首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Yong Hwa Oh  Guebuem Kim 《水文研究》2016,30(14):2525-2532
Activities of radon (222Rn) in groundwater were continuously monitored in a saline aquifer from September 2010 to July 2011. The activities of 222Rn ranged from 200 to 4300 Bq m?3, with a large seasonal variation. Because the activity of 222Rn in seawater is low, 222Rn in saline groundwater must be produced in the aquifer from radium (226Ra) in rocks and sediments. The 222Rn activities were higher in the warm‐dry seasons (September–November 2010 and April–May 2011) when the saline aquifer was stable. In contrast, the lowest 222Rn activities were observed in the cold‐dry season (December 2010 and January–March 2011), because of the effective exchange between groundwater and seawater. In addition, sudden decreases of 222Rn activities coincided with episodic drops in groundwater temperatures. These results reveal that lower seawater temperature in winter may result in density‐driven seawater intrusion. During the wet season (June–July 2011), 222Rn activities were more clearly affected by semi‐monthly and diurnal tidal pumping, showing higher 222Rn activities during low and spring tides. Such a tidal effect was not clearly observed during the warm‐dry and cold‐dry seasons. This result implies that the residence time of SGD in coastal zones is significantly affected by seasonal changes in driving forces such as tidal pumping and seawater intrusion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Given that the concentration of 222Rn in groundwater is much higher than that in surface water and that its radioactive half‐life (3.83 d) is short, 222Rn is an effective tracer of groundwater–surface water interactions. In this study, a new mass balance method is presented, which can be used to estimate specific groundwater–surface water interactions within a river reach. Three possible situations of interaction between groundwater and surface water are considered, and equations based on the mass conservation of 222Rn are formulated for judging specific groundwater–surface water interaction processes and for calculating water flux. A case study was conducted for the Nalenggele River, Northwest China, to demonstrate the usefulness of this method. Samples of river water and groundwater containing 222Rn were collected from the study area to estimate the interactions between groundwater and surface water. The amount of water exchanged during these interactions was estimated and the results show that transformations between groundwater and surface water are frequent along the stream. The 222Rn mass balance method is highly sensitive for studying such interactions, even in areas for which conventional hydrologic data are sparse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Groundwater discharge flux into rivers (riverine groundwater discharge or RGD) is essential information for the conservation and management of aquatic ecosystems and resources. One way to estimate area-integrated groundwater discharge into surface water bodies is to measure the concentration of a groundwater tracer within the water body. We assessed groundwater discharge using 222Rn, a tracer common in many surface water studies, through field measurements, surface water 222Rn mass balance model, and groundwater flow simulation, for the seldom studied but ubiquitous setting of a flooding river corridor. The investigation was conducted at the dam-regulated Lower Colorado River (LCR) in Austin, Texas, USA. We found that 222Rn in both the river water and groundwater in the river bank changed synchronously over a 12-hour flood cycle. A 222Rn mass balance model allowed for estimation of groundwater discharge into a 500-m long reach of the LCR over the flood. The groundwater discharge ranged between negative values (indicating recharge) to 1570 m3/h; groundwater discharge from groundwater flow simulations corroborated these estimates. However, for the dynamic groundwater discharge estimated by the 222Rn box model, assuming whether the groundwater 222Rn endmember was constant or dynamic led to notably different results. The resultant groundwater discharge estimates are also highly sensitive to river 222Rn values. We thus recommend that when using this approach to accurately characterize dynamic groundwater discharge, the 222Rn in near-stream groundwater should be monitored at the same frequency as river 222Rn. If this is not possible, the 222Rn method can still provide reasonable but approximate groundwater discharge given background information on surface water-groundwater exchange time scales.  相似文献   

4.
Discharge in mountain streams may be a mixture of snowmelt, water from surface runoff, and deep return flow through valley bottom alluvia. We used δ18O and δ2H, solute concentrations, and 222Rn to determine water sources of a headwater stream located at the McDonald Creek watershed, Glacier National Park, USA, during summer recession flow period. We analysed minimal water isotope ranges of ?17.6‰ to ?16.5‰ and ?133‰ to ?121‰ for δ18O and δ2H, respectively, potentially due to dominance of snow‐derived water in the stream. Likewise, solute concentrations measured in the stream through the watershed showed minimal variation with little indication of subsurface water input into the stream. However, we observed 222Rn activities in the stream that ranged from 39 to 2646 Bq/m3 with the highest value measured in middle of the watershed associated with channel constriction corresponding to changes in local orientation of underlying rocks. Downstream from this point, 222Rn activity decreased from 581 to 117 Bq/m3 in a series of punctuated steps associated with small rapids and waterfalls that we hypothesized to cause radon degassing with a maximum predicted loss of 427 Bq/m3 along a 400 m distance. Based on mass balance calculations using 222Rn activity values, streamflow, and channel characteristics, we estimated that groundwater contributed between 0.3% and 29% of total flow. Overall, we estimated a 5.9% of groundwater contribution integrated for stream reach measured at McDonald Creek during recession flow period. Finally, a lower mean hyporheic flux of 14 m3/day was estimated compared to the groundwater flux of 70 710 m3/day. These assessments highlight the potential for radon as a conservative tracer that can be used to estimate subsurface water contribution in mountain streams within a complex geologic setting. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In regions where aquifers sustain rivers, the location and quantification of groundwater discharge to surface water are important to prevent pollution hazards, to quantify and predict low flows and to manage water supplies. 222Rn is commonly used to determine groundwater discharge to rivers. However, using this isotopic tracer is challenging because of the high diffusion capacity of 222Rn in open water. This study illustrates how a combination of isotopic tracers can contribute to an enhanced understanding of groundwater discharge patterns in small rivers. The aim of this paper is to combine 222Rn and δ13CDIC to better constrain the physical parameters related to the degassing process of these tracers in rivers. The Hallue River (northern France) was targeted for this study because it is sustained almost exclusively by a fractured chalk aquifer. The isotopes 222Rn, δ13CDIC, δ2H and δ18O were analysed along with other natural geochemical tracers. A mass balance model was used to simulate 222Rn and δ13CDIC. The results of δ2H and δ18O analyses prove that evaporation did not occur in the river. The calibration of a numerical model to reproduce 222Rn and δ13CDIC provides a best‐fit diffusive layer thickness of 3.21 × 10?5 m. This approach is particularly useful for small rivers flowing over carbonate aquifers with high groundwater DIC where the evolution of river DIC reflects the competing processes of groundwater inflow and CO2 degassing. This approach provides a means to evaluate groundwater discharge in small ungauged rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Continuous radon (222Rn) monitoring was conducted at two stations (site A and site B) with different perpendicular distance from the shoreline in Xiangshan Bay, East China Sea. Based on a 222Rn balance model (various sources and sinks of 222Rn in coastal water), the average rate of SGD was estimated to be 0.69 cm/day and 0.23 cm/day for site A and site B, respectively. The results from a nutrient analysis of the groundwater indicate that the associated nutrients fluxes loading through the SGD pathway were 4.27 × 106 mol/day for DIN, 2.24 × 104 mol/day for DIP and 1.82 × 106 mol/day for DSi, respectively, which were comparable to or even higher than the levels observed in the local streams. Therefore, adequate attention should be paid to the importance of SGD as one source of nutrients during the eutrophication control process in this area.  相似文献   

7.
Understanding the behaviour and variability of environmental tracers is important for their use in estimating groundwater discharge to rivers. This study utilizes a multi‐tracer approach to quantify groundwater discharge into a 27 km upland reach of the Gellibrand River in southwest Victoria, Australia. Ten sampling campaigns were conducted between March 2011 and June 2012, and the distribution of 222Rn activities, Cl and 3H concentrations imply the river receives substantial groundwater inflows. Mass balances based on 222Rn, Cl and 3H yield estimates of groundwater inflows that agree to within ± 12%, with cumulative inflows in individual campaigns ranging from 24 346 to 88 467 m3/day along the studied river section. Groundwater discharge accounts for between 10 and 50% of river flow dependent on the time of year, with a high proportion (>40 %) of groundwater sustaining summer flows. Groundwater inflow is largely governed by regional groundwater flowpaths; between 50 and 90% of total groundwater inflows occur along a narrow 5–10 km section where the river intersects the Eastern View Formation, a major regional aquifer. Groundwater 222Rn activities over the 16 month period were spatially heterogeneous across the catchment, ranging between 2000 Bq/m3 and 16 175 Bq/m3. Although groundwater 222Rn activities display temporal variation, spatial variation in groundwater 222Rn is a key control on 222Rn mass balances in river catchments where groundwater and river 222Rn activities are within an order of magnitude of each other. Calculated groundwater discharges vary from 8.4 to 15 m3/m/day when groundwater 222Rn activities are varied by ± 1 σ. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

9.
A hydrological–lithostratigraphical model was developed for assessment of transmission losses and groundwater recharge from runoff events in arid water courses where hydrological and meteorological records are incomplete. Water balance equations were established for reaches between hydrometric stations. Because rainfall and tributary flow data are scarce, lateral inflow, which is an essential component of the water balance equation, could not be estimated directly. The solution was obtained by developing a method which includes a hydrological–lithostratigraphical analogy. This is based on the following assumptions: (a) runoff resulting from a given rainfall event is related to the watershed surface lithology; (b) for a given event, the spatial distribution of runoff reflects the distribution of rainfall: and (c) transmission losses are uniquely related to the total inflow to the reach. The latter relationship, called the loss function, and the water balance equation comprise a model which simultaneously assesses lateral inflow and transmission losses for runoff events recorded at the terminal stations. The model was applied to three reaches of the arid Nahal Tsin in Israel. In this case study, the transmission losses were of the same order of magnitude as the flow at the major hydrometric stations. The losses were subdivided into channel moistening, which subsequently evaporates, and deep percolation, which recharges groundwater. For large runoff events, evaporation was substantially smaller than the losses. The mean annual recharge of groundwater from runoff events in the Tsin watershed was 4·1×106 m3, while the mean annual flow volume at the major stations ranged from 0·6 to 1·5×106 m3. Once in 100 years, the annual recharge may be seven times higher than the mean annual value, but the recharge during most years is very small. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Transient storage zones (TSZs) are located at the interface of rivers and their abutting aquifers and play an important role in hydrological and biogeochemical functioning of rivers. The natural radioactive tracer 222Rn is a particularly well-suited tracer for studying TSZ water exchange and age. Although 222Rn measurement techniques have developed rapidly, there has been less progress in modeling 222Rn activities. Here, we combine field measurements with the numerical model HydroGeoSphere (HGS) to simulate 222Rn emanation, decay and transport during steady state (riffle-pool sequence) and transient (bank storage) conditions. Comparing the HGS mean water ages with the conventional 222Rn apparent ages during steady state showed a systemic underestimation of apparent age with increasing dispersion and especially where large concentration gradients exist within the subsurface. A large underestimation of apparent water age was also observed at the advective front during bank storage where regional high 222Rn groundwater mixes with newly infiltrated surface water. The explicit modeling of radiogenic tracers such as 222Rn offers a physical interpretation of this data as well as a useful way to test simplified apparent age models.  相似文献   

11.
Groundwater flow modelling of the Kwa Ibo River watershed in Abia State of Nigeria is presented in this paper with the aim of assessing the degree of interaction between the Kwa Ibo River and the groundwater regime of the thick sandy aquifer. The local geology of the area comprises the Quaternary to recent Benin Formation. Potential aquifer zones that were delineated earlier using geoelectrical resistivity soundings and borehole data for the area formed the basis for groundwater flow modelling. The watershed has been modelled with a grid of 65 rows by 43 columns and with two layers. Lateral inflow from the north has been simulated with constant heads at the Government College, Umuahia, and outflow at Usaka Elegu in the south. The Kwa Ibo River traverses the middle of the watershed from north to south. The river‐stage data at Umudike, Amawom, Ntalakwu and Usaka Elegu have been used for assigning surface water levels and riverbed elevations in the model. Permeability distribution was found to vary from 3 to 14·5 m day?1. Natural recharge due to rainfall formed the main input to the aquifer system, and abstraction from wells was the main output. A steady‐state groundwater flow simulation was carried out and calibrated against the May 1980 water levels using 26 observation wells. The model computations have converged after 123 iterations. Under the transient‐state calibration, the highest rainfall (and hence groundwater recharge) over the 10‐year study period was recorded in 1996, whereas the lowest was recorded in 1991. The computed groundwater balance of 55 274 m3 day?1 was comparable to that estimated from field investigations. Results from the modelling show that abstraction is much less than groundwater recharge. Hence there is the possibility for additional groundwater exploitation in the watershed through drilling of boreholes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export study were carried out in a micro‐scale heath forest (Campina) catchment in central Amazonia, Brazil. For a 1‐year study period (18 March 2007 until 19 March 2008), rainfall amounted to 3054 mm; of which, 1532 mm was evaporated by the forest (4.1 mm day?1). Rainfall interception loss amounted to 15.6% of gross rainfall. Surface runoff amounted to 485 mm, whereas another 1071 mm was discharged as regional groundwater outflow. Accumulated DOC exports in surface runoff amounted to 15.3 g m?2 year?1, whereas the total carbon exported was 55.9 g m?2. This is much higher than that observed for a nearby tall rainforest catchment in central Amazonia (DOC export < 20 g m?2). As Campina heath forest areas cover a significant proportion of the Amazon Basin, these differences in ecosystem hydrological carbon exports should be taken into account in future studies assessing the carbon budget for the Amazon Basin. Macro‐nutrient exports were low, but those of calcium and potassium were higher than those observed for tall rainforest in the Amazon, which may be caused by a lower retention capacity of the heath forest ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A large quantity of submarine groundwater discharge (SGD) of about 1000 m3 day?1 m?1 of the 600‐km‐long shoreline of South Atlantic Bight has been estimated by Moore (Global Biogeochemical Cycles, 2010b, 24, GB4005, doi: 10.1029/2009GB003747 ). However, there is great uncertainty in estimating the percentage of net, land‐originated groundwater recharge of SGD. Moreover, most previous studies considered the homogeneous case for the coastal superficial aquifers. Here, we investigated the terrestrial‐originated SGD through a multilayered submarine aquifer system, which comprises two confined aquifers and two semi‐permeable layers. The inland recharge includes a constant part representing the annual average and a periodical part representing its seasonal variation. An analytical solution was derived and used to analyse the distributions of the terrestrial‐originated SGD from the multilayered aquifers along the Winyah Bay transect, South Atlantic Bight. It is found that the width of the zone of SGD from the upper aquifer ranges from ~0.8 to ~8.0 km depending on the leakance of the seabed semi‐permeable layer. A head of the upper aquifer at a coastline 1.0 m higher than the mean sea level will cause a SGD of 1.82– 18.3 m3 day?1 m?1 from that aquifer as the seabed semi‐permeable layer's leakance varies from 0.001 to 0.1 day?1, providing considerable possibility for considerable land‐originated SGD. Seasonal terrestrial‐originated SGD variations predicted by the analytical model provide consistent explanation of the seasonal variation of 226Ra observed by Moore (Journal of Geophysics, 2007, 112, C10013, doi: 10.1029/2007JC004199 ). The contribution of the lower aquifer to SGD is only 1.2–12% of that of the upper aquifer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for light non‐aqueous phase liquid (LNAPL) quantification at a field site treated by dual‐phase LNAPL removal. After the break of a pipeline, 5 ha of soil in the nature reserve Coussouls de Crau in southern France was contaminated by 5100 m3 of crude oil. Part of this oil seeped into the underlying gravel aquifer and formed a floating oil body of about 3.9 ha. The remediation consists of plume management by hydraulic groundwater barriers and LNAPL extraction in the source zone. 222Rn measurements were performed in 21 wells in and outside the source zone during 15 months. In uncontaminated groundwater, the radon activity was relatively constant and remained always >11 Bq/L. The variability of radon activity measurements in wells affected by the pump‐and‐skim system was consistent with the measurements in wells that were not impacted by the system. The mean activities in wells in the source zone were, in general, significantly lower than in wells upgradient of the source zone, owing to partitioning of 222Rn into the oil phase. The lowest activities were found in zones with high non‐aqueous phase liquid (NAPL) recovery. LNAPL saturations around each recovery well were furthermore calculated during a period of high groundwater level, using a laboratory‐determined crude oil–water partitioning coefficient of 38.5 ± 2.9. This yielded an estimated volume of residual crude oil of 309 ± 93 m3 below the capillary fringe. We find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in an aquifer treated by dual‐phase LNAPL removal, but that quantification of NAPL saturation using Rn is highly uncertain.  相似文献   

17.
This work presents results from a nearly two-year monitoring of the hydrologic dynamics of the largest submarine spring system in Florida, Spring Creek Springs. During the summer of 2007 this spring system was observed to have significantly reduced flow due to persistent drought conditions. Our examination of the springs revealed that the salinity of the springs' waters had increased significantly, from 4 in 2004 to 33 in July 2007 with anomalous high radon (222Rn, t1/2=3.8 days) in surface water concentrations indicating substantial saltwater intrusion into the local aquifer. During our investigation from August 2007 to May 2009 we deployed on an almost monthly basis a continuous radon-in-water measurement system and monitored the salinity fluctuations in the discharge area. To evaluate the springs' freshwater flux we developed three different models: two of them are based on water velocity measurements and either salinity or 222Rn in the associated surface waters as groundwater tracers. The third approach used only salinity changes within the spring area. The three models showed good agreement and the results confirmed that the hydrologic regime of the system is strongly correlated to local precipitation and water table fluctuations with higher discharges after major rain events and very low, even reverse flow during prolong droughts. High flow spring conditions were observed twice during our study, in the early spring and mid-late summer of 2008. However the freshwater spring flux during our observation period never reached that reported from a 1970s value of 4.9×106 m3/day. The maximum spring flow was estimated at about 3.0×106 m3/day after heavy precipitation in February-March 2008. As a result of this storm (total of 173 mm) the salinity in the spring area dropped from about 27 to 2 in only two days. The radon-in-water concentrations dramatically increased in parallel, from about 330 Bq/m3 to about 6600 Bq/m3. Such a rapid response suggests a direct connection between the deep and the surficial aquifers.  相似文献   

18.
Glacial retreat and the thawing of permafrost due to climate warming have altered the hydrological cycle in cryospheric‐dominated watersheds. In this study, we analysed the impacts of climate change on the water budget for the upstream of the Shule River Basin on the northeast Tibetan Plateau. The results showed that temperature and precipitation increased significantly during 1957–2010 in the study area. The hydrological cycle in the study area has intensified and accelerated under recent climate change. The average increasing rate of discharge in the upstream of the Shule River Basin was 7.9 × 106 m3/year during 1957–2010. As the mean annual glacier mass balance lost ?62.4 mm/year, the impact of glacier discharge on river flow has increased, especially after the 2000s. The contribution of glacier melt to discharge was approximately 187.99 × 108 m3 or 33.4% of the total discharge over the study period. The results suggested that the impact of warming overcome the effect of precipitation increase on run‐off increase during the study period. The evapotranspiration (ET) increased during 1957–2010 with a rate of 13.4 mm/10 years. On the basis of water balance and the Gravity Recovery and Climate Experiment and the Global Land Data Assimilation System data, the total water storage change showed a decreasing trend, whereas groundwater increased dramatically after 2006. As permafrost has degraded under climate warming, surface water can infiltrate deep into the ground, thus changing both the watershed storage and the mechanisms of discharge generation. Both the change in terrestrial water storage and changes in groundwater have had a strong control on surface discharge in the upstream of the Shule River Basin. Future trends in run‐off are forecasted based on climate scenarios. It is suggested that the impact of warming will overcome the effect of precipitation increase on run‐off in the study area. Further studies such as this will improve understanding of water balance in cold high‐elevation regions.  相似文献   

19.
The quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by internal and external drivers. Watershed models have become essential tools to understand the behaviour of a catchment under dynamic processes. In this study, a physically based watershed model called Soil Water Assessment Tool was used to understand the hydrologic behaviour of the Upper Tiber River Basin, Central Italy. The model was successfully calibrated and validated using observed weather and flow data for the period of 1963–1970 and 1971–1978, respectively. Eighteen parameters were evaluated, and the model showed high relative sensitivity to groundwater flow parameters than the surface flow parameters. An analysis of annual hydrological water balance was performed for the entire upper Tiber watershed and selected subbasins. The overall behaviour of the watershed was represented by three categories of parameters governing surface flow, subsurface flow and whole basin response. The base flow contribution has shown that 60% of the streamflow is from shallow aquifer in the subbasins. The model evaluation statistics that evaluate the agreement between the simulated and the observed streamflow at the outlet of a watershed and other three different subbasins has shown a coefficient of determination (R2) from 0.68 to 0.81 and a Nash–Sutcliffe efficiency (ENS) between 0.51 and 0.8 for the validation period. The components of the hydrologic cycle showed variation for dry and wet periods within the watershed for the same parameter sets. On the basis of the calibrated parameters, the model can be used for the prediction of the impact of climate and land use changes and water resources planning and management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号