首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过在九寨沟县聚宝山不同位置处布设微震监测仪器,采集到了九寨沟MS7.0级地震后几次典型的余震监测数据。对地震动监测剖面上1#(1414 m)和2#(1551 m)监测点的余震加速度响应数据进行系统的研究,表明:(1)孤立突出山体的地形放大效应显著,各监测点的水平向加速度幅值一般要大于竖直向;(2)在地震过程中,聚宝山近SN走向的山脊沿水平东西方向震动更为猛烈,即沿东西两侧发生猛烈"甩动",形成沿山脊走向发育的地震裂缝。对余震监测数据的研究证实了斜坡地震动方向效应的存在,聚宝山山顶处的2#监测点水平东西向峰值加速度放大效应明显强于其他方向,地震波能量在水平东西向上得到显著放大,因而坡顶处建筑物也更容易沿该方向发生破坏,证明了局部地形对斜坡地震动力响应具有控制效应;(3)2#监测点竖直向主频值主要为6~12 Hz,水平东西向主频值主要为5~8 Hz,水平南北向主频值主要为5~10 Hz,其水平东西向主频率值主要为低频成分;相较于1#监测点,2#监测点各向的主频值发生明显衰减,即随着高程的增加,地震动主频值呈现出减小趋势,在斜坡上部地震波以中低频为主。通过进一步地计算分析得出,九寨沟地震诱发单薄山脊、条形山体、多面临空山体等地形放大效应与地震波半波长密切相关,斜坡在局部地形尺寸与地震波丰富的波长成分的耦合作用下,地形放大效应显著,山体震害发育。  相似文献   

2.
青川县桅杆梁斜坡地震动响应监测研究   总被引:4,自引:0,他引:4  
本文采用941B型超低频测振仪及G01通用数采仪,自2009年5月13~27日,在青川县桅杆梁监测到4次余震。对山体斜坡高程805m和875m的余震地震动峰值加速度响应监测结果分析表明:相对于805m高程, 875m测点地震动峰值加速度在水平东西向以及垂向均呈减小趋势,而在水平南北向体现显著的放大效应,放大系数可达7~8倍,其FFT主频值主要集中为2~4Hz低频值。分析表明,所监测的微有感地震震中位于测点北侧的青川断裂上,沿地震波传播方向斜坡体具有显著放大效应作用。  相似文献   

3.
康定MS6.3级地震斜坡地震动响应监测分析   总被引:1,自引:0,他引:1  
芦山MS7.0地震、鲁甸MS6.5地震诱发了大量的次生山地灾害,一些学者认为地形放大效应是其中的一个影响因素,但目前斜坡地震动响应研究仍然缺乏大量的实测数据支撑。通过在冷竹关两岸斜坡不同部位掘进平硐并放置强震监测仪器的方法,对沟谷两岸斜坡地震动响应特征进行研究,剖面较为完整地记录了康定地震两岸斜坡的地震动响应特征。监测数据揭示,(1)相对于康定姑咱参考站,位于右岸半岛状凸出山梁顶部1#监测点的水平和竖直向PGA放大系数分别达到了10.6~11.5、7.1,阿里亚斯强度最大,水平东西向比竖直向HVSR频比值达到11.1,卓越周期在低频部分;位于右岸山梁中部2#监测点水平和竖直向PGA放大系数分别达到了4.3~5.0、2.3;(2)左岸地形坡面起伏较小,记录的峰值加速度较小,仅在坡折部位5#监测点有明显的放大,水平与垂直峰值加速度放大系数分别为3.0~4.5、2.3,各监测点频比存在多个卓越周期,其放大效应在高频段更突出;(3)近直线型斜坡内(6#及7#监测点)放大效应相对较弱,且监测洞外侧放大系数大于水平深度较大的内侧。结果表明冷竹关两岸斜坡存在明显的地形放大效应,且右岸半岛状凸出山脊地形较左岸中高山斜坡地形放大效应显著。对比芦山地震该剖面放大系数,揭示了背坡面效应。  相似文献   

4.
降雨、地震作用下,隧道洞口边坡易产生严重破坏,有必要研究隧道洞口边坡及支挡结构的动力响应特性。以中国西南某隧道洞口边坡为例,通过振动台模型试验,分析降雨、地震作用下预应力锚索桩板墙加固隧道洞口边坡的动力响应与破坏模式。研究结果表明:(1)隧道洞口边坡破坏过程为坡顶张拉裂缝―坡脚剪切溃裂―边坡整体滑移破坏。由于雨水入渗,坡表土体在地震作用下易产生局部浅层破坏。边坡破坏模式为张拉-剪切型。(2)随峰值加速度增加,桩身PGA放大系数显著增大,应重视该类支护结构在地震作用下的惯性放大效应。(3)桩后峰值土压力随峰值加速度增加而增大,由“S型”分布逐渐转变为倒三角形分布。峰值加速度大于0.4g时,锚索轴力逐渐增加,充分发挥张拉作用。(4)桩土压力与加速度傅里叶谱幅值集中于低频段,地震波沿高程传播存在“高频滤波效应”。(5)桩身位移谱幅值随峰值加速度增加而逐渐增大,沿桩身向上呈增加趋势;位移谱主频分布于1~4 Hz,卓越频率为2.5 Hz,与地震荷载的主频较接近。(6)桩体加速度间的关联性较好,桩体加速度、动土压力、桩体应变、锚索轴力相关性随输入峰值加速度增加而逐渐降低。  相似文献   

5.
王志颖  郭明珠  曾金艳  王晨  刘晃 《岩土力学》2023,(9):2566-2578+2592
以青藏高原金沙江流域下归洼滑坡为原型,开展了含软弱夹层的顺层岩质斜坡振动台模型试验,基于斜坡峰值加速度PGA的放大系数和Hibert-Huang变换(Hibert-Huangtransform,简称HHT)时频特征分析地震作用下含软弱夹层顺层岩质斜坡动力响应规律。试验结果表明:斜坡在地震作用下表现出明显“高程效应”和“趋表效应”,PGA在坡表距离坡底1/4高度处、坡顶、软弱夹层处较大。随着输入地震动强度的增加,斜坡刚度逐渐降低,自振频率逐渐减小。当输入波幅值达到0.7g之后,斜坡发生开裂和结构变形。输入波幅值相同的情况下,PGA放大系数与高程呈正相关,同一测点随着输入波幅值增加,放大系数逐渐下降,不同输入波的类型和时间压缩比对斜坡动力响应影响差异较大。Hilbert谱显示,高程和软弱夹层对地震波能量有放大作用,高频部分的能量放大尤其明显。Hilbert边际谱表明,软夹层作用下高频部分的累积能量放大明显,在坡表距离坡底1/4高度处的测点能量突然增大,与加速度放大效应部分的结论类似;Hilbert边际谱显示,随着输入地震波幅值增加,高频部分和代表斜坡自振频率部分的累积能量逐渐降低,输入地震...  相似文献   

6.
地震波的频率特性是地震动的最重要特征之一,斜坡的地震动力响应是地震波各频率组分对斜坡体共同作用的结果。依托于含水平厚软弱夹层斜坡的大型振动台模型试验,着重分析了该斜坡在天然随机波(2008年汶川波)作用下的水平向加速度响应频谱特征。首先,基于Hilbert-Huang频谱变换,对所有原始数据进行了有效的降噪处理,并获得了重构数据的Hilbert边际谱。接着,开展了坡表水平向加速度边际谱在不同高程处和不同激振强度下的变化特征分析,并将频谱特征与时域峰值加速度(PHA)响应和斜坡的宏观变形破坏特征进行对比分析。结果表明:(1)随着高程增加,边际谱幅值也相应增加且谱线出现多个波峰。坡体上部尤其是坡肩是地震作用的敏感部位,随着激振强度增加,加速度波的震动能量从一开始集中在2个频段(即7~11 Hz和15~20 Hz,高频)逐渐向1个频段(7~11 Hz,低频)变化;(2)在激振强度为0.2g~0.5g时,第一卓越频率(最大谱峰值对应的频率)和第二卓越频率(次大谱峰值对应的频率)在数值上呈大幅度、无规律的波动,预示在该震动阶段,坡体结构内部正在经历一个较大的变化(恶化),但未出现宏观变形;(3)时域峰值加速度随高程和激振强度增加的变化规律与最大谱峰值的变化规律较接近,但局部变化受次大谱峰值响应的影响明显;(4)在低频区(5 Hz),在软弱夹层及其周围(相对高程0.25~0.75)出现了明显的响应低值区,且边际谱的形状和数值在该部位呈无规律性变化;(5)斜坡的变形破坏过程明显受坡表而非坡顶变形的控制,其应存在使得一个地震波与坡体相互作用效应最大的共振高程,该高程范围与以第二卓越频率(16 Hz)作为共振频率所估算的高程较为吻合。  相似文献   

7.
地震波的频率特性是地震动的最重要特征之一,斜坡的地震动力响应是地震波各频率组分对斜坡体共同作用的结果。依托于含水平厚软弱夹层斜坡的大型振动台模型试验,本文着重分析了该斜坡在天然随机波(2008年汶川波)作用下的水平向加速度响应频谱特征。首先,基于Hilbert-Huang频谱变换,对所有原始数据进行了有效的降噪处理,并获得了重构数据的Hilbert边际谱。接着,开展了坡表水平向加速度边际谱在不同高程处和不同激振强度下的变化特征分析,并将频谱特征与时域峰值加速度(PHA)响应和斜坡的宏观变形破坏特征进行对比分析,结果表明:(1)随着高程增加,边际谱幅值也相应增加且谱线出现多个波峰。坡体上部尤其是坡肩是地震作用的敏感部位,随着激振强度增加,加速度波的震动能量从一开始集中在2个频段(即7~11 Hz和15~20 Hz,高频)逐渐向1个频段(7~11Hz,低频)变化;(2)在激振强度为0.2g~0.5g时,第一卓越频率(最大谱峰值对应的频率)和第二卓越频率(次大谱峰值对应的频率)在数值上呈大幅度、无规律的波动,预示在该震动阶段,坡体结构内部正在经历一个较大的变化(恶化),但未出现宏观变形;(3)时域峰值加速度随高程和激振强度增加的变化规律与最大谱峰值的变化规律较接近,但局部变化受次大谱峰值响应的影响明显。(4)在低频区(5Hz),在软弱夹层及其周围(相对高程0.25~0.75),出现了明显的响应低值区,且边际谱的形状和数值在该部位呈无规律性变化;(5)斜坡的变形破坏过程明显受坡表而非坡顶变形的控制,其应存在使得一个地震波与坡体相互作用效应最大的“共振高程”,该高程范围与以第二卓越频率(16Hz)作为共振频率所估算的高程较为吻合。  相似文献   

8.
地震波的频率特性是地震动的最重要特征之一,斜坡的地震动力响应是地震波各频率组分对斜坡体共同作用的结果。依托于含水平厚软弱夹层斜坡的大型振动台模型试验,本文着重分析了该斜坡在天然随机波(2008年汶川波)作用下的水平向加速度响应频谱特征。首先,基于Hilbert-Huang频谱变换,对所有原始数据进行了有效的降噪处理,并获得了重构数据的Hilbert边际谱。接着,开展了坡表水平向加速度边际谱在不同高程处和不同激振强度下的变化特征分析,并将频谱特征与时域峰值加速度(PHA)响应和斜坡的宏观变形破坏特征进行对比分析,结果表明:(1)随着高程增加,边际谱幅值也相应增加且谱线出现多个波峰。坡体上部尤其是坡肩是地震作用的敏感部位,随着激振强度增加,加速度波的震动能量从一开始集中在2个频段(即7~11 Hz和15~20 Hz,高频)逐渐向1个频段(7~11Hz,低频)变化;(2)在激振强度为0.2g~0.5g时,第一卓越频率(最大谱峰值对应的频率)和第二卓越频率(次大谱峰值对应的频率)在数值上呈大幅度、无规律的波动,预示在该震动阶段,坡体结构内部正在经历一个较大的变化(恶化),但未出现宏观变形;(3)时域峰值加速度随高程和激振强度增加的变化规律与最大谱峰值的变化规律较接近,但局部变化受次大谱峰值响应的影响明显。(4)在低频区(5Hz),在软弱夹层及其周围(相对高程0.25~0.75),出现了明显的响应低值区,且边际谱的形状和数值在该部位呈无规律性变化;(5)斜坡的变形破坏过程明显受坡表而非坡顶变形的控制,其应存在使得一个地震波与坡体相互作用效应最大的“共振高程”,该高程范围与以第二卓越频率(16Hz)作为共振频率所估算的高程较为吻合。  相似文献   

9.
地震动强度对斜坡加速度动力响应规律的影响   总被引:1,自引:0,他引:1  
刘汉香  许强  范宣梅  徐鸿彪 《岩土力学》2012,33(5):1357-1365
依托大型振动台试验成果,采用加速度响应峰值PGA及其放大系数相结合的分析方法,系统地探讨了上硬、下软和上软、下硬两种岩性组合结构斜坡模型,分别在正弦波和天然地震波作用下坡面各高程点的水平向和竖直向加速度响应随震动强度增大的变化规律。试验结果分析表明:①在天然波作用下两斜坡模型的水平向和竖直向PGA均随震动强度增大而增大,而放大系数则随震动强度增大到一定程度时,逐渐减小并趋于稳定;②在正弦波作用下两斜坡模型的水平向和竖直向PGA亦随震动强度增大而增大,然而竖直向PGA放大系数随震动强度增大亦有所增大,说明竖直向加速度响应表现出了相对于水平向响应较弱的非线性特征;③在水平向和竖直向地震力作用下加速度响应沿高程表现出的放大效应分别体现在斜坡模型的上段和下段。此外,斜坡模型的加速度响应沿坡面在坡脚、坡中和坡肩等特殊部位出现了多个极值区;④在水平向地震力作用下低频的地震波作用要强于高频地震波,且加速度在上硬、下软岩性组合结构斜坡模型中的响应要强于上软、下硬岩性组合斜坡模型;在竖直向地震力作用下则呈现相反结果。其研究结果对高地震风险山区的防震减灾及灾后重建都具有指导和借鉴意义。  相似文献   

10.
2008年汶川MS8.0强震中频繁出现断层穿越的地震滑坡,除发震断层的地震特性外,其自身场地效应也会影响斜坡动力响应,甚至加剧斜坡失稳。本文以汶川极震区绵竹九龙镇山前斜坡为典型实例,根据余震作用下斜坡不同高程实测地震记录及地脉动测试结果,通过单点谱比法(H/V),获得斜坡地震动加速度随高程的放大系数和地脉动的频谱特征曲线,通过曲线对比分析发现: 1)斜坡两次典型余震PGA放大系数随高程先减小后增大,呈明显的凹形特征,凹形部位位于断层位置,其PGA放大系数约为斜坡底部测点0.4~1.0,坡顶测点的PGA放大系数则达到1.0~2.0倍。由于PGA放大系数是在断层位置出现的明显拐点,从地质上表明了断层场地效应明显; (2)各点NS/UD谱比普遍大于EW/UD谱比。断裂区域卓越频率为低频1Hz,小于其他测点的频率,对应谱比最大值高达3.0~4.0,高于其他测点谱比最大值。说明地表破裂处岩土体松散破碎,导致断层处的卓越频率较低,近场余震传播过来的高频地震波被断层隔断,地震加速度放大系数在该处发生了衰减,场地效应显著。本研究有助于增强断层场地对斜坡动力响应影响的认识。  相似文献   

11.
岩性及岩体结构对斜坡地震加速度响应的影响   总被引:1,自引:0,他引:1  
刘汉香  许强  侯红娟 《岩土力学》2013,34(9):2482-2488
斜坡岩体的岩性及岩体结构是斜坡在地震作用下产生变形破坏的主要控制因素。基于振动台模型试验,对4个斜坡模型探讨了这2个因素对斜坡地震动力响应的影响。岩性包括强度相对较高的硬岩和强度相对较低的软岩,对这两种岩性的斜坡又分别考虑了不含结构面的均质斜坡和含水平层状结构面的斜坡。基于传感器采集到的大量数据,以主频相近的天然地震波和10 Hz正弦波加载为分析工况,获得了以下几点认识:(1)4个模型斜坡坡面和坡内的水平向加速度均具有高程放大效应,尤其是软岩斜坡坡顶放大效应最显著;(2)软岩斜坡对水平向加速度的高程放大效应强于硬岩斜坡,尤其是在均质斜坡中表现最显著,均质软岩斜坡的高程放大效应呈现出明显的非线性特征;(3)当加载方向与水平层面平行时,含水平层状结构面的斜坡比均质斜坡产生了更强的高程放大效应,且在软岩斜坡中体现最显著;(4)岩性差异对斜坡水平向加速度高程效应的影响比结构差异的影响更为显著。研究结果为岩质斜坡的抗震设计提供了一定参考。  相似文献   

12.
《岩土力学》2017,(12):3469-3474
进行垂直和水平动荷载下的大型振动台模型试验,研究地震作用下多年冻土缓倾角土层斜坡的地震响应、诱发滑坡破坏的主要影响因素及滑坡破坏的演化过程。结果表明,在土层坡度为8°缓斜坡振动台模型试验条件下,斜坡模型破坏后其水平方向自振频率降低较明显,而垂直方向无明显变化;坡体滑动是整体沿着冰-土界面软弱层进行的失稳滑动,沿斜面滑下的斜坡土体内部没有发生破坏;模型斜坡的峰值加速度(PGA)放大系数随着坡体高程增加而增大,破坏前坡面PGA放大系数无明显变化,破坏时和破坏后变化较明显,斜坡土体对水平方向地震波的加速度动力放大响应大于垂直方向,冰-土界面软弱层的加速度放大系数明显小于上部土体和下部冰体,在加速度达到一定数值时,冰-土界面的孔隙水压力会升高。斜坡冰-土软弱界面和超孔隙水压力升高是地震荷载下多年冻土区缓倾角土层斜坡滑动的主要内因。  相似文献   

13.
为研究强震作用下斜坡表面的动力放大效应,以陕西勉县某岩质斜坡为例,建立了三维模型.运用离散元软件3DEC,模拟了动力条件下斜坡的变形失稳过程,分析了斜坡表面的动力响应特征,研究了不同地震波输入工况条件下坡体表面动力响应差异.研究结果表明:考虑地震纵波的影响时,竖向加速度得到显著增强,坡面的PGA放大系数增强了约1.62...  相似文献   

14.
《岩土力学》2016,(1):133-139
基于相似性理论,设计并完成了2个含不同厚度水平软弱夹层的岩质斜坡。试验模型高度、长度、宽度分别为1.80、1.65、1.50 m,坡角约60°,软弱夹层厚分别为3、15 cm。输入不同类型、激励方向、频率和振幅的地震波,利用大型振动台试验中传感器记录的数据和正交试验,研究了斜坡的加速度响应特征及其影响因素。试验结果表明:斜坡动力加速度放大系数分布存在明显的坡内高程效应和坡面的非线性趋表效应。斜坡水平向坡面放大系数随斜坡高程增加呈波动性增大,薄夹层斜坡中、上部表现更为明显。竖直向坡面放大系数因软弱夹层厚度而异,薄夹层斜坡局部减小后增大,最大放大值出现在坡肩位置,而厚夹层斜坡最大放大值出现在软弱夹层底部。同等强度地震力激励下,坡内竖直向放大系数不及水平向,约为0.75倍。坡面上,水平和竖直向放大系数的相对大小与高程有关。软弱夹层以下,竖向放大系数大于水平向,夹层以上则相反。软弱夹层对斜坡动力响应的影响也因激励方向不同而有所区别,对水平向动力响应有一定的放大作用,而对竖直向动力响应则是吸收减弱。斜坡动力响应所选因素的影响大小顺序依次为斜坡高程、坡体位置、软弱夹层厚度、激励振幅、加载波形、激励方向,其中斜坡高程、坡体位置以及软弱夹层厚度对斜坡动力响应具有显著性影响。  相似文献   

15.
地震动力作用触发的斜坡崩滑高差效应研究   总被引:3,自引:1,他引:2       下载免费PDF全文
运用岩石动三轴剪切试验及有限差分数值试验技术,对地震动力作用触发的斜坡崩滑破坏时的坡体力学特征值空间变化规律进行了研究。研究表明:(1)地震动力作用触发的斜坡体崩滑破坏具有显著的"高差"效应,即斜坡体先期崩滑破坏大多起始于坡肩部位;(2)斜坡体临界破坏应变有随坡体微元埋深减小而减小的趋势,临界破坏应变小和坡肩地震峰值加速度的优势放大双重因素导致坡肩部位优先发生先期破坏;(3)斜坡体动态抗剪强度有随坡体微元埋深减小而减小的趋势,临界动态抗剪强度低和坡肩地震峰值加速度的优势放大双重因素导致坡肩部位优先发生先期破坏。  相似文献   

16.
根据南沟滑坡的地质背景及堆积体工程地质特征,结合离散元数值模拟技术,分析南沟滑坡的失稳类型及其成因机制。研究得出如下结论:(1)地震波在经过地形效应放大后,斜坡滑源区竖直峰值加速度PGA最大放大5.1倍,水平峰值加速度PGA最大放大3.97倍。(2)运用离散元数值模拟技术,验证了该斜坡体在地震力作用下的滑坡类型为拉裂—溃滑型。(3)在强震作用下,地震波在坡体内不连续结构面处会发生透射和反射现象,从而导致岩体沿层面发生震动溃裂破坏,形成潜在统一滑面,并伴随有坡体的松弛、甚至解体;在强震持续作用下,坡体沿滑面产生整体的溃滑,形成滑坡。  相似文献   

17.
以京沪高铁CRH380BL高速动车组为原型,根据相似定律设计完成了1:10比尺的铁路有砟轨道路基振动台模型试验,研究分析了路基的加速度、土压力和位移响应规律。模型尺寸为9.6 m×3.5 m×1.0 m(长×宽×高),包括列车、有砟轨道和路基部分。试验结果证明:随高程增加,水平加速度峰值放大系数逐渐增大,基本上稳定在1.0~2.5,竖向加速度峰值放大系数则呈现先增加后减小的规律,基本稳定在1.5以内。随着输入地震动强度的增大,水平加速度峰值放大系数与高程成正比例关系,非线性关系逐渐增强,竖向加速度峰值放大系数最大值位于距离底部H/3处向2H/3处转移(H为路基高度),在输入峰位加速度(PGA)为0.3g时,水平、竖向加速度峰值放大性均达到最强;随着输入地震动强度的增大,填料中峰值土压力强度逐渐增大,在输入波PGA为0.4g时,土压力强度达到最大,路基中心截面土压力强度随高程增加有先增加后减小的趋势,最大土压力逐渐由距离路基底部H/3向2H/3位置转移;在输入地震波PGA为0.05g时,路基表面、路基底部的土压力强度沿着路基体水平方向呈线性分布,前者离路基越远、土压力越大,后者则是基本不变。在输入地震波PGA为0.15g、0.30g、0.40g时,土压力强度在道砟边缘处最小,在路基中心下土压力强度其次,整体沿着路基体水平方向呈三角形分布;路基坡面中部和顶部的水平位移逐渐增大,前者小于后者,呈近似线性分布,且两者差值逐渐减小。在路基顶部位置,坡面上的位移与路基中心线顶部的位移差值随着输入地震动强度的增大,两者差值逐渐增大,最后区域稳定;地震波在路堤底部时主频集中在5~15 Hz,随着高程增加,路基对30~40 Hz频段有强烈的放大效应,在其余频段的影响不明显。  相似文献   

18.
青藏高原东南三江流域沿江分布着数以万计的古滑坡和潜在滑坡,对在建的川藏铁路构成严重的威胁。通过振动台模型试验研究了强震作用下含软弱夹层顺层岩质斜坡的动力响应规律。分析不同地震动参数、输入波类型和软弱结构面对斜坡动力响应规律的影响。试验结果表明:斜坡的自振频率随着输入地震波次数的增加而逐渐降低,振动强度为0.3g和0.6g是斜坡启裂和失稳的临界动力条件。斜坡具有明显的高程效应,加速度放大系数沿坡表呈现先增加、后减小、再增加的趋势,在1/4坡高和坡顶处较大。坡内竖直向加速度放大系数随高程增加呈现线性增加的趋势。频率对斜坡动力放大响应影响较大。斜坡对低频地震波的放大效应不明显,甚至有抑制作用。随着频率的增加,斜坡的动力放大效应越来越明显。随着幅值的增加,斜坡加速度放大系数呈现先增大后减小的趋势,在振动强度为0.3g~0.4g时达到最大值。不同类型地震波作用下,斜坡对天然波的放大作用高于人工合成波。软弱夹层的存在使输入的地震波出现了明显的放大,并通过快速傅里叶变换(fast Fourier transform,简称FFT)发现,软弱夹层的位置对输入地震波的频段的敏感程度不同。该试验揭示了含软弱...  相似文献   

19.
重庆小南海滑坡形成机制离散元模拟分析   总被引:1,自引:0,他引:1  
申通  王运生  吴龙科 《岩土力学》2014,35(Z2):667-675
重庆小南海滑坡是烈度相对较低地区发生的地震高位滑坡,其成因一直令人费解。基于重庆黔江小南海相关研究资料,通过对复原的小南海坡体进行失稳分析,计算得出使岩体产生崩滑破坏的地震力临界条件,即只有当地震波地形放大后滑坡才能启动。为了进一步验证计算所得的结论,运用UDEC软件建立小南海典型二维场地模型,施加相应的地震力对坡体失稳崩滑的全过程进行模拟,以研究地震作用下地形放大效应触发具平行坡面陡倾控制性结构面的高位岩质斜坡地震机理。研究结果表明,在地震波传播过程中,具平行坡面陡倾控制性结构面的高陡突出地形对地震波有明显的放大作用。该坡体运动模式为:峰值加速度放大-增加的振幅迫使岩体顺平行坡面陡倾控制性结构面迅速拉裂-沿缓倾层面滑移-高速脱离滑源区-巨大的势能和动能驱动坡体做长距离运动,其间伴随解体、颗粒间相互碰撞、铲刮作用,具有二相甚至三相流体性质。分析揭示地震力作用下斜坡体中质点加速度具有地形放大效应。对比结构面监测点和基岩监测点加速度放大系数,表明,滑坡启动时具有较大的加速度,当遇到平行坡面的不连续结构面时,斜坡动力响应强烈,最终导致坡体失稳。  相似文献   

20.
地震作用下高陡岩质斜坡动力响应规律研究   总被引:2,自引:2,他引:0  
在西南山区高陡单面斜坡研究基础上运用FLAC3D有限差分法对双面斜坡的动力响应规律进行分析,研究了斜坡坡高、坡角及顶宽变化对响应规律的影响,结果发现:对斜坡输入不同中心频率Ricker子波时,坡体卓越频率整体处于1~4 Hz之间,且斜坡不同部位卓越频率不尽相同。从规律上看,坡高决定了斜坡动力响应的表现形式,体现在坡高较低时加速度放大系数等值线平行于坡底而增大后变为平行于坡面展布的闭合区域,反映在放大效果上即为加速度随坡高线性增加(坡高较低时),而后呈现增减反复出现的情况(坡高较高时);另外,坡角增大未影响斜坡动力响应的表现形式,仅改变了斜坡内部放大系数等值线的走向,使得陡倾斜坡加速度水平及竖向放大效果均大于缓倾斜坡。双面斜坡随坡形变化的动力响应规律与单面坡近乎相同,但由坡形改变所致地震波反射与折射现象使得双面坡对地震波的放大效果更加明显,表现为放大系数等值线密集程度增大,加速度较相同单面斜坡成倍增加。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号