首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为了解水溶造腔过程中盐腔围岩在应力-溶解耦合作用下的溶解损伤机制,利用高温三轴盐岩溶解特性试验机,开展了复杂卸荷条件下(即卸围压的同时增加轴压)不同卤水流量对盐岩的溶解损伤特征研究。研究发现,盐岩的应力和溶解作用相互影响,共同决定盐岩试件在卸荷溶解过程中的变化特征。表现为:卸荷过程中偏应力越大,盐岩溶出速率越大,而且出水口卤水浓度随卸荷溶解时间呈现显著的二次函数关系;盐岩在溶解作用下其力学强度降低,变形能力不断增强,而且流量越大,变化趋势越明显。通过对盐岩卸荷溶解过程中有效溶解面积构成的分析,建立了盐岩卸荷溶解作用下的有效溶解面积模型,分别得到了各有效溶解面积随溶解时间和应力水平的变化方程,并在此基础上构建了盐岩卸荷溶解损伤演化方程,为进一步开展盐岩的损伤-溶解机制研究提供了理论和试验基础。  相似文献   

2.
国内层状盐岩具有夹层多、不溶物含量高等特点,现有造腔软件不能很好地模拟国内层状盐岩水溶造腔过程。基于流体力学和化学动力学等理论,建立能够描述盐岩造腔过程的数学模型,并提出了夹层垮塌判据。结合国内层状盐岩水溶造腔工艺特征,开发出能模拟含夹层盐岩水溶造腔的软件Salt Cavern Builder V1.0。该软件可模拟纯盐岩、多夹层盐岩的水溶造腔过程,能较好地反映出造腔方案在现场造腔过程中每个阶段的实施效果。通过大尺寸型盐造腔相似试验,模拟无夹层和含单一夹层的腔体形状扩展过程。基于相似理论基础,在现场造腔工艺条件下,造腔软件模拟出的结果与试验得到的结果接近,验证了该软件的实用性。  相似文献   

3.
应力损伤盐岩的声波、溶解试验研究   总被引:6,自引:1,他引:5  
姜德义  陈结  刘建平  周丽君  王春荣 《岩土力学》2009,30(12):3569-3573
采用声波技术研究盐岩在单轴载荷条件下的损伤特征,并对受损盐岩进行溶解试验分析,以此来分析盐穴建造期盐岩的损伤溶蚀机制。试验发现:随着轴向应力的增加,侧向波速逐渐较小,在达到极限强度后波速快速减小,而不像轴向波速那样在弹性压密阶段会出现小幅增加之后才开始减小;盐岩所受压力越大,对应的溶解速度越快。由岩石单轴强度理论和损伤理论分析表明,盐岩应力损伤由盐岩晶粒相互错动促使微裂纹增多所致,侧向波速确定的损伤变量与应力具有相关性,盐岩的溶解速率随损伤变量的增加而增加。  相似文献   

4.
井喷失控条件下盐岩储库稳定性分析   总被引:1,自引:0,他引:1  
井喷压力失控是盐岩储气库运营的极端情况。根据一维绝热管流理论解析得到井喷情形下储库卸压规律。在此基础上结合金坛盐矿工程地质条件,模拟对比分析了不同初始内压失控工况下盐岩储库应力状态、变形收敛特征和损伤破坏规律。结果表明,溶腔硬夹层总是先于盐岩体而屈服形成明显的屈服带,失控卸压阶段塑性区逐渐扩展布满整个腔体并向径向延伸6~8 m;运营压力范围内初始内压越低,储库卸压收敛越大,7 MPa下储库体积损失达5.02%;卸压阶段溶腔内壁围岩应变速率跃升至10-2 s-1数量级,属于准静态范畴。研究认为,井喷失控状态下失控初始内压是维持储库腔体稳定性的关键因素,在极端灾害环境中应确保盐岩储库处于较高的运营压力之下  相似文献   

5.
为了解水溶造腔过程中盐岩在卤水浸泡环境中的剪切特性,设计了盐岩剪切特性影响因素的正交试验,研究了卤水浸泡时间、温度和加载速率对盐岩剪切特性的影响规律。试验结果表明,卤水浸泡会弱化盐岩的抗剪强度,卤水浸泡时间越长盐岩抗剪强度越低,但最终趋于稳定;卤水温度升高,加剧盐岩内部损伤,盐岩抗剪强度随之降低;经一定温度卤水浸泡后盐岩的抗剪强度随加载速率的增大而降低,且其延性特征也随浸泡时间、温度和加载速率的增大逐渐减弱。通过对任意两个影响因素分别进行二元线性回归,根据其标准回归系数对盐岩抗剪强度的相对重要性比值构建判断矩阵,运用层次分析法计算出温度、加载速率和浸泡时间等影响因素的权值分别为0.397,0.340,0.263。极差分析和权值计算表明,盐岩剪切强度的影响因素主次关系依次为温度、加载速率和浸泡时间。  相似文献   

6.
盐岩储气库最佳采气速率数值模拟研究   总被引:7,自引:2,他引:5  
由于已采盐矿存在着大量的采卤溶腔群,对采卤溶腔群进行改造作为天然气储存库使用,能有效缩短储气库的建设周期,并消除采卤溶腔对环境带来的不利影响。基于盐矿地质资料、盐岩的力学试验及本构关系分析,对作为西气东输储气库使用4口采卤溶腔群进行了研究,通过三维数值模拟方法研究了该溶腔群在不同采气速率下盐腔周的应力状态和体积变形规律,并通过分析,对该溶腔群的最佳采气速率得出了有益的结论。  相似文献   

7.
汤艳春  周辉  许模 《岩土力学》2012,33(Z2):37-0045
通过分析岩盐应力-溶解耦合效应对盐腔水溶建腔过程的影响,研究应力-溶解耦合作用下的盐腔水溶建腔机制。研究表明,在盐腔成腔过程中,应力-溶解耦合效应对盐腔形状的影响不可忽略;应力-溶解耦合作用下的盐腔水溶建腔机制在于溶蚀作用下在水的溶蚀影响范围内的腔壁围岩力学性质发生变化,同时,由于腔壁边界处围岩力学性质的改变,造成盐腔内部溶蚀过程发生变化,从而使盐腔形态发生改变;根据应力-溶解耦合作用下的盐腔水溶建腔机制,建立应力-溶解耦合作用下的盐腔水溶建腔计算方法;使用编制的应力-溶解耦合作用下的盐腔形态变化计算程序以及FLAC计算软件对水溶建腔过程进行计算。计算结果表明,相比于纯溶解作用,应力-溶解耦合作用下计算得到的盐腔形状与实际溶腔形状较为符合。该研究成果可为进一步研究储库盐腔水溶建腔机制提供理论依据和分析基础。  相似文献   

8.
尹雪英  杨春和  李银平 《岩土力学》2006,27(Z1):344-348
针对盐矿常为不同岩层交替而成的互层盐岩体的基本特点,利用宏观平均意义下考虑细观弯曲效应的三维Cosserat介质扩展本构模型的FLAC3D接口程序,对湖北云应地区的ZK1075,ZK1083,ZK1099溶腔进行了计算,不仅考虑了刚度异于盐岩的泥岩对复合体弹性特征的影响,并且考虑了由于各层内部位移协调引起泥岩夹层先行破损,进而引起复合体变形和破坏。计算结果表明,云应地区的层状盐岩体中的刚度、强度较大的泥岩夹层对层状盐岩复合体具有强化作用,对盐岩溶腔造腔后的稳定性有利。  相似文献   

9.
《岩土力学》2017,(11):3119-3126
为研究夹层特征变化对含夹层盐岩力学特性及破坏的影响,克服了现场取样的困难,利用自行压制的含夹层盐岩,在试验室进行了单轴和三轴压缩试验。试验结果表明:夹层和盐岩之间的变形差异对含夹层盐岩的强度、弹性模量等力学特性参数有重大影响。单轴压缩条件下,含夹层盐岩破坏均为由夹层扩展至盐岩的轴向劈裂;含夹层盐岩强度随夹层厚度的增加趋于降低;含双夹层盐岩强度低于含单夹层盐岩;夹层倾角的存在会对含夹层盐岩的强度、弹性模量有削弱作用,并且破坏形式属于滑移和劈裂的综合。三轴压缩条件下,含夹层盐岩的抗压强度、弹性模量、峰值载荷变形量均低于纯盐岩;纯盐岩为侧向膨胀破坏,没有明显的破裂面,而含夹层盐岩中的泥岩夹层部分表现为剪切破坏的特征,盐岩层部分为侧向膨胀。其研究结果为层状盐岩储库的建造和运营提供了有力的试验依据。  相似文献   

10.
针对我国层状盐岩的地质赋存特征,开展了层状模型材料的三轴压缩试验,探讨了界面倾角对层状交互模型材料试样的应力-应变曲线、压缩强度、弹性模量、峰后应力跌幅和破坏形态的影响,并对不同界面倾角试样的破坏形态进行了理论分析。分析结果表明,(1)三轴峰值强度随界面倾角的增大呈先减小后增大的变化趋势,60°时取得最小值,90°时取得最大值;(2)弹性模量随界面倾角的增大而增大,刚开始随角度增大而增大的趋势很平缓,倾角接近90°时增大趋势明显,0°时取得最小值,90°时取得最大值;(3)随界面倾角增大,峰后应力跌幅先减小后增大,30°最小,90°最大;(4)破坏形态随界面倾角增大依次呈现出共轭剪切(0°)、沿弱面的剪切破坏(30°和60°)和剪切-局部劈裂破坏形态(90°)三种破坏模式;(5)储库腔顶和腔底部位强度较高,但脆性很强,须采取一定措施控制这些部位的变形和位移,腔体30°和60°的腰部部位及附近强度较低,塑性变形能力较强,须对储库形状和运营压力进行精细设计。针对试验结果进行的理论分析,可为进一步分析层状盐岩地层中储库的围岩稳定性和局部破损特性提供一定参考。  相似文献   

11.
为了研究盐穴能源地下储库建造过程中,腔体围岩处在地温、卤水和地应力地质环境中盐岩的损伤演化特点,利用声发射技术分析盐岩受不同温度的饱和卤水作用后的单轴压缩损伤破坏过程。试验发现:在一定温度的饱和卤水中浸泡30 d后盐岩的单轴抗压强度和弹性模量有所降低,但降低的平均幅度很小;卤水对盐岩主要表现为溶蚀作用,而浸泡弱化作用非常小;单轴压缩过程中盐岩的应力-应变曲线与声发射-应变曲线具有较好的一致性,卤水浸泡后盐岩的累计声发射数随卤水的温度升高略有增加;卤水作用后盐岩试件的声发射率和累计数要小于无卤水作用盐岩;盐穴建造期盐岩受一定温度的卤水作用后盐岩的强度将出现一定弱化,但卤水也会促进损伤盐岩体的重结晶恢复,盐岩的这种特性有利于盐穴建造期安全和稳定。  相似文献   

12.
三轴应力状态下盐岩强度分析探讨   总被引:1,自引:0,他引:1  
刘建锋  边宇  郑得文 《岩土力学》2014,35(4):919-925
通过分析盐岩在三轴应力状态下的变形,说明了较高围压下盐岩的大变形特性,提出了三轴应力状态下,利用轴向荷载除以试件初始横截面面积得到应力-应变关系存在的问题,据此对工程应变和对数应变进行了分析和对比,阐明了这两种应变的适用条件,并开展了不同围压下的试验测试和对试验结果对比分析。研究揭示了应利用对数应变分析盐岩的大变形特性和对变形后的应力进行修正,得到了盐岩的工程应变和对数应变均可表示为围压的线性函数,围压为20 MPa时的轴向压缩变形量是5 MPa时的3.09倍。围压越高,对数应变修正得到的最大轴向应力与不修正的差值越大,用对数应变修正后的轴向应力低于不修正的结果,围压达到20 MPa时,前者仅为后者的63.85%。  相似文献   

13.
14.
盐岩矿的水溶法开采是获得人类生活必需品和重要工业原料——盐的重要途径之一。在水溶法开采中,岩盐矿中的水溶性重金属会随着母液到达地表环境和后续的岩盐产品中,可能对地表环境造成污染和危害人体健康,故对岩盐矿中水溶性重金属的检测非常重要。岩盐矿中的水溶性铜铅锌镉含量较低,而盐分含量过高,过高的盐分含量会影响ICP-OES的雾化效率,故很难用ICP-OES直接测量重金属含量。本文以巯基棉为吸附材料,从溶液pH、洗脱液浓度、洗脱液体积等方面研究了分离富集岩盐矿中水溶性铜铅锌镉的实验条件。结果表明,在pH=7的介质中,巯基棉对铜铅锌镉有良好的吸附性能,被吸附的铜铅锌镉可用7 m L盐酸(15%)定量洗脱,溶液中的钠对吸附无明显影响。对解吸后的溶液,铜铅锌镉的回收率均≥92.2%,钠回收率仅0.04%,基本实现了铜铅锌镉与钠的分离,达到了ICP-OES检测要求。  相似文献   

15.
姜德义  宋书一  任松  陈结  杨春和 《岩土力学》2013,34(4):1025-1030
利用自行研制的三轴岩盐溶解试验机,实现在三轴应力条件下岩盐试样溶解试验。进行三轴应力条件下溶液浓度、温度、流量以及偏应力4个因素相互耦合状态的岩盐溶解速率正交试验,研究各个因素对岩盐溶解速率的影响规律。对任意两个影响因素分别进行二元线性回归,根据其标准回归系数对岩盐溶解速率相对重要性比值构建判断矩阵,运用层次分析法计算各个影响因素的权值。研究结果表明,岩盐溶解速率随着浓度增大迅速降低,随着温度升高而增大,随着流量增大缓慢增加,但变化并不明显;随着偏应力增大先减小,后缓慢增大。极差分析和权值计算结果表明,岩盐溶解速率影响因素主次关系依次为浓度、温度、流量和偏应力。4个因素对岩盐溶解速率影响权值大小依次为0.570、0.384、0.048、0.005,其中浓度和温度两个影响因素权重占到95%。  相似文献   

16.
地下盐穴储气库安全性是蓄气运行的关键地质问题.针对平顶山盐田盐层薄、夹层多以及埋藏深等特征,从薄层状盐岩的渗透性、流变性以及稳定性3个方面,详细讨论了储气库的地质可储性及地面沉降问题.首先采集了纯盐岩、互层状盐岩、泥岩夹层3种岩石试样,分别进行了电镜扫描和不同应力水平下的三轴压缩蠕变试验,并应用CYT法对试验区进行了深部盐岩溶腔的探测.鉴于试验区多个采井影响区的重叠,地面沉降量实际监测结果比较复杂,绝对值偏小但具有波动性.综合上述地质特征,作出了平顶山地下盐穴储气库地质条件良好的结论,为我国同类工程提供一定的实际参考.  相似文献   

17.
王岩生 《江苏地质》2019,43(2):329-333
通过江苏洪泽顺河集南石盐矿样品室内水溶试验,研究该盐矿的水溶性能。结果表明:该矿上溶溶解速度和溶蚀速度大,侧溶溶蚀速度小于上溶溶蚀速度,但样品侧溶角小、溶解空间大、卤水膨胀率低,有利于水溶开采时水资源的利用;水不溶残渣膨胀率平均仅为2.18%,溶腔被残渣充填范围小,有利于上溶生产;残渣中的石盐残留量为23.03%~35.60%,开采过程中损失较少,利用率较高;卤水成分中NaCl含量高,有利于进一步加工利用。  相似文献   

18.
盐岩地下储气库受盐岩蠕变特性影响会产生较大的体积收缩变形,影响储气库安全稳定运行。目前对地下储气库体积稳定性分析方法和评价准则各国没有统一标准,国内主要采用数值计算的方法来评价储气库体积稳定性。以江苏金坛盐矿地下储气库体积收敛数值分析为基础,借鉴国外盐岩地下储气库稳定性评价标准,建立盐岩地下储气库体积收敛失效风险评价矩阵,采用一次二阶矩法显示功能函数分析储气库体积收敛失效概率,分析得出:储气库在长期恒定内压工况下体积收敛失效概率随内压的增大而减小;在短期调峰低压工况下体积收敛失效概率随内压的减小而增大;最小内压应保持在4.2 MPa以上。通过交变气压条件下层状盐岩地下储气库大型三维地质力学模型试验得出:储气库体积收敛变形随内压的增大而减小;短期运行最小内压应大于4.0 MPa。模型试验结果与失效概率分析结论较为相似。因此,为避免盐岩地下储气库产生体积收敛破坏,应保证调峰短期最小内压在4.0 MPa以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号