首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
The contribution of bathymetry to the prediction of quantities related to the gravity field (e.g., gravity anomalies, geoid heights) is discussed in an extended test area of the central Mediterranean Sea. Sea gravity anomalies and a priori statistical characteristics of depths are used in a least-squares collocation procedure in order to produce new depths, giving a better smoothing of the gravity field when using a remove-restore procedure. The effect of the bottom topography on gravity-field modeling is studied using both the original and the new depths through a residual terrain modeling reduction. The numerical tests show a considerable smoothing of the sea gravity anomalies and the available altimeter heights when the new depth information is taken into account according to the covariance analysis performed. Moreover, geoid heights are computed by combining the sea gravity anomalies either with the original depths or with the new ones, using as a reference surface the OSU91A geopotential model. Comparing the computed geoid heights with adjusted altimeter sea-surface heights (SSHs), better results are obtained when subtracting the attraction of the new depth information. Similar results are obtained when predicting gravity anomalies from altimeter SSHs where the terrain effect on altimetry is based on the new bottom topography. Received: 10 September 1996 / Accepted: 4 August 1997  相似文献   

2.
Summary Basically two different evaluation methods are available to compute geoid heights from residual gravity anomalies in the inner zone: numerical integration and least squares collocation.If collocation is not applied to a global gravity data set, as is usually the case in practice, its result will not be equal to the numerical integration result. However, the cross covariance function between geoid heights and gravity anomalies can be adapted such that the geoid contribution is computed only from a small gravity area up to a certain distance o from the computation point. Using this modification, identical results are obtained as from numerical integration.Applying this modification makes the results less dependent on the covariance function used. The difference between numerical integration and collocation is mainly caused by the implicitly extrapolated residual gravity anomaly values, outside the original data area. This extrapolated signal depends very much on the covariance function used, while the interpolated values within the original data area depend much less on it.As a sort of by-product, this modified collocation formula also leads to a new combination technique of numerical integration and collocation, in which the optimizing practical properties of both methods are fully exploited.Numerical examples are added as illustration.  相似文献   

3.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

4.
用重力异常逐级余差计算重力大地水准面   总被引:1,自引:0,他引:1  
石磐  盛宗琪 《测绘学报》1993,22(4):279-286
本文将计算重力大地水准面的频域方法推广至空域,提出了一种新的用重力数据和重力模型位系数联合确定大地水准面的方法。利用重力异常的逐级余差实施积分,使得通常的Stokes积分方法具有明确的频域分析含义,可按精度要求确定出使用重力异常余差的块形大小及积分半径ψo。  相似文献   

5.
We propose a methodology for the combination of a gravimetric (quasi-) geoid with GNSS-levelling data in the presence of noise with correlations and/or spatially varying noise variances. It comprises two steps: first, a gravimetric (quasi-) geoid is computed using the available gravity data, which, in a second step, is improved using ellipsoidal heights at benchmarks provided by GNSS once they have become available. The methodology is an alternative to the integrated processing of all available data using least-squares techniques or least-squares collocation. Unlike the corrector-surface approach, the pursued approach guarantees that the corrections applied to the gravimetric (quasi-) geoid are consistent with the gravity anomaly data set. The methodology is applied to a data set comprising 109 gravimetric quasi-geoid heights, ellipsoidal heights and normal heights at benchmarks in Switzerland. Each data set is complemented by a full noise covariance matrix. We show that when neglecting noise correlations and/or spatially varying noise variances, errors up to 10% of the differences between geometric and gravimetric quasi-geoid heights are introduced. This suggests that if high-quality ellipsoidal heights at benchmarks are available and are used to compute an improved (quasi-) geoid, noise covariance matrices referring to the same datum should be used in the data processing whenever they are available. We compare the methodology with the corrector-surface approach using various corrector surface models. We show that the commonly used corrector surfaces fail to model the more complicated spatial patterns of differences between geometric and gravimetric quasi-geoid heights present in the data set. More flexible parametric models such as radial basis function approximations or minimum-curvature harmonic splines perform better. We also compare the proposed method with generalized least-squares collocation, which comprises a deterministic trend model, a random signal component and a random correlated noise component. Trend model parameters and signal covariance function parameters are estimated iteratively from the data using non-linear least-squares techniques. We show that the performance of generalized least-squares collocation is better than the performance of corrector surfaces, but the differences with respect to the proposed method are still significant.  相似文献   

6.
GSPP is a computer program system which has been developed for the purposes of automatically determining and representing gravity field surfaces like the geoid, the field of gravity anomalies or deviations of the vertical at prescribed altitude, etc. The system processes gravity field information given by a heterogeneous set of linear functionals of the anomalous potential superimposed by noise, and provides automatically gravity field surfaces in terms of profiles, contour maps and/or 3-dimensional representations. The solution is generally based on least-squares collocation; for a homogeneous data set, a simple weighted average interpolation is available as well. Based on the given data, surface function values at the grid points of a regular rectangular grid are predicted. The representation of the surfaces is smooth using bicubic spline functions. GSPP has a control unit which performs all necessary decision processes and such reduces the user’s decision making to a minimum. The system has been designed for geodetic purposes only; however, because of its versatility and flexibility it presents itself also for applications in other geosciences.  相似文献   

7.
本文利用全球重力位模型、胶州市地面重力观测数据、胶州市GPS水准数据和数字地面模型(DTM),采用组合法应用移去-恢复技术计算剩余大地水准面,并与地球位模型计算的高程异常进行拟合,得到该地区重力似大地水准面,再和布测、计算得到的GPS/水准所构成的几何大地水准面拟合,利用多项式拟合完成系统改正,获得最终的大地水准面结果及相关的精度信息。  相似文献   

8.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

9.
LSC法(最小二乘配置法)因能融合不同种类重力观测数据确定大地水准面的特性而受到广泛关注,但由于协方差矩阵存在病态性,微小的观测误差将被协方差矩阵的小奇异值放大,导致计算的配置结果不稳定且精度偏低。本文提出Tikhonov_LSC法,即在LSC法中引入Tikhonov正则化算法,基于GCV法选择协方差矩阵的正则化参数,利用正则化参数修正协方差矩阵的小奇异值,以抑制其对观测误差的放大影响。基于Tikhonov_LSC法计算大地水准面,能有效提高其稳定性和精度。通过以EGM2008重力场模型分别计算山区、丘陵和海域重力异常作为基础数据确定相应区域大地水准面的实验,验证了该方法的有效性。  相似文献   

10.
利用GOCE模拟观测反演重力场的Torus法   总被引:1,自引:1,他引:0  
在介绍Torus方法反演地球重力场模型的基本原理和方法的基础上,基于圆环面上均匀分布的卫星引力梯度模拟观测值解算了200阶次的地球重力场模型,在无误差情况下,Torus方法解算模型的阶误差RMS小于10-16,验证了该方法的严密性。利用61dGOCE卫星轨道上无误差的模拟引力梯度观测值解算了200阶次的地球重力场模型,分析了格网化误差、极空白对解算精度的影响,迭代3次后,在不考虑低次系数情况下,模型的大地水准面阶误差和累积误差均较小,最大值仅为0.022mm和0.099mm。在沿轨卫星引力梯度模拟数据中加入5mE/Hz1/2的白噪声,基于Torus方法和空域最小二乘法解算了200阶次的地球重力场模型,Torus方法的精度略低于空域最小二乘法的精度,在不考虑低次项的情况下,两种方法解算模型的大地水准面阶误差最大值分别为1.58cm和1.45cm,累积误差最大值分别为6.37cm和5.55cm。但由于采用了二维快速傅里叶技术和块对角最小二乘法,极大地提高了计算效率。本文数值结果说明Torus方法是一种独立有效的方法,可用于GOCE任务海量卫星引力梯度观测值反演重力场的快速解算。  相似文献   

11.
本文所采用的基于输入-输出系统论的谱方法在计算结果的精度上与最小二乘配置方法相当,却很容易用于异性场的计算。用该谱方法对卫星测高及海洋重力资料进行组合求解重力场量(大地水准面差距和重力异常),其误差估计结果表明各向异性场的计算精度优于各向同性场的精度。  相似文献   

12.
Spectral methods have been a standard tool in physical geodesy applications over the past decade. Typically, they have been used for the efficient evaluation of convolution integrals, utilizing homogeneous, noise-free gridded data. This paper answers the following three questions:
  1. Can data errors be propagated into the results?
  2. Can heterogeneous data be used?
  3. Is error propagation possible with heterogeneous data?
The answer to the above questions is yes and is illustrated for the case of two input data sets and one output. Firstly, a solution is obtained in the frequency domain using the theory of a two-input, single-output system. The assumption here is that both the input signals and their errors are stochastic variables with known PSDs. The solution depends on the ratios of the error PSD and the signal PSD, i.e., the noise-to-signal ratios of the two inputs. It is shown that, when the two inputs are partially correlated, this solution is equivalent to stepwise collocation. Secondly, a solution is derived in the frequency domain by a least-squares adjustment of the spectra of the input data. The assumption is that only the input errors are stochastic variables with known power spectral density functions (PSDs). It is shown that the solution depends on the ratio of the noise PSDs. In both cases, there exists the non-trivial problem of estimating the input noise PSDs, given that we only have available the error variances of the data. An effective but non-rigorous way of overcoming this problem in practice is to approximate the noise PSDs by simple stationary models.  相似文献   

13.
The accumulation of good quality satellite altimetry missions allows us to have a precise geoid with fair resolution and to compute free air gravity anomalies easily by fast Fourier transform (FFT) techniques.In this study we are comparing two methods to get gravity anomalies. The first one is to establish a geoid grid and transform it into anomalies using inverse Stokes formula in the spectral domain via FFT. The second one computes deflection of the vertical grids and transforms them into anomalies.The comparison is made using different data sets: Geosat, ERS-1 and Topex-Poseidon exact repeat misions (ERMs) north of 30°S and Geosat geodetic mission (GM) south of 30°S. The second method which transforms the geoid gradients converted into deflection of the vertical values is much better and the results have been favourably evaluated by comparison with marine gravity data.  相似文献   

14.
Gravity gradient modeling using gravity and DEM   总被引:2,自引:0,他引:2  
A model of the gravity gradient tensor at aircraft altitude is developed from the combination of ground gravity anomaly data and a digital elevation model. The gravity data are processed according to various operational solutions to the boundary-value problem (numerical integration of Stokes’ integral, radial-basis splines, and least-squares collocation). The terrain elevation data are used to reduce free-air anomalies to the geoid and to compute a corresponding indirect effect on the gradients at altitude. We compare the various modeled gradients to airborne gradiometric data and find differences of the order of 10–20 E (SD) for all gradient tensor elements. Our analysis of these differences leads to a conclusion that their source may be primarily measurement error in these particular gradient data. We have thus demonstrated the procedures and the utility of combining ground gravity and elevation data to validate airborne gradiometer systems.  相似文献   

15.
从最小二乘配置方法的基本原理出发,以我国某地区范围内1km分辨率的大地水准面高模型数据为例,根据实用公式计算了试验区大地水准面高的协方差值后,采用多项式函数模型和高斯函数模型分别拟合了该地区大地水准面高的局部协方差函数,并对试验区内18个检核点做了推估计算。根据推估值(Nfit)与实测值(NGPSL)的比较分析表明,虽然多项式协方差函数模型略优于高斯协方差函数模型,但它们都能以厘米级的精度拟合局部大地水准面,这表明了配置法用于精化厘米级大地水准面的有效性。  相似文献   

16.
最小二乘配置法中局部协方差函数的计算   总被引:3,自引:1,他引:2  
文汉江 《测绘科学》2000,25(3):37-39
随着 GPS日益广泛的应用及精度的不断提高 ,在有些实际应用中利用 GPS来代替传统的水准测量进行高程控制已成为可能 ,这也进一步提出了对高精度大地水准面的需求。快速傅立叶变换 (FFT)是目前计算大地水准面比较常用的方法之一 ,但需要将重力观测量进行内插得到规则格网上的平均重力异常。利用最小二乘配置法计算大地水准面可直接利用已有的观测值进行计算 ,同时可综合利用不同类型的数据 ,如重力异常和垂线偏差等计算大地水准面 ,因此最小二乘配置法仍有广泛的应用 ,但制约最小二乘配置应用的关键问题是局部协方差函数的计算。将主要讨论最小二乘配置法中局部协方差函数的计算 ,使所用的协方差函数能更好地反映已知的数据 ,从而获得更精确的结果。  相似文献   

17.
Regional geopotential model improvement for the Iranian geoid determination   总被引:1,自引:0,他引:1  
Spherical harmonic expansions of the geopotential are frequently used for modelling the earth’s gravity field. Degree and order of recently available models go up to 360, corresponding to a resolution of about50 km. Thus, the high degree potential coefficients can be verified nowadays even by locally distributed sets of terrestrial gravity anomalies. These verifications are important when combining the short wavelength model impact, e.g. for regional geoid determinations by means of collocation solutions. A method based on integral formulae is presented, enabling the improvement of geopotential models with respect to non-global distributed gravity anomalies. To illustrate the foregoing, geoid computations are carried out for the area of Iran, introducing theGPM2 geopotential model in combination with available regional gravity data. The accuracy of the geoid determination is estimated from a comparison with Doppler and levelling data to ±1.4m.  相似文献   

18.
R. Kiamehr 《Journal of Geodesy》2006,79(10-11):602-612
The computation of regional gravimetric geoid models with reasonable accuracy, in developing countries, with sparse data is a difficult task that needs great care. Here we investigate the procedure for gathering, evaluating and combining different data for the determination of a gravimetric geoid model for Iran, where limited ground gravity data are available. Heterogeneous data, including gravity anomalies, the high-resolution Shuttle Radar Topography Mission global digital terrain model and different global geopotential models including recently published Gravity Recovery and Climate Experiment models, are combined through least-squares modification of the Stokes formula. The new gravimetric geoid model, IRG04, agrees considerably better with GPS/levelling than any of the other recent local geoid model in the area. Its RMS fit with GPS/levelling is 0.27 m and 3.8 ppm in the absolute and relative view, respectively. The relative accuracy of IRG04 is four times better than the most recently published global and regional geoid models available in this area. This progress shows the practical potential of the method of least-squares modification of Stokes’s formula in combination with heterogeneous data for regional geoid determination  相似文献   

19.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   

20.
When planning a satellite gravity gradiometer (SGG) mission, it is important to know the quality of the quantities to be recovered at ground level as a function of e.g. satellite altitude, data type and sampling rate, and signal variance and noise. This kind of knowledge may be provided either using the formal error estimates of wanted quantities using least-squares collocation (LSC) or by comparing simulated data at ground level with results computed by methods like LSC or Fast Fourier Transform (FFT). Results of a regional gravity field recovery in a 10o×20o area surrounding the Alps using LSC and FFT are reported. Data used as observations in satellite altitude (202 or161 km) and for comparison at ground level were generated using theOSU86F coefficient set, complete to degree 360. These observations are referred to points across simulated orbits. The simulated quantities were computed for a 45 days mission period and 4 s sampling. A covariance function which also included terms above degree 360 was used for prediction and error estimation. This had the effect that the formal error standard deviation for gravity anomalies were considerably larger than the standard deviations of predicted minus simulated quantities. This shows the importance of using data with frequency content above degree 360 in simulation studies. Using data at202 km altitude the standard deviation of the predicted minus simulated data was equal to8.3 mgal for gravity and0.33 m for geoid heights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号