首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Wave attenuation and phase velocity dispersion in the temperature domain are more complicated than those in the frequency domain. To describe wave propagation properties in the temperature domain, a so-called thermal activation mechanism model is built on the experimental result that increasing the temperature or decreasing frequency could obtain similar results on the attenuation. A rheological model (the Zener model) is employed to describe viscoelastic attenuation in saturated porous rocks. The Arrhenius relation is introduced to describe the thermal activation mechanism. The wave propagation model with thermal effects in porous media is then obtained, and 1-D P-wave and S-wave propagation characteristics are analyzed in numeric process, respectively.Two attenuation mechanisms are found in this model, the Biot loss and the thermal activation relaxation. The thermal relaxation attenuation peak and the Biot attenuation peak are observed in both frequency and temperature spectra. These two peaks move towards each other when the temperature increases on frequency spectra. The thermal relaxation peak shifts towards higher frequencies while the Biot peak shifts towards lower frequencies. At some temperature, these two peaks will superpose. The combination of the thermal relaxation and the Biot loss leads to the complexity of wave velocity curves. Similar phenomena could be observed on temperature spectra. The thermal relaxation features may relate to a so-called “local heat transfer” mechanism. These two peaks in the temperature domain have been observed in the experiments by other investigators. The characteristics of velocity and attenuation are more remarkable for high porosity rock samples. The model is helpful for the understanding of wave propagation in the temperature domain.  相似文献   

2.
饱和砂岩的黏弹行为的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过Metravib热机械分析仪,用正弦波进行加载,实验时固定静载为100 N,正弦波动载荷恒为60 N,将总载荷控制在屈服点以下;在温度为-50~125℃,升温速率为1℃/min,频率为5~1000 Hz的条件下,对泵油饱和长石砂岩、彭山砂岩样品进行单轴循环加载实验,求取泵油饱和长石砂岩和彭山砂岩的衰减、耗散角、模量...  相似文献   

3.
砾岩储层地震波传播方程:三重孔隙结构模型   总被引:1,自引:1,他引:0       下载免费PDF全文
针对砾岩储层的砂、砾、泥三重孔隙结构特征,本文分析砾岩孔隙区域、砂岩孔隙区域以及泥岩孔隙区域相互之间的孔隙流体流动机制,将静态的砾岩骨架本构方程与动态的孔隙流体运动方程联立,提出了复杂砾岩储层的弹性波传播理论方程.采用实测砾岩储层参数,在算例中与双重孔隙介质理论进行对比分析,验证了本文理论方程的合理性;基于三重孔隙介质模型,分析不同储层环境下纵波的传播特征,结果显示:随流体黏滞系数增大,在衰减-频率轴坐标系中,砾与砂、砂与泥孔隙区域间局域流导致的两个衰减峰向低频端移动,而Biot全局流导致的衰减峰向高频端移动;嵌入体尺寸及背景相介质渗透率的变化,主要影响纵波速度频散曲线沿频率轴左、右平移,不影响波速低频、高频极限幅值;嵌入体含量及孔隙度的变化改变了岩石干骨架的弹性、密度参数,不仅影响速度频散曲线沿频率轴平移,而且影响其上、下限幅值;砾包砂包泥三重孔隙介质模型所预测的衰减曲线中,低频段"第一个衰减峰"主要由砾岩孔隙区域与砂岩孔隙区域之间的局域流导致,中间频段"第二个衰减峰"主要由砂岩孔隙区域与泥岩孔隙区域之间的局域流导致,超声频段"第三个衰减峰"由Biot全局流导致.对慢纵波传播特征的分析显示,砂岩骨架(局部孔隙度较大)内部的宏观孔隙流体流动造成的耗散明显强于砾岩与泥岩骨架.  相似文献   

4.
Partially saturated reservoirs are one of the major sources of seismic wave attenuation, modulus defect and velocity dispersion in real seismic data. The main attenuation and dispersion phenomenon is wave induced fluid flow due to the heterogeneity in pore fluids or porous rock. The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks are largely affected by fluid type, saturation and fluid distribution pattern. Based on Gassmann-Wood and Gassmann- Hill rock physics models modulus defect, velocity dispersion and attenuation in Jurassic siliclastic partially-saturated rocks are studied. For this purpose two saturation patterns - uniform and patchy - are considered within the pore spaces in two frequency regimes i.e., lower frequency and higher frequency. The results reveal that at low enough frequency where saturation of liquid and gas is uniform, the seismic velocity and bulk modulus are lower than at higher frequency where saturation of fluid mixture is in the form of patches. The velocity dispersion and attenuation is also modeled at different levels of gas saturation. It is found that the maximum attenuation and velocity dispersion is at low gas saturation. Therefore, the dispersion and attenuation can provide a potential way to predict gas saturation and can be used as a property to differentiate low from high gas saturation.  相似文献   

5.
Average elastic properties of a fluid‐saturated fractured rock are discussed in association with the extremely slow and dispersive Krauklis wave propagation within individual fractures. The presence of the Krauklis wave increases P‐wave velocity dispersion and attenuation with decreasing frequency. Different laws (exponential, power, fractal, and gamma laws) of distribution of the fracture length within the rock show more velocity dispersion and attenuation of the P‐wave for greater fracture density, particularly at low seismic frequencies. The results exhibit a remarkable difference in the P‐wave reflection coefficient for frequency and angular dependency from the fractured layer in comparison with the homogeneous layer. The biggest variation in behaviour of the reflection coefficient versus incident angle is observed at low seismic frequencies. The proposed approach and results of calculations allow an interpretation of abnormal velocity dispersion, high attenuation, and special behaviour of reflection coefficients versus frequency and angle of incidence as the indicators of fractures.  相似文献   

6.
碳酸盐岩孔隙结构类型复杂多样,当地震波经过含有不同孔隙结构的流体饱和岩石后往往会产生不同的波频散和衰减特征,这使得根据波的不同响应特征来推断碳酸盐岩的孔隙结构类型,甚至孔隙流体性质信息成为可能.本文针对白云岩、灰岩以及人工碳酸盐岩样品开展了跨频段(超声+低频)实验测量和理论建模,探索碳酸盐岩的孔隙结构类型和孔隙流体对模量频散和衰减的影响机制.首先根据铸体薄片、扫描电镜的图像对碳酸盐岩样品进行了孔隙结构类型分析,并将样品主要分为裂缝型、裂缝-孔隙型、孔洞型三类,然后测量了相应样品完全饱和流体后在不同围压下的模量频散与衰减.在完全饱和甘油并处于低围压时,裂缝型与孔洞型样品均出现一个衰减峰,分别位于1 Hz与100 Hz附近,而裂缝-孔隙型样品则具有两个衰减峰,一个在1 Hz附近,另一个在100 Hz附近.裂缝型样品(裂缝主导)的衰减峰相比孔洞型样品(中等刚度孔隙主导)对应的衰减峰在低围压下幅度更大,且对围压变化更敏感.在测量数据的基础上,建立了考虑纵横比分布的软孔隙和中等刚度孔隙的喷射流模型,认为该模型能一定程度上解释裂缝型、裂缝-孔隙型、孔洞型三种类型碳酸盐岩在测量频带的频散.以上研究加深了对不同孔隙类型主导的碳酸盐岩储层地震响应特征的认识,对储层预测工作的进一步精细化具有重要意义.  相似文献   

7.
Extension of White's layered model to the full frequency range   总被引:1,自引:0,他引:1  
The low‐frequency theory of the White model to predict the dispersion and intrinsic attenuation in a single porous skeleton saturated with periodic layers of two immiscible fluids is extended to the full frequency range using the Biot theory. The extension is similar to the Dutta–Odé model for spherical inhomogeneities. Below the layer resonance frequency, the acoustic bulk properties for several gas–water fractions are in good agreement with the original White model. Deviations start to occur at higher frequencies due to the growing importance of resonance phenomena that were neglected in the original White model. The full model predicts significantly higher damping at sonic frequencies than the original White model. We also show that attenuation is significantly dependent on porosity variations. With realistic rock and fluid properties, a maximum attenuation of about 0.3 is found at seismic frequencies.  相似文献   

8.
循环荷载下饱和岩石的滞后和衰减   总被引:13,自引:0,他引:13       下载免费PDF全文
通过对饱和砂岩和大理岩的循环荷载实验,分析了饱和岩石在循环荷载下的应力-应变滞后回线、瞬时杨氏模量、泊松比的“X”形变化曲线,以及杨氏模量随应变振幅的增加而减少等滞后现象,并分析了施加外力的应变振幅对衰减的影响,认为岩石在循环荷载作用下的衰减与应变振幅成正比,提出的衰减b值反映了岩石在循环荷载作用下衰减的程度. 岩石的衰减和滞后存在密切的关系,通过饱和岩石的宏观行为,探讨了饱和岩石在循环荷载下的滞后和衰减现象的微观机理,认为孔隙流体流动在岩石的滞后和衰减中起着重要作用,岩石内部的颗粒接触粘合和黏滑摩擦可能是孔隙岩石在循环荷载作用下产生滞后和衰减的原因.  相似文献   

9.
In exploration geophysics, the efforts to extract subsurface information from wave characteristics exceedingly depend on the construction of suitable rock physics model. Analysis of different rock physics models reveals that the strength and magnitude of attenuation and dispersion of propagating wave exceedingly depend on wave-induced fluid flow at multiple scales. In current work, a comprehensive analysis of wave attenuation and velocity dispersion is carried out at broad frequency range. Our methodology is based on Biot's poroelastic relations, by which variations in wave characteristics associated with wave-induced fluid flow due to the coexistence of three fluid phases in the pore volume is estimated. In contrast to the results of previous research, our results indicate the occurrence of two-time pore pressure relaxation phenomenon at the interface between fluids of disparate nature, that is, different bulk modulus, viscosity and density. Also, the obtained results are compatible with numerical results for the same 1D model which are accounted using Biot's poroelastic and quasi-static equation in frequency domain. Moreover, the effects of change in saturation of three-phase fluids were also computed which is the key task for geophysicist. The outcomes of our research reveal that pore pressure relaxation phenomenon significantly depends on the saturation of distinct fluids and the order of saturating fluids. It is also concluded that the change in the saturation of three-phase fluid significantly influences the characteristics of the seismic wave. The analysis of obtained results indicates that our proposed approach is a useful tool for quantification, identification and discrimination of different fluid phases. Moreover, our proposed approach improves the accuracy to predict dispersive behaviour of propagating wave at sub-seismic and seismic frequencies.  相似文献   

10.
A key task of exploration geophysics is to find relationships between seismic attributes (velocities and attenuation) and fluid properties (saturation and pore pressure). Experimental data suggest that at least three different factors affect these relationships, which are not well explained by classical Gassmann, Biot, squirt-flow, mesoscopic-flow and gas dissolution/exsolution models. Some of these additional factors include (i) effect of wettability and surface tension between immiscible fluids, (ii) saturation history effects (drainage versus imbibition) and (iii) effects of wave amplitude and effective stress. We apply a new rock physics model to explain the role of all these additional factors on seismic properties of a partially saturated rock. The model is based on a well-known effect in surface chemistry: hysteresis of liquid bridges. This effect is taking place in cracks, which are partially saturated with two immiscible fluids. Using our model, we investigated (i) physical factors affecting empirical Brie correlation for effective bulk modulus of fluid, (ii) the role of liquids on seismic attenuation in the low frequency (static) limit, (iii) water-weakening effects and (iv) saturation history effects. Our model is applicable in the low frequency limit (seismic frequencies) when capillary forces dominate over viscous forces during wave-induced two-phase fluid flow. The model is relevant for the seismic characterization of immiscible fluids with high contrast in compressibilities, that is, for shallow gas exploration and CO2 monitoring.  相似文献   

11.
The simplified macro‐equations of porous elastic media are presented based on Hickey's theory upon ignoring effects of thermomechanical coupling and fluctuations of porosity and density induced by passing waves. The macro‐equations with definite physical parameters predict two types of compressional waves (P wave) and two types of shear waves (S wave). The first types of P and S waves, similar to the fast P wave and S wave in Biot's theory, propagate with fast velocity and have relatively weak dispersion and attenuation, while the second types of waves behave as diffusive modes due to their distinct dispersion and strong attenuation. The second S wave resulting from the bulk and shear viscous loss within pore fluid is slower than the second P wave but with strong attenuation at lower frequencies. Based on the simplified porous elastic equations, the effects of petrophysical parameters (permeability, porosity, coupling density and fluid viscosity) on the velocity dispersion and attenuation of P and S waves are studied in brine‐saturated sandstone compared with the results of Biot's theory. The results show that the dispersion and attenuation of P waves in simplified theory are stronger than those of Biot's theory and appear at slightly lower frequencies because of the existence of bulk and shear viscous loss within pore fluid. The properties of the first S wave are almost consistent with the S wave in Biot's theory, while the second S wave not included in Biot's theory even dies off around its source due to its extremely strong attenuation. The permeability and porosity have an obvious impact on the velocity dispersion and attenuation of both P and S waves. Higher permeabilities make the peaks of attenuation shift towards lower frequencies. Higher porosities correspond to higher dispersion and attenuation. Moreover, the inertial coupling between fluid and solid induces weak velocity dispersion and attenuation of both P and S waves at higher frequencies, whereas the fluid viscosity dominates the dispersion and attenuation in a macroscopic porous medium. Besides, the heavy oil sand is used to investigate the influence of high viscous fluid on the dispersion and attenuation of both P and S waves. The dispersion and attenuation in heavy oil sand are stronger than those in brine‐saturated sandstone due to the considerable shear viscosity of heavy oil. Seismic properties are strongly influenced by the fluid viscosity; thus, viscosity should be included in fluid properties to explain solid–fluid combination behaviour properly.  相似文献   

12.
深入了解不同压力、频率、流体含量和流体分布对岩石中弹性波传播特性的影响,对指导油气勘探开发具有重要意义.不同尺度下的波致流效应,是声波传播过程中产生速度频散和衰减的重要原因.本文以不同压力下水饱和区域改进的骨架模量为纽带,建立了联合介观尺度斑块饱和效应与微观尺度喷射流效应的部分饱和岩石声学理论模型.开展针对性声学实验,根据不同压力下部分饱和砂岩纵波速度测量数据,确定理论模型中的相关参数,从而实现对不同压力下部分饱和岩石纵波衰减的定量表征.在此基础上,通过理论与实验测量的纵波衰减的对比,分析不同压力、含水饱和度以及频率对岩石纵波衰减的影响.研究结果表明,在较低压力,较高含水饱和度以及较高频段,喷射流效应较强,因此新建模型计算的衰减明显大于斑块饱和模型的衰减.由于新建模型体现了斑块饱和效应与喷射流效应的综合影响,相比于斑块饱和模型,新建模型计算的部分饱和岩石的纵波衰减更接近于实测衰减,但受到岩石自身因素影响,新建模型计算的衰减仍略小于实测衰减.  相似文献   

13.
利用Metravib热机械分析仪, 在天然地震的频率和温度范围内, 首次对泵油和甘油饱和两种孔隙度的彭山砂岩的衰减和速度频散进行了实验研究. 结果表明, ① 泵油饱和彭山砂岩对频率和温度的依赖呈热激活弛豫规律; ② 杨氏模量和弹性波速度与孔隙度、 温度呈负相关, 与饱和液体的黏滞系数、 频率呈正相关; ③ 频散效应因频率上升而增强, 因温度增高而减弱. 这一规律性的结果为地震波理论研究提供了实验基础.   相似文献   

14.
It is evident from the laboratory experiments that shear moduli of different porous isotropic rocks may show softening behaviour upon saturation. The shear softening means that the shear modulus of dry samples is higher than of saturated samples. Shear softening was observed both at low (seismic) frequencies and high (ultrasonic) frequencies. Shear softening is stronger at seismic frequencies than at ultrasonic frequencies, where the softening is compensated by hardening due to unrelaxed squirt flow. It contradicts to Gassmann's theory suggesting that the relaxed shear modulus of isotropic rock should not depend upon fluid saturation, provided that no chemical reaction between the solid frame and the pore fluid. Several researchers demonstrated that the shear softening effect is reversible during re-saturation of rock samples, suggesting no permanent chemical reaction between the solid frame and the pore fluid. Therefore, it is extremely difficult to explain this fluid–rock interaction mechanism theoretically, because it does not contradict to the assumptions of Gassmann's theory, but contradicts to its conclusions. We argue that the observed shear softening of partially saturated rocks by different pore fluids is related to pore-scale interfacial phenomena effects, typically neglected by the rock physics models. These interface phenomena effects are dependent on surface tension between immiscible fluids, rock wettability, aperture distribution of microcracks, compressibility of microcracks, porosity of microcracks, elastic properties of rock mineral, fluid saturation, effective stress and wave amplitude. Derived equations allow to estimate effects of pore fluids and saturation on the shear modulus and mechanical strength of rocks.  相似文献   

15.
Intrinsic wave attenuation at seismic frequencies is strongly dependent on rock permeability, fluid properties, and saturation. However, in order to use attenuation as an attribute to extract information on rock/fluid properties from seismic data, experimental studies on attenuation are necessary for a better understanding of physical mechanisms that are dominant at those frequencies. An appropriate laboratory methodology to measure attenuation at seismic frequencies is the forced oscillation method, but technical challenges kept this technique from being widely used. There is a need for the standardization of devices employing this method, and a comparison of existing setups is a step towards it. Here we summarize the apparatuses based on the forced oscillation method that were built in the last 30 years and were used to measure frequency‐dependent attenuation in fluid‐saturated and/or dry reservoir rocks under small strains (10?8–10?5). We list and discuss important technical aspects to be taken into account when working with these devices or in the course of designing a new one. We also present a summary of the attenuation measurements in reservoir rock samples performed with these apparatuses so far.  相似文献   

16.
部分饱和孔隙岩石中声波传播数值研究   总被引:28,自引:1,他引:27       下载免费PDF全文
利用基于Biot理论的孔隙弹性介质的高阶交错网格有限差分算法,模拟了具有随机分布特征的多种流体饱和岩石中声波在中心频率分别为25,50,75,100kHz时的声场特点. 对于一个由两种成分(气和水)饱和的岩石模型, 假设含不同流体的孔隙介质随机分布在不同的宏观区域,该区域尺度远小于计算的声波波长;组成模型的两种随机分布介质具有相同的固体骨架参数、渗透率和孔隙度,但分别被具有不同压缩性、密度和黏滞系数特性的水和气饱和. 计算和统计分析结果表明,在两种孔隙成分随机分布的部分饱和条件下纵波速度比较复杂,除骨架参数外,其变化主要依赖于中心频率、各种孔隙成分饱和度及饱和介质的速度. 比较该随机分布模型、Gassmann理论模型和White的“气包”模型,发现三种模型得到的纵波速度和衰减规律有较好的定性对应关系. 其次,按照这种随机计算模型的处理方法,本文还首次计算了一个三种流体成分充填饱和的例子,即岩石模型中的孔隙被水、油和气部分饱和,计算时保持模型含水饱和度不变而只改变含油和含气饱和度. 在这种计算条件下,纵波速度随中心频率呈增大的趋势但有起伏变化. 声场快照显示了各种转换波在多种孔隙成分充填(两种和三种孔隙成分)岩石中的声场特征,复杂的水-油-气界面的非均匀分布对声场有重要影响,纵波能量主要转换形成了较为复杂的多种慢纵波和横波.  相似文献   

17.
本文采用从法国引进的Metravib热机械分析仪用正弦波加载方式,首次对四种不同孔隙度的饱和砂岩的衰减进行了实验研究,在5~400 Hz的频率,-50 ℃~100 ℃的温度范围获得衰减的热弛豫规律,由此求得它们的激活能和原子振动频率,其激活能和弛豫时间是处在原子和电子的激活能和弛豫时间之间.可见,在饱和岩石的晶粒间界缺陷处参与扩散的是原子、电子.并得出随孔隙度增大,衰减强度和激活能增大,原子的振动速率加快,弛豫时间缩短.在交变应力作用下,由多种矿物晶体胶结而成的饱和砂岩是一种多晶、多相的固体,由于内部结构复杂,损伤、缺陷广布,弛豫衰减是普遍存在的.饱和砂岩中存在的晶界、相界等许多缺陷,以及缺陷间的相互作用,比如饱和岩石中的饱和液体与岩石骨架之间的作用等等都可以产生弛豫衰减峰,弛豫过程还受晶界上原子扩散所控制.由于饱和岩石中的种种缺陷、相界等等导致上述矿物颗粒或晶界之间的多重弛豫,才使弛豫衰减峰变宽,分布宽度增大.用饱和砂岩中特有的饱和液体及砂岩内部结构的复杂性解释了饱和砂岩的衰减机理,很自然地将其宏观衰减特征与微细观结构紧紧联在一起.衰减及其机理的研究既具有科学意义,对地球物理勘探又具有实用价值.  相似文献   

18.
油水双相饱和孔隙模型核磁特性理论研究   总被引:6,自引:2,他引:6       下载免费PDF全文
利用特征函数展开方法,给出了基于扩散效应的核磁共振Bloch控制方程的弛豫模式解表达式, 在此基础上分别给出了水饱和与油水双相饱和孔隙模型的核磁共振特性模拟结果. 结果表明,孔隙流体的核磁弛豫与孔隙大小、孔隙表面弛豫率、孔隙流体的扩散能力以及含油饱和度等有密切的关系. 对于水饱和孔隙,弛豫时间主要由孔隙大小控制. 当孔隙较大时,即使均匀大小孔隙,孔隙流体的弛豫也会表现为多指数弛豫. 而且最小模式弛豫时间与孔隙大小为非线性关系. 对于油水双相饱和孔隙,在孔隙较小时,含油饱和度对弛豫的影响主要表现在弛豫时间随含油饱和度的增加而线性减小;但在孔隙较大时,含油饱和度的增加对弛豫影响表现在两个方面,其一,孔隙水弛豫由多个弛豫模式控制逐渐转变为由最小弛豫模式控制;其二,孔隙水弛豫时间与含油饱和度表现为非线性关系. 对由实际岩芯抽象出的孔隙模型,采用本文获得的理论公式,在油水双相饱和时进行了正反演模拟. 计算结果与已有的实验结果较为一致.  相似文献   

19.
In sedimentary rocks attenuation/dispersion is dominated by fluid-rock interactions. Wave-induced fluid flow in the pores causes energy loss through several mechanisms, and as a result attenuation is strongly frequency dependent. However, the fluid motion process governing the frequency dependent attenuation and velocity remains unclear. We propose a new approach to obtain the analytical expressions of pore pressure, relative fluxes distribution and frame displacement within the double-layer porous media based on quasi-static poroelastic theory. The dispersion equation for a P-wave propagating in a porous medium permeated by aligned fractures is given by considering fractures as thin and highly compliant layers. The influence of mesoscopic fluid flow on phase velocity dispersion and attenuation is discussed under the condition of varying fracture weakness. In this model conversion of the compression wave energy into Biot slow wave diffusion at the facture surface can result in apparent attenuation and dispersion within the usual seismic frequency band. The magnitude of velocity dispersion and attenuation of P-wave increases with increasing fracture weakness, and the relaxation peak and maximum attenuation shift towards lower frequency. Because of its periodic structure, the fractured porous media can be considered as a phononic crystal with several pass and stop bands in the high frequency band. Therefore, the velocity and attenuation of the P-wave show an oscillatory behavior with increasing frequency when resonance occurs. The evolutions of the pore pressure and the relative fluxes as a function of frequency are presented, giving more physical insight into the behavior of P-wave velocity dispersion and the attenuation of fractured porous medium due to the wave-induced mesoscopic flow. We show that the specific behavior of attenuation as function of frequency is mainly controlled by the energy dissipated per wave cycle in the background layer.  相似文献   

20.
Biot理论的唯象修正对S波特性的影响   总被引:5,自引:1,他引:5       下载免费PDF全文
将复模量引入Biot方程后,在一维条件下通过S波的波动方程研究了S波的传播特性,S波的数值分析显示在频率域或温度域上都能获得热弛豫衰减峰和Biot衰减峰. 在频率域上由于温度的变化引起两峰相向位移,在温度域上,因频率的变化也发生相对移动. 随着温度和频率的不断提高,两峰发生叠加,叠加后两峰互换位置. 低频或低温段的热弛豫峰移到了高频或高温段,高频或高温段的Biot峰移到了低频或低温段.由于两峰的衰减机制不同,导致S波波速随频率或温度变化规律的复杂性. 这些规律已部分被共振实验所证实,证实该理论模型具有实验基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号