination of the lower crust. Partial melting of delaminated lower crust formed the primary adakitic magmas, which may have reacted with surrounding mantle peridotite during ascent. Hornblende–quartz monzonite was formed by the emplacement of the adakitic magmas, whereas the formation of the porphyritic biotite granite was caused by the mixing of adakitic magmas with ancient crustal materials during ascent. Moreover, ore-forming materials were typically derived from the adakitic magmas with high oxygen fugacity, which incorporated significant amounts of ore-forming elements. Based on the regional geological history and the new geochemical and isotopic data from intrusions, we suggest that diagenesis and mineralization of the Baoshan Cu–polymetallic deposit took place in a transitional tectonic setting from collisional orogeny to extension, after collision of the North China Plate and Songnen Block, during the latter stages of the Xingmeng orogeny.  相似文献   

5.
The Sergipano Belt is the outcome of collision between the Pernambuco–Alagoas Massif and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Field relationships and U–Pb geochronology of granites intruded in garnet micaschists of the Macururé Domain are used to constrain the main collisional event (D2) in the belt. The granites are divided into two groups, the pre-collisional granites (pre- to early-D2) and the syn-collisional granites (syn- to tardi-D2), the latter were emplaced as sheets along the S2 axial plane foliation or they were collected at the hinge zones of F2 folds. A U–Pb SHRIMP zircon age of 628 ± 12 Ma was obtained for the pre-collisional Camará tonalite. Two U–Pb TIMS titanite ages were obtained for the syn-collisional granites, 584 ± 10 Ma for the Angico granite and 571 ± 9 Ma for the Pedra Furada granite, and these ages are close to the garnet-whole rock Sm–Nd isochron of 570 Ma found for the peak of metamorphism in the Sergipano Belt. The ages of the Camará tonalite (628 Ma) and the Pedra Furada granite (571 Ma) mark respectively the maximum age for beginning of the D2 event and minimum age for the end in the Macururé Domain. Using these ages, the main Neoproterozoic D2 collisional event has been in operation in the Sergipano Belt for at least 57 million years. Correlation with coeval granitoids farther north in the Borborema Province indicate that while in the Sergipano Belt the syn-D2 granites (ca. 590–570 Ma) were emplaced under compression, in the Borborema Province they emplaced under extensional conditions related to regional strike-slip shear zones. These contrasting emplacement settings for contemporaneous Neoproterozoic granitoids are explained by a combination of continent–continent collision and extrusion tectonics.  相似文献   

6.
The Lower Ugab and Goantagab structural domains are located at the junction between the N–S trending Kaoko and the E–W trending Damara belts (NW Namibia), where Neoproterozoic metavolcano-sedimentary sequences were intruded by several syenitic/granitic plutons. We present here new U–Pb ages on zircon grains from the Voetspoor and Doros plutons. Together with petrological, geochemical and structural data we evaluate the timing of the deformation and relation to the geodynamics during the final stage of Gondwana amalgamation.The plutons are composed of three main rock types: hornblende quartz-syenite, syenodiorite and biotite granite. The two former are predominant and show genetic correlation such as magma mingling structures and similar geochemical signatures. The biotite granite occurs in the SW parts of the intrusions and clearly cuts the syenitic rocks. Although the plutons are mainly isotropic, the structures around them demonstrate that their intrusion occurred during a second deformation phase (D2) with a component of sinistral solid state rotation with respect to the wall rocks in response to D2 transpression. Four samples were dated using U–Pb SHRIMP methodology in single zircon grains. A hornblende monzodiorite from the Voetspoor pluton yielded an age of 534 ± 4.5 Ma. A hornblende monzonite from the Doros pluton produced an age of 528 ± 5 Ma. The biotite granite facies was sampled in the Doros intrusion and yielded an age of 530 ± 4.5 Ma. In addition, a granitic vein folded by D2 close to the northeastern contact of the Doros pluton with the encasing phyllites (Amis River Formation) was also dated, yielding an age of 533 ± 6 Ma. The data show that all granite–syenite from Doros and Voetspoor intrusions are contemporaneous and crystallized in the period between 539 and 522 Ma within the errors. D1–D2 deformational phases took place under greenschist facies (biotite zone) conditions and during D3 the metamorphic grade was slightly lower. We interpret that the plutons are coeval to peak metamorphism of the region (530–520 Ma) and that D2 and D3 sinistral transpressional phases are due to collision in the Damara Belt. The E–W compressional event and second metamorphic episode in the Kaoko Belt occurred between 580 and 560 Ma and are apparently unrelated to the thermo-tectonic evolution described here, although D1 might be partially related to this event. The sinistral transpressional D2 phase resulted probably from the position of the area considered at the junction between the belts, and not in the frontal Damara collision further to the east. This new interpretation is consistent with the Ar–Ar ages for the region (about 500 Ma), interpreted to reflect cooling of the orogen. The enrichment in LREE, K, Rb, Ba and Sr, and depletion in Nb of these basic to intermediate alkalic rocks could indicate that they partially derived from melting of a subcontinental lithospheric mantle that was affected by subduction and the granitic rock types represent lower crust contamination. We interpret that they could be related to heating in the mantle caused by asthenosphere influx in a zone of slab-breakoff during collision between Kalahari and Congo cratons.  相似文献   

7.
This work presents an integrated study of zircon U–Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic–felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093–0.7127, low εNd(t) values ranging from −5.6 to −5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have εHf(t) values ranging from −2.7 to 2.6 and model ages of 951–1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053–0.7058, εNd(t) values of 0.2–1.6 and corresponding T2DM of 1.0–1.1 Ga. Their zircon grains have εHf(t) values ranging from 3.2 to 6.1 and model ages of 774–911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065–0.7117, εNd(t) values from −5.7 to −1.9 and Nd model ages of 1.3–1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd–Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.  相似文献   

8.
Whole rock major and trace element and Sr-, Nd- and Hf-isotope data, together with zircon U-Pb, Hf- and O-isotope data, are reported for the Nb-Ta ore bearing granites from the Lingshan pluton in the Southeastern China, in order to trace their petrogenesis and related Nb-Ta mineralization. The Lingshan pluton contains hornblende-bearing biotite granite in the core and biotite granite, albite granite and pegmatite at the rim. In addition, numerous mafic microgranular enclaves occur in the Lingshan granites. Zircon SIMS U-Pb dating gives consistent crystallization ages of ca. 132 Ma for the Lingshan granitoids and enclaves, consistent with the Nb-Ta mineralization age of ∼132 Ma, indicating that mafic and felsic magmatism and Nb-Ta mineralization are coeval. The biotite granites contain hornblende, and are metaluminous to weakly peraluminous, with high initial 87Sr/86Sr ratios of 0.7071–0.7219, negative εNd(t) value of −5.9 to −0.3, εHf(t) values of −3.63 to −0.32 for whole rocks, high δ18O values and negative εHf(t) values for zircons, and ancient Hf and Nd model ages of 1.41–0.95 Ga and 1.23–1.04 Ga, indicating that they are I-type granites and were derived from partial melting of ancient lower crustal materials. They have variable mineral components and geochemical features, corresponding extensive fractionation of hornblende, biotite and feldspar, with minor fractionation of apatite. Existence of mafic microgranular enclaves in the biotite granites suggests a magma mixing/mingling process for the origin of the Lingshan granitoids, and mantle-derived mafic magmas provided the heat for felsic magma generation. In contrast, the Nb-Ta mineralized albite granites and pegmatites have distinct mineral components and geochemical features, which show that they are highly-fractionated granites with extensive melt and F-rich fluid interaction in the generation of these rocks. The fluoride-rich fluids induce the enrichment in Nb and Ta in the highly evolved melts. Therefore, we conclude that the Nb-Ta mineralization is the result of hydrothermal process rather than crystal fractionation in the Lingshan pluton, which provides a case to identify magmatic and hydrothermal processes and evaluate their relative importance as ore-forming processes.  相似文献   

9.
We present new data on the highly fractionated Late Triassic I-type Liyuantang granite, which is located in the middle segment of the South Qinling Subzone of central China and is associated with molybdenum mineralization. Zircon U–Pb dating indicates that the granite was emplaced at 210.1 ± 1.9 Ma, with a single zircon containing an inherited core that yielded an age of 449.8 ± 7.1 Ma. Magmatic zircons from the granite have εHf(t) values of − 4.0 to + 1.5, whereas the inherited zircon core has a εHf(t) value of − 5.3. Calculated Hf model ages of crust formation are indicative of substantial contributions from melting of Proterozoic crust that ranges in age from 1501 to 1155 Ma. The granite contains high concentrations of Si, Al, Na, and K, is enriched in Rb, Th, and U, has elevated Rb/Sr and Ga/Al ratios, and is depleted in Ti, Fe, Mn, Mg, Ca, and P, with significantly negative Eu anomalies (δEu = 0.33–0.50), similar to other highly fractionated I-type granites. These data indicate that the magmas that formed the Liyuantang pluton were produced during partial melting of Proterozoic garnet-absent quartz amphibolites. The magmas then fractionated apatite, feldspar, Ti-bearing phases, biotite, and hornblende prior to emplacement.Re–Os isotope analysis of molybdenite from the study area yields a mineralization age of 200.9 ± 6.2 Ma, suggesting that the Liyuantang molybdenum deposit formed during a previously unrecognized mineralization event. The present results, together with previous data, demonstrate that highly fractionated I-type granites associated with the second pulse of magmatism in the South Qinling subzone should be considered highly prospective for mineral exploration, focusing on Triassic–Early Jurassic granitoids.  相似文献   

10.
Late Silurian–early Devonian magmatism of the NW Junggar region in the Central Asian Orogenic Belt provides a critical geological record that is important for unraveling regional tectonic history and constraining geodynamic processes. In this study, we report results of Zircon U–Pb ages and systematic geochemical data for late Silurian–early Devonian largely granitic rocks in NW Junggar, aiming to constrain their emplacement ages, origin and geodynamic significance. The magmatism consists of a variety of mafic to felsic intrusions and volcanic rocks, e.g. adakitic granodiorite, K-feldspar granite, syenitic granite, gabbro and rhyrolite. U–Pb zircon ages suggest that the granitoids and gabbros were emplaced in the late Silurian–early Devonian (420–405 Ma). Adakitic granodiorites are calc-alkaline, characterized by high Sr (407–532 ppm), low Y (12.2–14.7 ppm), Yb (1.53–1.77 ppm), Cr (mostly < 8.00 ppm), Co (mostly < 11.0 ppm) and Ni (mostly < 4.10 ppm) and relatively high Sr/Y (31–42) ratios, analogous to those of modern adakites. K-feldspar granites and rhyolites are characterized by alkali- and Fe-enriched, with high Zr, Nb and Ga/Al ratios, geochemically similar to those of A-type granites. Syenitic granites show high alkaline (Na2O + K2O = 8.39–9.34 wt.%) contents, low Fe# values (0.73–0.80) and are weakly peraluminous (A/CNK = 1.00–1.07). Gabbros are characterized by low MgO (6.86–7.15 wt.%), Mg# (52–53), Cr (124–133 ppm) and Ni (84.7–86.6 ppm) contents. The geochemical characteristics of the gabbroic samples show affinity to both MORB- and arc-like sources. All granitoids have positive εNd(t) (+ 3.9 to + 6.9) and zircon εHf(t) (+ 9.8 to + 15.2) values and low initial 87Sr/86Sr ratios (0.7035–0.7043), with young TDM(Nd) (605–791 Ma) and TDM(Hf) (425–773 Ma) ages, suggesting significant addition of juvenile material. The adakitic granodiorites probably resulted from partial melting of mafic lower crust, leaving an amphibolite and garnet residue. The K-feldspar granites, rhyolites and syenitic granites probably formed from partial melting of the Xiemisitai mid-lower crust, while the gabbroic intrusion was probably generated by interactions between asthenospheric and metasomatized lithospheric mantle. Voluminous plutons of various types (adakites, A-type granites, I-type granites, and gabbros) formed during 420–405 Ma, and their isotopic data suggest significant additions of juvenile material. We propose that a slab roll-back model can account for the 420–405 Ma magmatic “flare up” in NW Junggar as well as an extensional setting.  相似文献   

11.
The newly discovered Yuanlingzhai porphyry molybdenum (Mo) deposit in southern Jiangxi province belongs to the group of Mo-only deposits in the Nanling region. The mineralization developed at contact zones between the Yuanlingzhai granite porphyry and Neoproterozoic metamorphic rocks of the Xunwu Formation. Precise LA–MC–ICPMS zircon U–Pb dating of the Yuanlingzhai porphyry, as well as the adjacent western Keshubei and eastern Keshubei granites, yielded ages of 165.49 ± 0.59 Ma, 159.68 ± 0.43 Ma, and 185.13 ± 0.52–195.14 ± 0.63 Ma, respectively. Molybdenite Re–Os isochron ages of the ores are 160 ± 1–162.7 ± 1.1 Ma, which is consistent with the age of large-scale W–Sn deposits in South China. The Yuanlingzhai porphyry is characterized by high K2O, P2O5, and A/CNK (1.33–1.59), and low CaO and Na2O. The rock shows relatively enriched LREE without significant Eu anomalies (Eu/Eu* = 0.80–0.90). Geochemical and mineralogical characteristics indicate that the ore-hosting porphyry is a typical S-type granite generated from the partial melting of crustal material with only minor mantle contribution. Both Harker and evolutionary discrimination diagrams indicate that the Yuanlangzhai and western Keshubei granites are not products of co-magmatic evolution. The Keshubei granites and Xunwu Formation were not significant sources for the components in the porphyry mineralization, but the Yuanlangzhai granite may have supplied some ore-forming material. However, the main ore-forming material was carried by fluids from deep sources, as demonstrated by fluid inclusion and stable isotope data from the molybdenum deposit. The Mo porphyry deposit formed in an extensional setting, and was possibly associated with Jurassic subduction of the Izanagi Plate.  相似文献   

12.
《Gondwana Research》2016,29(4):1516-1529
Voluminous Proterozoic (~ 1700 Ma) rapakivi granites occur in several cratons, especially in the northern hemisphere. Similar Proterozoic rapakivi granites have recently been recognized in the Paleozoic North Qaidam orogen, western segment of the China Central Orogenic System (CCOS). SHRIMP zircon U–Pb dating of these granites yielded ages of 1778 ± 17 and 1778 ± 12 Ma. These granites exhibit typical rapakivi textures. They are ferroan, alkalic to alkalic-calc, metaluminous to peraluminous and characterized by high Ga/Al ratios, Na2O + K2O and rare earth elements (apart from Eu) contents, but low MgO, CaO and Sr contents. These are typical A-type granite features. Whole-rock εNd(t) values of the granites range from − 6.09 to − 5.74 with Nd model ages of 2762 to 2733 Ma, and their zircon εHf(t) values are from − 8.3 to − 5.2 with two-stage Hf model ages of 2944 to 2800 Ma, suggesting that these rocks were derived from old continental crust. The ages, rapakivi texture and geochemical features suggest that these granites are very close to typical Proterozoic (~ 1700 Ma) rapakivi granites within the North China Craton (NCC) and belong to the group of Proterozoic rapakivi granites of the northern hemisphere. These indicate that part of the basement of the North Qaidam orogen in the western CCOS is similar to that of the NCC or was probably derived from it, and then became involved in the CCOS. This provides new data to solve the dispute on the basement origin in this orogen.  相似文献   

13.
The recently discovered Longtougang skarn and hydrothermal vein Cu–Zn deposit is located in the North Wuyi area, southeastern China. The intrusions in the ore district comprise several small porphyritic biotite monzonite, porphyritic monzonite, and porphyritic granite plutons and dikes. The mineralization is zoned from a lower zone of Cu-rich veins and Cu–Zn skarns to an upper zone of banded Zn–Pb mineralization in massive epidote altered rocks. The deposit is associated with skarn, potassic, epidote, greisen, siliceous, and carbonate alteration. Molybdenite from the Cu-rich veins yielded a Re–Os isochron age of 153.6 ± 3.9 Ma, which is consistent with U–Pb zircon ages of 154.0 ± 1.3 Ma for porphyritic monzonite, 154.0 ± 0.8 Ma for porphyritic biotite monzonite, and 152.0 ± 0.8 Ma for porphyritic granite. Geological observations suggest that the Cu mineralization is genetically related to the porphyritic biotite monzonite and porphyritic monzonite. All the zircons from intrusive rocks in the ore district are characterized by εHf(t) values between − 13.41 and − 4.38 and Hf model ages (TDM2) between 2054 and 1482 Ma, reflecting magmas derived mainly from a Proterozoic crustal source. Molybdenite grains from the deposit have Re values of 14.6–27.7 ppm, indicative of a mixed mantle–crust source. The porphyry–skarn abundant Cu and hydrothermal vein type Pb–Zn–Ag deposits in the North Wuyi area are related to the Late Jurassic porphyritic granites and Early Cretaceous volcanism, respectively. The Late Jurassic mineralization-related granites were derived from the crustal anatexis with some mantle input, which was triggered by asthenospheric upwelling induced by slab tearing during oblique subduction of the paleo-Pacific plate beneath the South China block, and the Early Cretaceous mineralization-related granitoids mainly from crust material formed within a series of NNE-trending basins during margin-parallel movement of the plate.  相似文献   

14.
Early Paleozoic peraluminous granites are abundant in the eastern part of the Qilian orogen, northeastern margin of the Tibetan Plateau. A combined study involving geochronology, whole-rock geochemical and Sr–Nd–Hf isotopic compositions for three Early Paleozoic peraluminous granitic plutons (Jishishan, Ledu and Shichuan plutons) from the eastern Qilian orogen was carried out to evaluate the causes of chemical variations and generation mechanisms of peraluminous granitic magmas. These granitic plutons have magma crystallization ages of 455–427 Ma and are moderately to strongly peraluminous (A/CNK = 1.03–1.18). Geochemical and Sr–Nd–Hf isotopic data indicate that they consist substantially of crust-derived melts. The Jishishan and Ledu peraluminous granites were dominantly produced by partial melting of Precambrian orthogneisses. The Shichuan monzogranites, with low HREE contents (e.g., Yb = 0.80–1.83 ppm) and slightly negative εNd(t) (− 5.3 to − 2.3) and positive εHf(t) (+ 1.6 to + 3.4), could be derived from immature crustal materials. Relatively high average zircon saturation temperatures (> 750 °C for each pluton), obvious negative Eu anomalies (Eu/Eu* = 0.28–0.80) and low Pb/Ba ratios (0.03–0.16) for the Jishishan, Ledu and Shichuan granites are consistent with crustal melting involving biotite breakdown under fluid-absent conditions. Our results suggest that compositional variations of moderately to strongly peraluminous granitic magmas are mainly controlled by source compositions and melting conditions, while the processes such as mixing with mantle-derived magma, fractional crystallization, restite unmixing and peritectic assemblage entrainment were insignificant (or only play secondary roles) in their genesis. Late Ordovician to Middle Silurian crustal anatexis in the eastern Central Qilian was probably linked with slab break-off which may be an important mechanism in addition to lithospheric delamination for the generation of moderately to strongly peraluminous granites in a post-collisional setting.  相似文献   

15.
The Qianlishan granite complex, situated 16 km southeast of Chenzhou City, Hunan Province, China, hosts the Shizhuyuan W–Sn–Bi–Mo deposit. This complex, which intruded the Protozoic metasedimentary rocks and the Devonian clastic sedimentary and carbonate rocks, consists of mainly medium- to coarse-grained biotite granites and minor amounts of fine-grained biotite granite in addition to granite and quartz porphyry. K–Ar ages suggest three episodes of plutonism: the medium- to coarse-grained biotite granite (before 152 Ma), the fine-grained biotite granite (137 Ma), and the granite porphyry (129–131 Ma). Muscovite ages of the greisen are 145–148 Ma, suggesting that the W–Sn–Bi–Mo mineralization was related to the main, medium- to coarse-grained biotite granites. The K–Ar age of the hydrothermal vein mineralization is 92 Ma and is probably related to the porphyries.  相似文献   

16.
The Zhuguangshan complex carries some of the most important granite-hosted uranium deposits in South China. Here we investigate the Changjiang and Jiufeng granites which represent typical U-bearing and barren granites in the complex, using zircon U-Pb ages, whole-rock geochemistry, Sr-Nd isotopic and zircon Hf isotopic data, and mineral chemistry, to constrain the petrogenesis and uranium mineralization. LA-ICP-MS zircon U-Pb dating shows that both the Changjiang and Jiufeng granites were emplaced ca. 160 Ma. These rocks show high silica, weakly to strongly peraluminous compositions, enrichment in Rb, Th, and U, and depletion in Ba, Nb, Sr, P, and Ti. These features coupled with the high initial 87Sr/86Sr ratios, negative εNd(t) values and εHf(t) values, and the Paleoproterozoic two stage model ages of these two granites suggest that the two granites belong to S-type granites, and the parental magmas of the two granites were derived from the Paleoproterozoic metasedimentary rocks. However, the granitoids show different mineralogical characteristics. The biotite in the Changjiang granite belongs to siderophyllite, marking higher degree of chloritization, whereas the biotite in the Jiufeng granite is ferribiotite, characterized by only slight chloritization. Compared with the Jiufeng granite, the biotite in the Changjiang granite has lower crystallization temperature and oxygen fugacity, but higher F content, and the uraninite has higher UO2 content but lower ThO2 content, and stronger corrosion. The chemical ages of uraninites from both granites are (within error) consistent with the zircon U-Pb ages and are considered to represent the emplacement ages of granites. Chemical ages of pitchblende in the Changjiang granite yield 118 ± 8 Ma, 87 ± 4 Ma, and 68 ± 6 Ma, representing multiple episodes of hydrothermal events that are responsible for the precipitation of U ores in the Changjiang uranium ore field. Our study suggests that the degree of magma differentiation and physicochemical conditions of the magmatic-hydrothermal system are the key factors that control the different U contents of these two granites. The mineralogical characteristics of uraninite and biotite can be used to distinguish between U-bearing and barren granites, and serve as a potential tool for prospecting granite-hosted uranium deposits.  相似文献   

17.
It is generally accepted that pegmatites are derived from large masses of granite but, even in areas where complete mineralogical, chemical and isotopic datasets are available, the relation between pegmatites and host granitic rocks or nearby plutons is usually not simple to address. The Pavia pluton, located in the Ossa-Morena Zone (Iberian Massif), is a multiphase intrusive body constructed over ∼11 m.y. by the amalgamation of several batches of magma. At the first glance, pegmatites seem to constitute a very homogeneous pegmatite field. They are mainly “intragranitic” thin tabular dikes, unzoned, layered, or with simple internal structure and are composed by the ordinary minerals that constitute the different classes of igneous rocks. They also present identical whole rock major and trace elements geochemistry and isotopic signature [(87Sr/86Sr)i = 0.70434–0.70581, ɛNdt = −1.3 to −3.7 and δ18O = 8.2–9.6‰] but, based on previously published geochronological data, three generations of pegmatites were identified. Two of these are coeval with the emplacement of the host granites (s.l.) at 328 Ma and ca. 324 Ma. The other is related to a later magmatic event at 319–317 Ma. A similar and rather juvenile source is suggested for host granites (s.l.) and pegmatites but a simple and continuous process of intra-chamber magmatic differentiation is not supported by our data. It is suggested that pegmatites derived from slightly evolved batches of magma that interacted with fresh, newly emplaced, batches (from the same or from a similar source) with limited interaction with the crust. Therefore, the Pavia pegmatites do not represent the final products of magmatism at this level of the crust but slightly differentiated products of different batches of magma. This study demonstrates how long-lived magmatic systems can potentially affect the recognition of granite–pegmatite genetic relationships.  相似文献   

18.
《Gondwana Research》2014,26(4):1570-1598
Granitic rocks are commonly used as means to study chemical evolution of continental crust, particularly, their isotopic compositions, which reflect the relative contributions of mantle and crustal components in their genesis. New SIMS and K–Ar geochronology, isotope, geochemical, and mineral chemistry data are presented for the granitoid rocks located in and around Gabal Dara in the Northern Eastern Desert of Egypt. The granitoid suite comprises quartz diorites, Muscovite (Mus) trondhjemites, and granodiorites intruded by biotite-hornblende (BH) granites and alkali feldspar (AF) granites. Mus trondhjemite, granodiorite and BH granite exhibit I-type calc alkaline affinities. Mus trondhjemite and granodiorite show medium-K calc-alkaline and metaluminous/mildy peraluminous affinities, whereas BH granites have high-K calc-alkaline and metaluminous character. Concordant 206Pb/238U weighted mean ages together with geochemical peculiarities suggest that Mus trondhjemites (741 Ma) followed by granodiorites (720 Ma) are genetically unrelated, and formed in subduction-related regime by partial melting of lower oceanic crust together with a significant proportion of mantle melt. The genesis of Mus trondhjemites is correlated with the main event in the evolution of the Eastern Desert, called “~750 Ma crust forming event”.The field and geochemical criteria together with age data assign the high-K calc-alkaline BH granites (608–590 Ma) and alkaline AF granites (600–592 Ma) as post-collisional granites. The differences in geochemical traits, e.g. high-K calc-alkaline versus alkaline/peralkaline affinities respectively, suggest that BH granites and AF granites are genetically unrelated. The age overlap indicating coeval generation of calc-alkaline and alkaline melts, which in turn suggests that magma genesis was controlled by local composition of the source. The high-K calc-alkaline BH granites are most likely generated from lithospheric mantle melt which have been hybridized by crustal melts produced by underplating process. AF granites exhibit enrichment in K2O, Rb, Nb, Y, and Th, and depletion in Al2O3, TiO2, MgO, CaO, FeO, P2O5, Sr, and Ba as well as alkaline/peralkaline affinity. These geochemical criteria combined with the moderately fractionated rare earth elements pattern (LaN/YbN = 9–14) suggest that AF granite magma might have been generated by partial melting of Arabian–Nubian Shield (ANS) arc crust in response of upwelling of hot asthenospheric mantle melts, which became in direct contact with lower ANS continental crust material due to delamination. Furthermore, a minor role of crystal fractionation of plagioclase, amphibole, biotite, zircon, and titanomagnetite in the evolution of AF granites is also suggested. The low initial 87Sr/86Sr ratios (0.7033–0.7037) and positive εNd(T) values (+ 2.32 to + 4.71) clearly reflect a significant involvement of depleted mantle source in the generation of the post-collision granites and a juvenile nature for the ANS.  相似文献   

19.
The Huangshaping granites in Hunan Province, South China were investigated for their geochemical characteristics. Three types of granites have been petrographically identified: quartz porphyry, granophyre, and granite porphyry. Whole rock geochemistry suggests that the Huangshaping granites, especially the granite porphyry, exhibit typical A-type granite characteristics with their enrichment in Si, Rb, U, Th, and Nb and significant depletion in Ba, Sr, Ti, Eu, and P. Based on the Al, Y and Zr contents as well as the REE patterns of the rocks investigated, the quartz porphyry and the granophyre are classified as A1 type alkaline granites whereas the granite porphyry is considered as A2 type aluminous granite. Whole rock and quartz/feldspar O isotope data yields a wide range of δ18OSMOW values (11.09–26.32‰). The granites are characterized by high radiogenic Pb isotopic composition. The present-day whole rock Pb isotopic ratios are 206Pb/204Pb = 18.706–19.155, 207Pb/204Pb = 15.616–15.711 and 208Pb/204Pb = 38.734–39.296. Combining the O–Pb isotope compositions with major, trace and REE geochemistry and regional geology characteristics, the Huangshaping granites were determined to resemble within-plate granites that were mainly derived from a felsic infracrustal source related to continental extension. The magma source of the quartz porphyry and the granophyre may have been generated from deeper depths, and then ascended rapidly with limited water content and low oxygen fugacity, which contributed to Cu, Pb and Zn mineralization. On the other hand, the magma that generated the granite porphyry may have ascended relatively slower and experienced pronounced crystal fractionation, upper-crustal basement rock contamination (assimilation) and wall–rock interaction, producing the Sn- and W-rich granite porphyry. This study reveals the crustal extension process and associated magmatic–metallogenic activities during 180–150 Ma in South Hunan.  相似文献   

20.
The latest evolution of the Neoproterozoic Agudos Grandes Batholith (Apiaí domain, SE Brazil) is marked by an important change in the type of granitic magmatism. The “late-orogenic” Piedade, Roseira, Serra dos Lopes, and Pilar do Sul granites are elliptical plutons with roughly concentric zoning and a spatial arrangement suggesting a continuous southwestward migration of the magmatic focus. The main rock types are “contaminated” calc-alkaline granites that range from mafic-rich (color index > 10), porphyritic biotite (±muscovite) granite-granodiorite in Piedade to pink, equigranular, muscovite–biotite leucogranite (CI < 5) strongly affected by hydrothermal effects in Pilar do Sul. U–Pb monazite dating indicates that these plutons were emplaced during 600–605 Ma, slightly after the main “synorogenic” magmatic stage (615–610 Ma), which was dominated by high-K, calc-alkaline, metaluminous, porphyritic hornblende-biotite granites with minor peraluminous leucogranite bodies. The “postorogenic” granites are divided into two groups on the basis of pluton shapes and U–Pb dating, both with “A-type” affinities. The approximately 585 Ma group (São Miguel Arcanjo and Capão Bonito granites) relates to the Itu granitic province, which developed around 10 m.y. after the cessation of the main regional compressional events, and cross-cuts the reworked border of the Paranapanema plate; the younger, approximately 565 Ma group is represented by two elongated plutons (Serra da Batéia and Serra da Queimada) that seem to reflect coeval orogenic events farther east in the Ribeira belt. The modal composition, magnetic susceptibility, and mafic mineral chemistry of the late-orogenic granites are consistent with an origin by contamination of metaluminous, oxidized, calc-alkaline magmas with crustal melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号