首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
One‐time or short‐term lake water isotopic surveys are often employed to evaluate regional lake water balance. However, it can be difficult to determine the optimal time‐window for sampling to obtain a representative long‐term perspective of lake water balance in settings influenced by seasonal variations in precipitation, evaporative loss, glacial/snow meltwater, and larger seasonal shifts in isotopic composition of precipitation. This is especially true for areas of the Tibetan Plateau that are influenced by the summer Indian monsoon. Although high‐frequency sampling is always preferred as the most rigorous approach to characterize the water budget of lakes or watersheds, this may be impractical in remote regions and over large spatial scales. To assess the potential sensitivity of isotope balance characterization to seasonal variability, we used a weekly lake water isotope data set acquired over a period of 3 years on the Tibetan Plateau to evaluate the potential inaccuracies that might have arisen from using isotopic data collected during narrower time‐windows. For this assessment, we use weekly isotopic data collected during the study and assume that these sampling events were stand‐alone one‐time surveys. We then demonstrate the sensitivity of the isotope balance method in this setting, particularly for the rainy season that significantly underestimated the evaporation/inflow. In contrast, isotopic composition of the lake water was found to be more representative of long‐term conditions when sampled in October on the Tibetan Plateau. To broaden our evaluation of seasonality effects over a range of climatic zones, published high‐frequency isotopic data were also compiled, and a similar assessment was carried out for selected regions of the world. The synthesized data and model outputs, which confirm pronounced variations in lake water isotopic composition and evaporation/inflow across a range of seasonal climates, were used to determine optimal sampling windows for these specific regions.  相似文献   

4.
Hydrological monitoring in complex, dynamic northern floodplain landscapes is challenging, but increasingly important as a consequence of multiple stressors. The Peace-Athabasca Delta in northern Alberta, Canada, is a Ramsar Wetland of International Importance reliant on episodic river ice-jam flood events to recharge abundant perched lakes and wetlands. Improved and systematic monitoring of landscape-scale hydrological connectivity among freshwater ecosystems (rivers, channels, wetlands, and lakes) is needed to guide stewardship decisions in the face of climate change and upstream industrial development. Here, we use water isotope compositions, supplemented by measurements of specific conductivity and field observations, from 68 lakes and 9 river sites in May 2018 to delineate the extent and magnitude of spring ice-jam induced flooding along the Peace and Athabasca rivers. Lake-specific estimates of input water isotope composition (δI) were modelled after accounting for influence of evaporative isotopic enrichment. Then, using the distinct isotopic signature of input water sources, we develop a set of binary mixing models and estimate the proportion of input to flooded lakes attributable to river floodwater and precipitation (snow or rain). This approach allowed identification of areas and magnitude of flooding that were not captured by other methods, including direct observations from flyovers, and to demarcate flow pathways in the delta. We demonstrate water isotope tracers as an efficient and effective monitoring tool for delineating spatial extent and magnitude of an important hydrological process and elucidating connectivity in the Peace-Athabasca Delta, an approach that can be readily adopted at other floodplain landscapes.  相似文献   

5.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Daily river inflow time series are highly valuable for water resources and water environment management of large lakes. However, the availability of continuous inflow data for large lakes is still relatively limited, especially for large lakes situated within humid plain regions with tens or even hundreds of tributaries. In this study, we choose the fifth largest freshwater Lake Chaohu in China as our study area to introduce a new approach to reconstruct historical daily inflows at ungauged subcatchments of large lakes. This approach makes use of water level, lake surface rainfall, evaporation from the lake, and catchment rainfall observations. Rainfall–runoff relationship at a reference catchment was analysed to select rainfall input and estimate run‐off coefficient firstly, and the run‐off coefficient was then transferred to ungauged subcatchments to initially estimate daily inflows. Run‐off coefficient was scaled to adjust daily inflows at ungauged subcatchments according to water balance of the lake. This approach was evaluated using sparsely measured inflows at eight subcatchments of Lake Chaohu and compared with the commonly used drainage area ratio method. Results suggest that the inflow time series reconstructed from this approach consistent well to corresponding observations, with mean R2 and Nash–Sutcliffe efficiency values of 0.69 and 0.6, respectively. This approach outperforms drainage area ratio method in terms of mean R2 and Nash–Sutcliffe efficiency values. Accuracy of this approach holds well when the number of water‐level station being used decreased from four to one.  相似文献   

7.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   

8.
梁新歌  王涵  赵爽  宋春桥 《湖泊科学》2023,35(6):2111-2122
在全球气候变暖和极端气候事件增加的背景下,流域水文循环过程受到的影响越来越强烈,导致湖泊水位变化表现出复杂的时空特征。而泛北极地区是地球上湖泊数量与面积分布最为集中的区域之一,该地区湖泊对气候变化响应非常敏感。因此,了解这些湖泊近期水文变化特征十分必要。本研究共搜集了36个泛北极大型湖泊(>500 km2)基于遥感或站点观测的近20年水位数据,分析其时空变化特征。本文使用线性回归模型来估算湖泊水位的变化趋势,进而利用皮尔逊相关分析了其主要水文影响变量和大气环流机制,并运用Mann-Kendall突变检验法探讨了水位突变的原因。结果表明,泛北极湖泊的水位整体上呈现不同程度上升(平均速率为0.013 m/a),有23个(64%)湖泊的水位呈上升趋势;研究湖泊中有10个通过90%统计显著性检验。其中,水位上升速率最大的湖泊是位于哈萨克斯坦的腾吉兹湖,上升速率为0.078 m/a。泛北极湖泊水位的波动主要与径流有关,有19个(53%)湖泊的水位波动与径流的增加更为相关;相比而言,位于亚洲的极地湖泊水位的上升与流域蒸发的降低显著相关,尤其是库苏古尔湖。从区域大气环流影响来看,泛北极湖泊水位变化主要与厄尔尼诺-南方涛动有关,其次是北极涛动和北大西洋涛动。本研究有助于加深对泛北极湖泊近20年水位变化规律及气候影响特征的科学理解。  相似文献   

9.
In winter, lakes and lagoons at high altitudes or high latitudes have interesting hydrological cycles that differ from those in other seasons or in other regions, because water surfaces are covered with ice. Hydrological balances of lakes and lagoons are complex dynamic systems, and to elucidate them, isotopic tracers of water have been used as effective tools along with observations of precipitation, evaporation, inflows, and outflows. Here, to understand hydrological processes during freezing periods in the brackish Saroma‐ko Lagoon, Hokkaido, northern Japan, we examined horizontal and vertical distributions of salinity and isotope compositions of lagoon water and ice in 2005 and 2006. Horizontal and vertical gradients of salinity and isotope compositions were observed from the river mouth to the sea channel, and factors determining these distributions were considered. The mixing of freshwater and seawater and a freezing effect were presumed to be factors in relationships between salinity and isotopes and in relationships between surface waters and ice just above the water. A simple box model for water balance was constructed based on these putative factors to reproduce the distributions of salinity and isotope compositions of surface waters and ice. An evaluation of the model revealed that this hydrological system is controlled primarily by horizontal advection of the epilimnion, freshwater influx, and the ice growth rate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

11.
Potential hydrological impacts of climate change on long‐term water balances were analysed for Harp Lake and its catchment. Harp Lake is located in the boreal ecozone of Ontario, Canada. Two climate change scenarios were used. One was based on extrapolation of long‐term trends of monthly temperature and precipitation from a 129‐year data record, and another was based on a Canadian general circulation model (GCM) predictions. A monthly water balance model was calibrated using 26 years of hydrological and meteorological data, and the model was used to calculate hydrological impact under two climate change scenarios. The first scenario with a warmer and wetter climate predicted a smaller magnitude of change than the second scenario. The first scenario showed an increase in evaporation each month, an increase in catchment runoff in summer, fall and winter, but a decrease in spring, resulting in a slight increase in lake level. Annual runoff and lake level would increase because the precipitation change overrides evaporation change. The second scenario with a warmer, drier climate predicted a greater change, and indicated that evaporation would increase each month, runoff would increase in many months, but would decrease in spring, causing the lake level to decrease slightly. Annual runoff and lake level would decrease because evaporation change overrides precipitation change. In both scenarios, the water balance changes in winter and spring are pronounced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In Mediterranean regions, the marked climatic seasonality and uneven precipitation distribution complicate the application of isotope mass balances to obtain meaningful basin-wide annual average evaporation rates. In the present study, a mass balance approach carried out on the Tavignanu River watershed in Corsica (France), showed unrealistic evaporation rate estimates: 10% for 2017–2018 and 1% for 2018–2019. This suggests that not only does evaporation alter the seasonal isotopic composition in the river, but that there is complex variability of the dominant water reservoirs contributing to the streamflow. Therefore, we propose a modified mass balance approach, including monthly quantifications of different water sources contributing to the river discharge. This allows the discrimination of isotopic variation occurring by evaporation from that originating by mixing processes. By applying this modified approach, we estimated evaporation rates on the Tavignanu River watershed that were in good agreement with results obtained by hydrological modelling: 40% for 2017–2018 and 46% for 2018–2019, respectively. An uncertainty analysis showed that evaporation rates obtained with the modified isotopic approach are close to those obtained with the non-modified approach. Therefore, we recommend using this modified isotope mass balance approach to estimate evaporation rates in such regions as the Mediterranean with high seasonality in hydrological processes.  相似文献   

13.
This study analyzes the stable isotopic compositions of hydrogen and oxygen (δ2H, δ18O) in montane meteoric waters including precipitation and stream water of central Taiwan to identify hydrological processes in montane catchments. Results of precipitation demonstrate that monsoon and altitude effects are two principal processes affecting δ and deuterium excess (dE) values of inland precipitation in central Taiwan. Furthermore, slope and intercept values of summer and winter local meteoric water line are modified by secondary evaporation effects such as moisture recycling and raindrop evaporation. Additionally, stream water's results indicate that differences in δ values among stream waters reflect isotopic altitude effect whereby lower values are more evident in stream water originating from high‐elevation catchments than low‐elevation catchments. Comparison of the isotopic results between precipitation and stream water indicates that summer precipitation containing recycled moisture is the most important water source for the studied stream waters and indicates that catchment effect and base flow contribution are the two major hydrological processes affecting mountain stream hydrology. The hydrological processes identified by the isotopic study re‐stress the important role of forests in mountain hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
浮游生物是湖泊食物网的重要组成,其碳、氮稳定同位素能够反映元素地球化学循环和食物来源的波动,是了解水域生态系统结构变化的重要手段之一.本文选取云南4个不同类型湖泊,开展浮游生物碳、氮稳定同位素组成(δ13C、δ15N)的季节变化与湖泊对比研究.大型深水湖泊(抚仙湖和阳宗海)中,浮游植物δ13C值在夏、秋季(-20.34‰±1.98‰)显著高于冬、春季(-28.00‰±2.51‰),反映夏秋季藻类生长速率较高、HCO3-无机碳源利用增多等的影响.而小型浅水湖泊(长桥海和大屯海)中浮游植物δ13C值在夏季最高(-21.24‰±0.88‰),可能与雨季流域输入增强、陆源有机质占比增加有关.4个湖泊浮游生物δ15N值具有一致的变化特征,春季显著高于其他季节.分析表明,云南地区雨季以面源污染为主向旱季以点源污染为主的转变,导致氮素营养盐季节性来源差异,并通过生物吸收作用影响了浮游生物δ15N值的季节变化.在浮游动物与浮游植物的稳定同位素差值(即富集度)方面,营养水平高的小型浅水湖泊中δ13C富集度为1.61‰±0.90‰、δ15N富集度为2.71‰±1.22‰,显著小于营养水平低的大型深水湖泊(分别为2.60‰±0.98‰和4.19‰±1.25‰),表明随着湖泊营养水平的增加,浮游动物更多地以浮游植物为食,导致有机碳在不同营养级之间的传输过程中具有更强的耦合作用,且相邻营养级之间具有更低的δ15N富集度特征.  相似文献   

15.
We present the results of a 3‐year monitoring programme of the stable isotope composition of lake water and precipitation at Taozi Lake, in the East Asian monsoon region of China. Our aims were to reveal the spatiotemporal pattern of variation of stable isotopes in a small closed‐basin lake and to quantitatively determine the impacts of precipitation and evaporation on the stable isotope composition of lake water under a humid monsoon climate. In the time domain, the stable oxygen isotopic ratio of the lake water (δ18OL) exhibited substantial seasonal and interannual variations, but the isotope variations between different precipitation events substantially exceeded seasonal and interannual variations. Compared with the stable isotopes in precipitation, δ18OL was substantially positive and dL was negative. In the space domains, the lake water was homogeneously mixed. Indicated by statistic analyses, precipitation plays a dominant role in dynamic of the lake stable isotope during precipitation events of relatively large magnitude, whereas the effect of evaporation is dominant during smaller precipitation events. Results advance our understanding of the stable isotope change rule in the process of lake water evaporation, and it is helpful to identify the climatic significance recorded in stable isotopic compositions of lake bottom sediments.  相似文献   

16.
Calibration and validation of hydrological models is a challenge, particularly in remote regions that are minimally gauged. This paper develops a novel methodology for large‐scale (>1000 km2) hydrological model calibration and validation using stable water isotopes founded on the rigorous constraints imposed by the need to conserve both water mass and stable isotopes simultaneously. The isoWATFLOOD model is applied to five basins within the Fort Simpson, Northwest Territories region of northern Canada to simulate stream discharge and oxygen‐18 signals over a 3‐year period. The isotopic variation of river discharge, runoff components, and evaporative fractionation are successfully simulated on both a seasonal and continual basis over the watershed domain to demonstrate the application of isotope tracers to regional hydrologic calibration. The intended application of this research is to remote, large‐scale basins, showing promise for improving predictions in minimally gauged basins and climate change research where traditional, rigorous approaches to constraining parameter uncertainty may be impractical. This coupled isotope‐hydrological (i.e. iso‐hydrological) approach to modelling reduces the number of possible parameterizations, resulting in potentially more physically‐based hydrological predictions. isoWATFLOOD provides a tool for water resource managers and utilities to use operationally for water use, allocation, and runoff generation estimations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The processes that occur in wetlands and natural lakes are often overlooked and not fully incorporated in the conceptual development of many hydrological models of basin runoff. These processes can exert a considerable influence on downstream flow regimes and are critical in understanding the general patterns of runoff generation at the basin scale. This is certainly the case for many river basins of southern Africa which contain large wetlands and natural lakes and for which downstream flow regimes are altered through attenuation, storage and slow release processes that occur within the water bodies. Initial hydrological modelling studies conducted in some of these areas identified the need to explicitly account for wetland storage processes in the conceptual development of models. This study presents an attempt to incorporate wetland processes into an existing hydrological model, with the aim of reducing model structural uncertainties and improving model simulations where the impacts of wetlands or natural lakes on stream flow are evident. The approach is based on relatively flexible functions that account for the input–storage–output relationships between the river channel and the wetland. The simulation results suggest that incorporating lake and wetland storage processes into modelling can provide improved representation (the right results for the right reason) of the hydrological behaviour of some large river basins, as well as reducing some of the uncertainties in the quantification of the original model parameters used for generating the basin runoff. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Isotope tracers are widely used to study hydrological processes in small catchments, but their use in continental-scale hydrological modeling has been limited. This paper describes the development of an isotope-enabled global water balance and transport model (iWBM/WTM) capable of simulating key hydrological processes and associated isotopic responses at the large scale. Simulations and comparisons of isotopic signals in precipitation and river discharge from available datasets, particularly the IAEA GNIP global precipitation climatology and the USGS river isotope dataset spanning the contiguous United States, as well as selected predictions of isotopic response in yet unmonitored areas illustrate the potential for isotopes to be applied as a diagnostic tool in water cycle model development. Various realistic and synthetic forcings of the global hydrologic and isotopic signals are discussed. The test runs demonstrate that the primary control on isotope composition of river discharge is the isotope composition of precipitation, with land surface characteristics and precipitation-amount having less impact. Despite limited availability of river isotope data at present, the application of realistic climatic and isotopic inputs in the model also provides a better understanding of the global distribution of isotopic variations in evapotranspiration and runoff, and reveals a plausible approach for constraining the partitioning of surface and subsurface runoff and the size and variability of the effective groundwater pool at the macro-scale.  相似文献   

19.
Joshua C. Koch 《水文研究》2016,30(21):3918-3931
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post‐snowmelt water budgets. A water budget focused only on post‐snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid‐summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra‐permafrost subsurface inflows from basin‐edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

20.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号