首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Probabilistic water balance modelling provides a useful framework for investigating the interactions between soil, vegetation, and the atmosphere. It has been used to estimate temporal soil moisture dynamics and ecohydrological responses at a point. This study combines a nonlinear rainfall–runoff theory with probabilistic water balance model to represent varied source area runoff as a function of rainfall depth and a runoff coefficient at hillslope scale. Analytical solutions of the soil‐moisture probability density function and average water balance model are then developed. Based on a sensitivity analysis of soil moisture dynamics, we show that when varied source area runoff is incorporated, mean soil moisture is always lower and total runoff higher, compared with the original probabilistic water balance model. The increased runoff from the inclusion of varied source area runoff is mainly because of a reduction in leakage when the index of dryness is less than one and evapotranspiration when the index of dryness is greater than one. Inclusion of varied source area runoff in the model means that the actual evapotranspiration is limited by less available water (i.e. water limit), which is stricter than Budyko’s and Milly’s water limit. Application of the model to a catchment located in Western Australia showed that the method can predict annual value of actual evapotranspiration and streamflow accurately. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrological processes in karst basins are controlled by permeable multimedia, consisting of soil pores, epikarst fractures, and underground conduits. Distributed modelling of hydrological dynamics in such heterogeneous hydrogeological conditions is a challenging task. Basing on the multilayer structure of the distributed hydrology‐soil‐vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the ‘cubic law’ equation which is associated with fractural width, direction, and spacing. A small karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The model parameters were determined on the basis of field measurement and calibrated against the observed soil moisture contents, vegetation interception, surface runoff, and underground flow discharges from the basin outlet. The results show that due to high permeability of the epikarst zone, a significant amount of surface runoff is only generated after heavy rainfall events during the wet season. Rock exposure and the epikarst zone significantly increase flood discharge and decrease evapotranspiration (ET) loss; the peak flood discharge is directly proportional to the size of the aperture. Distribution of soil moisture content (SMC) primarily depends on topographic variations just after a heavy rainfall, while SMC and actual ET are dominated by land cover after a period of consecutive non‐rainfall days. The new model was able to capture the sharp increase and decrease of the underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features and land covers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Hydrological models at a monthly time‐scale are important tools for hydrological analysis, such as in impact assessment of climate change and regional water resources planning. Traditionally, monthly models adopt a conceptual, lumped‐parameter approach and cannot account for spatial variations of basin characteristics and climatic inputs. A large requirement for data often severely limits the utility of physically based, distributed‐parameter models. Based on the variable‐source‐area concept, we considered basin topography and rainfall to be two major factors whose spatial variations play a dominant role in runoff generation and developed a monthly model that is able to account for their influences in the spatial and temporal dynamics of water balance. As a hybrid of the Xinanjiang model and TOPMODEL, the new model is constructed by innovatively making use of the highly acclaimed simulation techniques in the two existing models. A major contribution of this model development study is to adopt the technique of implicit representation of soil moisture characteristics in the Xinanjiang model and use the TOPMODEL concept to integrate terrain variations into runoff simulation. Specifically, the TOPMODEL topographic index ln(a/tanβ) is converted into an index of relative difficulty in runoff generation (IRDG) and then the cumulative frequency distribution of IRDG is used to substitute the parabolic curve, which represents the spatial variation of soil storage capacity in the Xinanjiang model. Digital elevation model data play a key role in the modelling procedures on a geographical information system platform, including basin segmentation, estimation of rainfall for each sub‐basin and computation of terrain characteristics. Other monthly data for model calibration and validation are rainfall, pan evaporation and runoff. The new model has only three parameters to be estimated, i.e. watershed‐average field capacity WM, pan coefficient η and runoff generation coefficient α. Sensitivity analysis demonstrates that runoff is least sensitive to WM and, therefore, it can be determined by a prior estimation based on the climate and soil properties of the study basin. The other two parameters can be determined using optimization methods. Model testing was carried out in a number of nested sub‐basins of two watersheds (Yuanjiang River and Dongjiang River) in the humid region in central and southern China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, evapotranspiration and runoff, over the watershed. With a minimal requirement for input data and parameterization, this terrain‐based distributed model is a valuable contribution to the ever‐advancing technology of hydrological modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In this article the relative roles of precipitation and soil moisture in influencing runoff variability in the Mekong River basin are addressed. The factors controlling runoff generation are analysed in a calibrated macro‐scale hydrologic model, and it is demonstrated that, in addition to rainfall, simulated soil moisture plays a decisive role in establishing the timing and amount of generated runoff. Soil moisture is a variable with a long memory for antecedent hydrologic fluxes that is influenced by soil hydrologic parameters, topography, and land cover type. The influence of land cover on soil moisture implies significant hydrologic consequences for large‐scale deforestation and expansion of agricultural land. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The topographically explicit distributed hydrology–soil–vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf‐area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land‐cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall–runoff relationship of the 202 km2 Teba river catchment, located in semi‐arid south‐eastern Spain. The period of available data (1976–1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years. The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes. The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum. Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A theoretical, dimensionless rainfall–runoff model was used to simulate the discharge of Wulongdong spring in western Hubei province, South China. The single parameter (time constant τ) in the model is easy to obtain by fitting the recession rate of the observed hydrographs. The model was scaled by simply matching the total annual flow volume of the model to the observed value. Annual distribution of actual evapotranspiration was embedded in the model input to calculate the accumulated deficit of soil moisture before each rain event. Hourly precipitation input data performed better than daily data, defining τ of 0.85 days and returning a Nash–Sutcliffe efficiency of 0.89 and the root mean square error of 0.07. This model offers an effective way to simulate the discharge of karst springs that respond sensitively to rainfall events. The model parameters of a successful simulation can be used to estimate the recharge area and indicate the intrinsic response time of the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper evaluates the Integrated BIosphere Simulator (IBIS) land surface model using daily soil moisture data over a 3‐year period (2005–2007) at a semi‐arid site in southeastern Australia, the Stanley catchment, using the Monte Carlo generalized likelihood uncertainty estimation (GLUE) approach. The model was satisfactorily calibrated for both the surface 30 cm and full profile 90 cm. However, full‐profile calibration was not as good as that for the surface, which results from some deficiencies in the evapotranspiration component in IBIS. Relatively small differences in simulated soil moisture were associated with large discrepancies in the predictions of surface runoff, drainage and evapotranspiration. We conclude that while land surface schemes may be effective at simulating heat fluxes, they may be ineffective for prediction of hydrology unless the soil moisture is accurately estimated. Sensitivity analyses indicated that the soil moisture simulations were most sensitive to soil parameters, and the wilting point was the most identifiable parameter. Significant interactions existed between three soils parameters: porosity, saturated hydraulic conductivity and Campbell ‘b’ exponent, so they could not be identified independent of each other. There were no significant differences in parameter sensitivity and interaction for different hydroclimatic years. Even though the data record contained a very dry year and another year with a very large rainfall event, this indicated that the soil model could be calibrated without the data needing to explore the extreme range of dry and wet conditions. IBIS was much less sensitive to vegetation parameters. The leaf area index (LAI) could affect the mean of daily soil moisture time series when LAI < 1, while the variance of the soil moisture time series was sensitive to LAI > 1. IBIS was insensitive to the Jackson rooting parameter, suggesting that the effect of the rooting depth distribution on predictions of hydrology was insignificant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
《水文科学杂志》2013,58(3):556-570
Abstract

Forest growth unfavourably reduces low flows and annual runoff in a basin in Japan. Annual precipitation and runoff of the watershed are summarized from observed daily rainfall and discharge, and annual evapotranspiration is estimated from the annual water balance. The water balance analysis shows obvious trends: reduced annual runoff and increased evapotranspiration over a 36-year period when forest growth increased the leaf area index. Between two periods, 1960–1969 and 1983–1992, mean annual runoff decreased 11%, from 1258 to 1118 mm, due to a 37% increase in evapotranspiration (precipitation minus runoff) from 464 to 637 mm. This increase in evapotranspiration cannot be attributed to changed evaporative demand, based on climatic variability over the 36-year period of record. Flow duration curves show reduced flows in response to forest growth. In particular, they suggest stronger absolute changes for higher flows but stronger proportional changes for medium and lower flows. A distributed model is applied to simulate the influences of five scenarios based on a 30% change in leaf area index and 5% change in soil storage capacity. From the simulation results, canopy growth appears to contribute much more to flow reduction than changes in soil storage capacity.  相似文献   

14.
We present a system of ordinary differential equations (ODEs) capable of reproducing simultaneously the aggregated behavior of changes in water storage in the hillslope surface, the unsaturated and the saturated soil layers and the channel that drains the hillslope. The system of equations can be viewed as a two-state integral-balance model for soil moisture and groundwater dynamics. Development of the model was motivated by the need for landscape representation through hillslopes and channels organized following stream drainage network topology. Such a representation, with the basic discretization unit of a hillslope, allows ODEs-based simulation of the water transport in a basin. This, in turn, admits the use of highly efficient numerical solvers that enable space–time scaling studies. The goal of this paper is to investigate whether a nonlinear ODE system can effectively replicate observations of water storage in the unsaturated and saturated layers of the soil. Our first finding is that a previously proposed ODE hillslope model, based on readily available data, is capable of reproducing streamflow fluctuations but fails to reproduce the interactions between the surface and subsurface components at the hillslope scale. However, the more complex ODE model that we present in this paper achieves this goal. In our model, fluxes in the soil are described using a Taylor expansion of the underlying storage flux relationship. We tested the model using data collected in the Shale Hills watershed, a 7.9-ha forested site in central Pennsylvania, during an artificial drainage experiment in August 1974 where soil moisture in the unsaturated zone, groundwater dynamics and surface runoff were monitored. The ODE model can be used as an alternative to spatially explicit hillslope models, based on systems of partial differential equations, which require more computational power to resolve fluxes at the hillslope scale. Therefore, it is appropriate to be coupled to runoff routing models to investigate the effect of runoff and its uncertainty propagation across scales. However, this improved performance comes at the expense of introducing two additional parameters that have no obvious physical interpretation. We discuss the implications of this for hydrologic studies across scales.  相似文献   

15.
River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre‐alpine basin of the River Thur (area 1703 km2). The basin is located in the north‐east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree‐line and a great part of the basin is snow covered during the winter season. In the distributed hydrological model, the 12 sub‐basins of the Thur catchment were spatially subdivided into sub‐areas (hydrologically similar response units—HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the evaporative demand of the local vegetation. The higher altitudinal dependency and variability of runoff results from the strong increase in precipitation and the decrease in evaporation with increased altitude. An increasing influence of snow cover on runoff as well as evapotranspiration with altitude is obvious. The computed actual evapotranspiration and runoff were evaluated against the observed values of a weighting lysimeter and against runoff hydrographs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

17.
ABSTRACT

Traditionally, hydrological models are only calibrated to reproduce streamflow regime without considering other hydrological state variables, such as soil moisture and evapotranspiration. Limited studies have been performed on constraining the model parameters, despite the fact that the presence of a large number of parameters may provide large degree of freedom, resulting in equifinality and poor model performance. In this study, a multi-objective optimization approach is adopted, and both streamflow and soil moisture data are calibrated simultaneously for an experimental study basin in the Saskatchewan Prairies in western Canada. The results of this study show that the multi-objective calibration improves model fidelity compared to the single objective calibration. Moreover, the study demonstrates that single objective calibration performed against only streamflow can fairly mimic the streamflow hydrograph but does not yield realistic estimation of other fluxes such as evapotranspiration and soil moisture (especially in deeper soil layers).  相似文献   

18.
This paper compares artificial neural network (ANN), fuzzy logic (FL) and linear transfer function (LTF)‐based approaches for daily rainfall‐runoff modelling. This study also investigates the potential of Takagi‐Sugeno (TS) fuzzy model and the impact of antecedent soil moisture conditions in the performance of the daily rainfall‐runoff models. Eleven different input vectors under four classes, i.e. (i) rainfall, (ii) rainfall and antecedent moisture content, (iii) rainfall and runoff and (iv) rainfall, runoff and antecedent moisture content are considered for examining the effects of input data vector on rainfall‐runoff modelling. Using the rainfall‐runoff data of the upper Narmada basin, Central India, a suitable modelling technique with appropriate model input structure is suggested on the basis of various model performance indices. The results show that the fuzzy modelling approach is uniformly outperforming the LTF and also always superior to the ANN‐based models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A simplified stochastic infiltration model is presented, aimed at representing the rainfall-runoff transformation in the presence of heterogeneity in the soil and with precipitation as a random variable with complex temporal evolution. Such a model is based on a simple water mass balance of a surface soil layer, considered as a non-linear reservoir. The explicit inclusion of spatial heterogeneity allows the model to be used in sub-grid parametrizations at a variety of scales, from the distributed modelling of the hydrological response of small watersheds to the representation of surface mass fluxes in General Circulation Models. An approximate solution procedure is developed, which allows the estimation of statistical moments of the soil effective saturation and runoff inside discrete time steps where the hydraulic saturated conductivity and the rainfall intensity are taken as random variables with known probability density functions. As a first test of the proposed model, two different simulations, relative to two soils with different hydraulic conductivity distributions, are presented and discussed. A year long record of hourly averaged rainfall intensities, as measured by a tipping bucket gauge in Central Italy, is taken as the main input. The main finding is that the non-linear nature of the soil filter is such that, for random precipitation intensity, the coefficient of variation of the runoff is always higher than that of precipitation. Such a non-linear variability enhancement, due mainly to the threshold character of the soil mass balance equation, tends to be slightly dampened by the variability of the hydraulic saturated conductivity.  相似文献   

20.
Climatic and hydrological changes will likely be intensified in the Upper Blue Nile (UBN) basin by the effects of global warming. The extent of such effects for representative concentration pathways (RCP) climate scenarios is unknown. We evaluated projected changes in rainfall and evapotranspiration and related impacts on water availability in the UBN under the RCP4.5 scenario. We used dynamically downscaled outputs from six global circulation models (GCMs) with unprecedented spatial resolution for the UBN. Systematic errors of these outputs were corrected and followed by runoff modelling by the HBV (Hydrologiska ByrånsVattenbalansavdelning) model, which was successfully validated for 17 catchments. Results show that the UBN annual rainfall amount will change by ?2.8 to 2.7% with a likely increase in annual potential evapotranspiration (in 2041–2070) for the RCP4.5 scenario. These changes are season dependent and will result in a likely decline in streamflow and an increase in soil moisture deficit in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号