首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray diffraction and oxygen isotopic analyses of outcrop and subsurface samples of siliceous rocks were used to reconstruct thermal and diagenetic histories of the Miocene Monterey Shale near Santa Maria, California. Within many stratigraphic sections soft, porous diatomaceous rocks change gradationally to underlying hard and brittle chert, porcellanite, and siliceous shale; the accompanying silica mineral zones are, in descending stratigraphic order: (1) biogenic silica (opal-A), (2) cristobalitic silica (opal-CT), and (3) microcrystalline quartz. Boundaries between silica mineral zones and stratigraphic horizons are often discordant. Within the opal-CT zone, the d(101)-spacing of opal-CT decreases in a smooth non-linear fashion from about 4 10 Å to 4-04 Å. In the Santa Maria Valley and Bradley oil field areas the thicknesses of the opal-CT zones are greater and the present thermal gradients less than in the adjacent Orcutt oil field. Thin opal-CT zones at shallow maximum burial depths apparently correlate with higher thermal gradients. Using present thermal gradients and reconstructed maximum burial depths from well data in the Santa Maria region, the ranges in temperatures for the top and base of the opal-CT zone are 38–54 °C and 55–110 °C, respectively. The temperature difference between these two boundaries ranges from 17 to 60 °C. In comparison, temperature ranges for these two boundaries computed from oxygen isotopic compositions of opal-CT and quartz, extrapolated experimental quartz-water fractionations, and assuming δO18= 0%o for the isotopic composition of the equilibrating fluid are 18–56 °C and 31–80 °C for the top and base of the opal-CT zone, respectively. The temperature difference between these boundaries is 11–36 °C using this method. Thermal gradients and sedimentation rates strongly influence rates of silica transformations. Reconstructed thermal and diagenetic histories of siliceous rocks of the Monterey Shale at four well sites in the Santa Maria region demonstrate that most silica conversions probably occurred during the last 3–4 Myr in response to accelerated rates of sedimentation (and therefore burial heating) during the Pliocene.  相似文献   

2.
Diatom ooze and diatomaceous mudstone overlie terrigenous mudstone beds at Leg 19 Deep Sea Drilling Project sites. The diatomaceous units are 300-725 m thick but most commonly are about 600 m. Diagenesis of diatom frustules follows a predictable series of physical and chemical changes that are related primarily to temperature (depth of burial and local geothermal gradient). During the first 300-400 m of burial frustules are fragmented and undergo mild dissolution. By 600 m dissolution of opal-A (biogenic silica) is widespread. Silica reprecipitates abundantly as inorganic opal-A between 600 and 700 m sub-bottom depth. Inorganic opal-A is rapidly transformed by crystal growth to opal-CT. The result is formation of silica cemented mudstone and porcelanite beds. A regional acoustic reflector (called the bottom-simulating reflector, or BSR) occurs near 600 m depth in the sections. This acoustic event marks the upper surface where silicification (cementation) is active. In Bering Sea deposits, opal-A is transformed to opal-CT at temperatures between 35° and 50°C. This temperature range corresponds to a sub-bottom depth of about 600 m and is the area where silicification is most active. Thus, the BSR represents an isothermal surface; the temperature it records is that required to transform opal-A to opal-CT. Deposition of at least 500 m of diatomaceous sediment was required before the temperature at the base of the diatomaceous section was appropriate (35°-50°C) for silica diagenesis to occur. Accordingly, silica diagenesis did not begin until Pleistocene time. Once silicification began, in response to sediment accumulation during the Quaternary, the diagenetic front (the BSR) moved upsection in pace with the upward migrating thermal boundary. X-ray diffractograms and SEM photographs show three silica phases, biogenic opal-A, inorganic opal-A’, and opal-CT. These have crystallite sizes of 11-16 A, 20-27 A, and 40-81 A, respectively, normal to 101. The d(101) reflection of opal-CT decreases with depth of burial at DSDP Site 192. This occurs by solid-state ordering and requires at least 700 m of burial. Most clinoptilolite in Leg 19 cores forms from the diagenesis of siliceous debris rather than from the alteration of volcanic debris as is commonly reported.  相似文献   

3.
Examination of hydrothermally transformed silica from controlled experiments reveals that amorphous silica changes to quartz through an intermediate phase of opal-CT and that the d(101) spacing of cristobalite progressively decreases from 4.10 Å to 4.05 Å. The rate of spacing decrease is definitely dependent on the reaction temperature, being faster at higher temperatures. This spacing change represents ordering of opal-CT crystals with the passage of time.The relationship between thermal history and degree of ordering suggests that stratigraphic boundaries are usually parallel to isopleths of d (101) spacings, but do not always coincide with them. The isopleths should be more or less discordant to the stratigraphic boundaries where the strata have been folded. This discordancy can be ascribed to the difference of ordering, chiefly controlled by the thermal history during the burial and folding process.  相似文献   

4.
The origin and diagenesis of cherts from Cyprus   总被引:1,自引:0,他引:1  
The Troodos Massif of Cyprus is overlain by a variety of cherts in pelagic chalks, volcanogenic sediments, radiolarites and radiolarian mudstones, all of Campanian to Upper Eocene age. There are two chert types, granular chert and vitreous chert. X-ray diffraction (XRD) reveals the silica polymorphs, disordered cristobalite and quartz. Silicification of the chalks varies from incipient, to bedded, granular cherts, all with disordered cristobalite as the main silica phase. Quartzitic cherts are restricted to the base of Upper Palaeocene and Lower Eocene calciturbidite beds. Disordered cristobalite predominates in the radiolarian mudstones at the foot of the sequence. The form of disordered cristobalite in cavities ranges from microspherules of radiating bladed crystals, the ‘lepispheres’ of the Deep Sea Drilling Project (DSDP) to bladed overgrowths, and fibrous silica. In contrast, within the fine grained matrix, the disordered cristobalite takes the form of partly coalescent crude microgranules and microspherules. Most of the chalcedonic quartz in Cyprus is derived by recrystallization of previously inorganically precipitated disordered cristobalite rather than by direct precipitation. According to the concept of impurity-controlled maturation the composition of host sediment controls the incorporation of exchangeable cations and other impurities into inorganically precipitated disordered cristobalite. With time (up to 100 million years) internal solid state reorganization of the disordered cristobalite is accompanied by gradual expulsion of impurities, until the cristobalite dissolves followed by quartz precipitation. Complete conversion to quartz takes place first in porous calcareous sediments free of impurities, as in the Cyprus calciturbidites; in fine grained clay-rich sediments, like Cyprus radiolarian mudstones, disordered cristobalite persists much longer. Impurity-controlled maturation also helps explain the diagenesis of Cyprus chert nodules.  相似文献   

5.
The diagenesis in the organic-rich Cretaceous to Eocene Al Hisa Phosphorite Formation (AHP), Muwaqqar Chalk Marl Formation (MCM) and Umm Rijam Chert-Limestone Formation (URC) formations of Jordan can be linked directly to the fluctuating sedimentary environment of this shelf depositional system in the Middle to Late Eocene, and its influence on the composition of the deposited sediment and the early burial diagenetic environment. Most cementation was early, mostly within the first 10 m of burial, perhaps entirely within the first 100 m of burial. We propose that the siliceous cements are derived from biogenic silica, probably of diatoms, deposited in a shelf of enhanced productivity. Volumetrically, the most important processes were the redistribution of biogenic opal-A (diatoms) and calcite to form pervasive, layered and nodular cements. The formation of the silica and carbonate cements is closely linked through the effects their dissolution and precipitation have on pore fluid chemistry and pH. The chert beds have a biogenic silica origin, formed through replacement of diatoms and radiolaria by opal-CT, and subsequently by quartz. Calcite cement has carbonate derived from microbial diagenesis of organic matter and calcium derived from seawater. The Mg for early dolomite may have been generated by replacement of opal-CT by quartz, ore dissolution of unstable high Mg calcite bioclasts. The silica and carbonate diagenetic processes are both linked to microbial diagenesis of organic matter, and are intimately linked in both time and space, with pH possibly influencing whether a silica or a carbonate mineral precipitates. The paucity of metal cations capable of precipitating as sulphides is crucial to the creation of acidic pore water favourable to silica precipitation, either as opal-CT, chalcedony or quartz. The lack of clay minerals as a sink for the Mg required for opal-CT polymerisation is the principal factor responsible for the remarkably early silica cementation. All the diagenetic processes, with the probable exception of the opal-CT to quartz transition are early, almost certainly within the first 10 m of burial, possibly much less. A paragenetic sequence is presented here based on these two cores that should be tested against a wider core distribution to see whether this diagenetic history can be generalised throughout the basin. Warm bottom water temperatures probably led to silica diagenesis at much shallower burial depths than occurs in many other sedimentary basins. Silicified layers, in turn, commonly host fractures, suggesting that mechanical properties of the strata began to differentiate at a very early stage in the burial cycle. This has wide implications for processes linking diagenesis to deformation.  相似文献   

6.
Chert spheroids are distinctive, early‐diagenetic features that occur in bedded siliceous deposits spanning the Phanerozoic. These features are distinct in structure and genesis from similar, concentrically banded ‘wood‐grain’ or ‘onion‐skin’ chert nodules from carbonate successions. In the Miocene Monterey Formation of California (USA), chert spheroids are irregular, concentrically banded nodules, which formed by a unique version of brittle differential compaction that results from the contrasting physical properties of chert and diatomite. During shortening, there is brittle fracture of diatomite around, and horizontally away from, the convex surface of strain‐resistant chert nodules. Unlike most older siliceous deposits, the Monterey Formation still preserves all stages of silica diagenesis, thus retaining textural, mineralogical and geochemical features key to unravelling the origin of chert spheroids and other enigmatic chert structures. Chert spheroids found in opal‐A diatomite form individual nodules composed of alternating bands of impure opal‐CT chert and pure opal‐CT or chalcedony. With increased burial diagenesis, surrounding diatomite transforms to bedded porcelanite or chert, and spheroids no longer form discrete nodules, yet still display characteristic concentric bands of pure and impure microcrystalline quartz and chalcedony. Petrographic observations show that the purer silica bands are composed of void‐filling cement that precipitated in curved dilational fractures, and do not reflect geochemical growth‐banding in the manner of Liesegang phenomena invoked to explain concentrically banded chert nodules in limestone. Chertification of bedded siliceous sediment can occur more shallowly (< 100 m) and rapidly (< 1 Myr) than the bulk silica phase transitions forming porcelanite or siliceous shale in the Monterey Formation and other hemipelagic/pelagic siliceous deposits. Early diagenesis is indicated by physical properties, deformational style and oxygen‐isotopic composition of chert spheroids. Early‐formed cherts formed by pore‐filling impregnation of the purest primary diatomaceous beds, along permeable fractures and in calcareous–siliceous strata.  相似文献   

7.
硅质岩形成于特定的地球化学条件,具有重要的构造—气候—成岩指示意义.我国硅质岩的研究主要集中于海相地层,陆相硅质岩虽分布广泛但研究却很薄弱,成因解释由于借鉴海相燧石经验,以地球化学分析为首要手段,结论存在片面性和单一性,可能会引起古老大陆重要气候—构造—环境信息的遗漏缺失.国内外陆相硅质岩全面调研表明,陆相燧石主要存在...  相似文献   

8.
In order to assess the importance of siliceous sediments as a sink for oceanic B and to determine the effect of diagenesis on the mobilization of B, samples were analysed from chert nodules, bedded cherts, and siliceous banded iron formations from a variety of sedimentary environments and geologic ages. Boron analyses on bulk samples were made by prompt gamma neutron activation analysis. The distribution of B in rocks was mapped using α-track methods.Nodular Phanerozoic cherts typically contain 50–150 ppm B, and bedded cherts somewhat less. The B is initially concentrated in tests of silica-secreting organisms, but some is lost in early diagenesis as silica progressively recrystallises to quartz.Banded iron formation silica of Archean and Proterozoic age usually contains < 2 ppm B. This conforms with the view that such silica is not of biogenic origin but, since many iron formations are undoubtedly of marine origin, raises the question whether Precambrian oceans were impoverished in B. Analyses of Precambrian marine argillaceous sediments, averaging 70 ppm B, do not resolve this question.  相似文献   

9.
Nodular cherts can provide a window on the original sediment composition, diagenetic history and biota of their host rock because of their low susceptibility to further diagenetic alteration. The majority of Phanerozoic cherts formed by the intraformational redistribution of biogenic silica, particularly siliceous sponge spicules, radiolarian tests and diatom frustules. In the absence of a biogenic silica source, Precambrian cherts necessarily had to have had a different origin than Phanerozoic cherts. The Mesoproterozoic Belt Supergroup in Glacier National Park contains a variety of chert types, including silicified oolites and stromatolites, which have similar microtextures and paragenesis to Phanerozoic cherts, despite their different origins. Much of the silicification in the Belt Supergroup occurred after the onset of intergranular compaction, but before the main episode of dolomitization. The Belt Supergroup cherts probably had an opal-CT precursor, in the same manner as many Phanerozoic cherts. Although it is likely that Precambrian seas had higher silica concentrations than at present because of the absence of silica-secreting organisms, no evidence was observed that would suggest that high dissolved silica concentrations in the Belt sea had a significant widespread effect on silicification. The rarity of microfossils in Belt Supergroup cherts indicates that early silicification, if it occurred, was exceptional and restricted to localized environments. The similarity of microtextures in cherts of different ages is evidence that the silicification process is largely controlled by host carbonate composition and dissolved silica concentration during diagenesis, regardless of the source of silica.  相似文献   

10.
The mineralogical and chemical composition of Jurassic radiolarian cherts has been studied in Morocco (Rif), Italy (Lombardy basin and Apennines), Greece (Pindus zone and Vourinos Massif), some in close association with ophiolites. We have compared these samples with Cretaceous cherts from the NW Pacific (Leg 32) and with Cenozoic diatomaceous oozes from the Sea of Japan (Leg 31). The silica in the radiolarian cherts is quartz or chalcedony. Most of these rocks also contain feldspars and hematite while the clay fraction is composed of illite and/or chlorite generally associated with swelling clays and, locally, with kaolinite. In oceanic sediments all mineralogical species of silica have been detected (from opal to quartz), the clays generally being the same as those of the radiolarian cherts, the feldspars also being present. Based on the chemical composition of the radiolarian cherts, three facies can be distinguished: massive cherts, pelitic radiolarites and ferruginous radiolarites, the latter occurring only near the contact with volcanic basement. The chemical composition of cherts and diatom oozes from the Pacific is very close to the composition of radiolarian cherts. Although the mineralogy of radiolarian cherts can be related to several models (detrital, diagenesis of pelagic clays etc.) the detrital origin of part of the clay fraction seems certain. The origin of silica and its relation to the palaeolatitudes and the relatively confined nature of the Tethys oceans as well as the influence of volcanic inputs are evaluated, Chemical and mineralogical composition of radiolarian cherts shows that the diagenesis of the clay fraction is not a significant source of silica. Accumulation of diatom oozes in the Sea of Japan and in other areas, shows that the distance from continents and very deep seas are not essential to the development of siliceous sedimentation.  相似文献   

11.
In Upper Jurassic carbonate turbidites of the Betic mountains (southern Spain), chert occurs in three morphologies: bedded chert, nodular chert and mottled chert. The last refers to a weak dispersed and selective silification which gives a speckled appearance to the rock. The three types of chert are formed by replacement of limestones and are associated with different calcareous facies. Turbidite packstones of Saccocoma and peloids, and turbidite lime mudstones of pelagic material contain bedded and nodular cherts. The silicification textures are mainly micro- and cryptocrystalline quartz, with local chalcedonic quartz (both length-fast and length-slow) which is more common in the packstones. Only mottled chert is produced where calcareous breccia beds are silicified. Mottled chert consists of micro- and cryptocrystalline quartz, length-slow chalcedonic quartz and mosaics or individual crystals of euhedral megaquartz. Beds and nodules are the result of early diagenetic silicification, with silica derived from the calcitization and dissolution of radiolarians and, subordinately, sponge spicules, whereas mottled chert is the consequence of later silicification in a probably Mg-rich environment. Early silicification is mainly confined to turbidite beds and only rarely occurs in the interbedded pelagic limestones. Turbidite sedimentation favours silicification because rapid burial of the transported siliceous tests prevents silica from the dissolution of tests passing into overlying sea water. A silica-rich interstitial fluid develops in the turbidite layer and this migrates to more permeable zones giving rise to bedded and nodular chert.  相似文献   

12.
In the North Apennines of Italy, Upper Jurassic bedded chert stratigraphically overlies ophiolitic rocks and is overlain by Lower to Middle Cretaceous pelagic limestone and shale, and Upper Cretaceous flysch. The bedded chert, best exposed in East Liguria and on Elba, is typically 30–80 m thick, but occasionally reaches 150–200 m thickness. It consists of two main alternating lithologïes: siliceous mudstone (SM) and radiolarite (R). Chert sections commonly show characteristic stratigraphic changes. Lower cherts display a striking rhythmic alternation of R and ferruginous SM beds. In middle cherts, SM beds are much less ferruginous and shalier intercalations are locally present. In upper cherts, R beds are less frequent and SM beds are essentially non-ferruginous. R beds are generally 1–4 cm thick, and consist of 80–90% quartz, 5–15% clays and usually < 1% hematite. They are commonly parallel-laminated, and rarely size-graded. In size-graded beds, large radiolaria are more abundant near the bed base (commonly together with ophiolitic or SM clasts) and small radiolaria more abundant near the bed top. Sorting is poor throughout most R beds. R beds are interpreted as turbidites (cf. Nisbet & Price, 1974). Model calculations suggest that typical settling velocities of radiolaria during redeposition are < 1 cm sec?1, which is low and of restricted range relative to the 1–10 cm sec?1 settling velocities of clastic grains of comparable size range. Radiolaria therefore should have only a limited tendency to grade and sort during deposition from a turbulent current. SM beds are commonly 1–7 cm thick, although much thicker ones occur near the base of sections, and consist mainly of 50–70% quartz, 15–35% clays and 0–15% hematite. Microscopic clay-silica aggregates and highly corroded remnants of radiolaria are common. SM beds are interpreted as mainly ambient pelagic sediment which accumulated slowly in topographic lows, and which was modified by near-surface dissolution of biogenic silica. In SM beds which contain two texturally different layers, the lower one is interpreted as the top of the underlying radiolarian turbidite. North Apennine cherts represent the first sediment deposited on oceanic crust formed during the opening of the North Apennine part of the Tethys. The ophiolitic basement had a rugged topography which favoured the redeposition of siliceous sediment. Hematite and local Mn enrichments in SM beds in the lower chert sections represent hydrothermal precipitates inferred to have originated at a spreading axis. During seafloor spreading, accumulation of siliceous sediments progressively reduced the topography. Deposition of ophiolitic detritus within the sediments phased out during early chert sedimentation, and the hydrothermal contribution during early-middle chert sedimentation. As local basins filled, during late chert sedimentation, radiolarian turbidites became less frequent. The first limestones at the top of chert sections are calcareous ooze turbidites derived from above the CCD and deposited slightly below it. Gradual descent of the CCD to ocean floor depths at the end of the Jurassic (Bosellini & Winterer, 1975) led to the replacement of siliceous by carbonate sedimentation.  相似文献   

13.
Evidence from deep-sea sediments supports the following diagenetic maturation sequence: opal-A (siliceous ooze) → opal-CT (porcelanite) → chalcedony or cryptocrystalline quartz (chert). A solution-redeposition mechanism is involved in the opal-A to opal-CT transformation. Exceptions to the overall maturation sequence are numerous, suggesting that temperature and time are not the only important factors controlling these mineralogical transformations. The rates of the above transformations are strongly affected by the composition of the solution and of the host sediments ; in Mesozoic clayey sediments, opal-CT predominates, while in carbonate sediments quartz is most common.Experiments at 25 and 150°C over a period of one day to six months show that the transformation rate of opal-A to opal-CT is much higher in carbonate than in clay-rich sediments, and that opal-CT lepisphere formation is aided by the precipitation of nuclei with magnesium hydroxide as an important component. The role of carbonate is explained as follows : in carbonate-rich sediments, the dissolution of carbonate provides the necessary alkalinity, and sea water provides the magnesium for the magnesium hydroxide in the nuclei. In contrast, in clay-rich sediments the clay minerals compete with opal-CT formation for the available alkalinity from sea water. As a result, the clays are enriched in Mg, and the rate of opal-CT formation is strongly reduced. This mechanism also bears on the common observation of carbonate replacement by silica.  相似文献   

14.
Chert distribution in the Lake Valley rocks is selective to mud-supported facies; it is not related to proximity to unconformities. The facies selectivity of the chertification is believed to be a function of the depositional distribution of indigenous silica as sponge spicules, an interpretation that is supported by high positive qualitative correlation of chert with spiculitic rocks. Petrography indicates that the spicules were all originally siliceous, and that they all went through a moldic stage during which many molds were compactively destroyed and distorted. Remaining molds were subsequently cemented by calcite or chalcedony. Chert distribution and spicule petrography argue for an intraformational source for much of the silica. Chert micro-fabrics are dominated by microquartz, a replacement of grains and lime mud; length-fast chalcedony, a pore-filling cement; and megaquartz, a post-chalcedony pore-filling cement. Petrography of compaction features within chert masses indicates that chertification occurred after some burial. Based on stratigraphic reconstruction this burial depth was a maximum of about 215 m. and was most likely a few metres to a few tens of metres. Petrography of chert-calcite cement relationships indicates that chertification occurred before and during first generation, pre-Pennsylvanian non-ferroan calcite cementation, and was completed before late-stage, post-Mississippian ferroan calcite precipitation. Petrography of chert clasts in basal Rancheria (Meramecian) and basal Pennsylvanian conglomerates proves these clasts derived from the Lake Valley Formation and were chertified before redeposition. Thus, some cherts in the Lake Valley are pre-Meramecian in age, but all are pre-Pennsylvanian in age. Furthermore, association of the cherts with the non-ferroan cements indicates the cherts were probably precipitated in meteoric phreatic lens established beneath the pre-Meramecian and pre-Pennsylvanian subaerial unconformities.  相似文献   

15.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

16.
ABSTRACT Sandstones occur in back-arc basins of the western Pacific at DSDP sites 299 (Sea of Japan), 297 (northern Shikoku Basin), 445 and 446 (Daito-Ridge-and-Basin Province), 453 (Mariana Trough), 286 (New Hebrides Basin) and 285 (South Fiji Basin). These sandstones are dominantly volcaniclastic arenites derived from andesitic island arcs. The degree of sandstone diagenesis is dependent on original composition, burial rate, heat flow history of the basin, and timing of sandstone deposition with respect to rifting processes and associated high heat flow.
Sandstones containing a larger proportion of volcaniclastic components showed more diagenetic effects than sandstones containing a significant volume of other rock fragments and mineral components. Sandstones deposited during early stages of rifting (sites 445, 446) with a slow burial rate and high crustal heat flow showed the greatest degree of downhole diagenetic change. These diagenetic changes include early pore-space reduction and rim cementation by clay minerals followed later by calcite, and subsequent pore-fill cementation by clinoptilolite, heulandite, analcite and later calcite. Replacement of recognizable volcanic rock fragments by chert, calcite and zeolites was observed in the deepest part of the hole. Sandstones deposited after rifting under conditions of associated lower heat flow showed considerably less diagenetic changes, particularly if burial was rapid.
The high heat flow associated with earliest rifting, associated fluid circulation driven by thermal convection, and slow burial rate controlled the diagenetic history of these sandstones. Thus, timing of sandstone deposition with rifting stage and associated burial rates were key factors in controlling sandstone diagenesis in back-arc basins.  相似文献   

17.
Stable isotope geochemistry of deep sea cherts   总被引:1,自引:0,他引:1  
Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. δ18O of chert ranges between 27 and 39%. relative to SMOW, δ18O of porcellanite—between 30 and 42%.. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases.δ18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975) indicates the possibility of δ18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of δ18O values, increasing diagenesis being reflected in a lowering of δ18O. Drusy quartz has the lowest δ18O values.On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts.Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. δD of this water ranges between ?78 and ?95%. and is not a function of δ18O of the cherts (or the temperature of their formation).  相似文献   

18.
A Tertiary non-marine stratigraphic sequence composed of carbonates(limestone),siliceous carbonates,coaly layers overlain by pyroclastic rocks and lavas,outcrops in the Gavatha area of northwestern Lesvos Island.Pure earbonates eonsist almost completely of calcite,the siliceous carbonate sediments of quartz,opal-CT and calcite,the shales of quartz,opal CT, K-feldspar,smecite-illite and ealcite,and the coaly layers of organic matter,quartz,opal-CT,feldspars and pyrite,Geochemical data indicate that smectite-illite,feldspars and associated elements(La,Zr,Y,Ba,Ce)are the products of alteration of volcanic rocks in a subtropical area A combination of sources in suggested for the formation of silica polymorphs:(a) biogenic or non-biogenic silica(opal-A) that was originally present in the form of diatiom frustules of in the form of inorganically prccipitated silica;(b)transformation o opall-A to opal-CT and quartz opal-C from alteration of volcanic glass of intercalated tuffites and overlying volcanics;and(c)opal-CT deposited primarily from hydrothermal solutions.  相似文献   

19.
Lensoid, irregular nodules and laminations of chert appear along the bedding planes and laminations of the Vidyanagar Dolomite Member of the Kaladgi Group, Karnataka, India. The field relations of the chert nodules with the host dolomite and evidence on polished hand-specimens clearly demonstrate that the cherts are secondary after dolomite. This contention finds extensive support from thin-sections which reveal floating relict dolomite fragments on a microcrystalline quartz mat, dolomite rhombs in various stages of progressive replacement, polycrystalline quartz rhombs apparently after dolomite. Chertification has also resulted in an aggrading neomorphic recrystallization of dolomicrite into dolomicrospar which rims the dislodged floating fragments of dolomite.Scanning electron microscopic studies revealed three distinct types of surfaces of chert; the polyhedral surface characteristic of microcrystalline quartz, the spongy surface characteristic of chalcedonic quartz (documented in thin-sections as semi-radiating to radiating aggregates of elongated crystals growing on the rhombic surfaces of dolomite, and the intermediate type showing both. The microcrystalline quartz seems to have originated through multinucleation at equally spaced centres on the dolomite mat, whereas the chalcedonic quartz originated by slow but direct and unhindered precipitation into cavities and residual pore-spaces, following dolomitisation. The silica invasion seems to have been accomplished by alkaline interstitial waters charged with silica.The occurrence and relation of chert-nodules with the host dolomite not only helps in unravelling their own origin, but also aids in drawing the dolomitisation curtain and in turn the post-dolomitisation diagenetic modifications of the host carbonates. It may be added, however, that the Kaladgi Carbonates have undergone mineralogical/textural modifications during diagenesis with superimposition of changes affected later, i.e. during tectonism which folded and cross-folded these sediments.  相似文献   

20.
The siliciclastic Wishart Formation of the Early Proterozoic Labrador trough is a high-energy shelf deposit. Wishart sandstones contain both interstitial chert with textures of void-filling cement and thin chert intercalations contaminated with siliciclastic mud. Although volumetrically minor, these cherts occur in several thin, areally extensive stratigraphic intervals. The Wishart contains intraclasts of both the chert-cemented sandstone and the impure chert layers (as well as several other types of chert sand and gravel). This suggests the cherts formed penecontemporaneously, which is consistent with the absence of any signs of replacement in all but one of the chert types and the clear-cut distinctions between chert types, even where they are side by side in a single thin section. The origin which appears to be most compatible with available evidence is that the cherts represent silica precipitated from thermal waters that rose through the sediments of the Wishart shelf and discharged into suprajacent seawater. A biogenic origin is unlikely in view of the lack of appropriate organisms during the Early Proterozoic and the rapidity with which the cements formed. A volcanogenic origin is unlikely because volcaniclastic textures are plentiful in associated formations but absent from the Wishart. Precipitation induced by evaporative concentration is unlikely in view of the widespread evidence of tidal currents and the lack of evidence of desiccation in the Wishart. Finally, the cherts are not restricted to the lowest-energy facies, and therefore they presumably did not accumulate as a background sediment. Deposition of silica above the sediment/water interface was probably made possible by ambient concentrations of silica that were significantly higher than those of Phanerozoic seawater. Cherts with similar textures occur in other Early Proterozoic sediments, most notably arenitic or granular iron-formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号