首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL?1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL?1>TP>0.035 mgL?1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP<0.035 mgL?1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

3.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Transfer of atmospheric N deposition on shallow‐soil forested basins on the Canadian Shield to receiving water bodies may be enhanced by rapid preferential flow along the soil–bedrock interface (BR runoff) on basin slopes. Controls on BR runoff, partitioning of event and pre‐event water contributions to this flow, and implications of this partitioning for N fluxes in BR runoff were studied under natural and artificial inputs to an instrumented slope. BR runoff as a fraction of water inputs to the slope increased with antecedent soil wetness and input depth. Event water contributions to BR runoff initially increased with antecedent soil wetness, but then declined at large antecedent soil wetness. Export of applied NH4+ from the slope was maximized when event water contributions containing large NH4+ concentrations dominated BR runoff; however, there was no relationship between the fraction of NO3? application transported in BR runoff and either application input or the event water fraction of that runoff. The applicability of our results to other shallow‐soil areas of the Canadian Shield is limited by artificial N inputs to the slope in excess of natural loads and by low rates of N mineralization and negligible nitrification in the slope's soils. Nevertheless, the study reinforces the need to consider how the hydrologic, geometric and pedologic properties of forest slopes interact with biotic and abiotic soil processes to control N transport and transformation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
水生植被对于维持水生态系统结构和功能稳定性具有举足轻重的作用,而重建水生植物被认为是污染湖泊生态修复的重要手段.氮素是水生态系统重要的限制性元素之一,根着挺水植物生长发育无疑将深刻地影响着沉积物氮的迁移转化过程,但水生植物不同生长阶段对沉积物氮的需求和植物代谢强度均不同,目前对挺水植物完整生长过程中沉积物氮组分及含量变化认识仍十分不足.本研究通过为期120d的沉积物柱芯培养和水槽模拟试验,探究巢湖芦苇恢复完整生长过程中沉积物总氮(TN)、无机氮(TIN)与可转化态氮(TF-N)的变化及其关键调控因子.结果表明,芦苇完整生长过程将持续激发沉积物氮活性,沉积物TIN与TF-N含量逐渐增加,而沉积物TN和非可转化态氮(NTF-N)含量显著降低.模拟试验期间,指数型增长的芦苇生物量提高了沉积物铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,但亚硝态氮(NO_2~--N)含量却逐渐降低;与第0天相比,第120天沉积物离子交换态氮(IEF-N)、碳酸盐结合态氮(CF-N)、铁锰氧化态氮(IMOF-N)和有机态及硫化物结合态氮(OSF-N)含量分别增加了 1.10、3.40、3.60和1.40倍,这主要受芦苇吸收利用、根系代谢强化根际沉积物氧化还原电势和改变pH微环境共同驱动.在第120天,沉积物NH_4~+-N和NO_3~--N含量急剧升高,分别是第90天的9.43和2.22倍,表明芦苇衰亡凋落过程将向沉积物释放大量的TIN,故需要综合采取湖泊物理—生态工程手段来有效管控芦苇枯落物,从而提升水生植被修复效果并构建长效稳态机制.  相似文献   

7.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

A field experiment was conducted on a sloping grassland soil in southwest England to investigate the downslope transport of nitrogen in soil water following the application of cattle manure, slurry and inorganic fertilizer. Transport of nitrogen (N) species was monitored on hydrologically isolated plots. Manure (50 t ha?1), slurry (50 m3 ha?1) and fertilizer (250 kg N ha?1) were applied in February/March 1992. Subsurface water movement, by both matrix and preferential flow, was the dominant flow route during the experiment. Subsurface and surface nutrient flow pathways were monitored by analysing soil water and surface runoff for NO3-N, NH4-N and total N. Subsurface flow chemistry was dominated by NO3-N, with concentrations usually between 2 and 5 mg NO3 ?N dm?3. Differences between fertilizer and manure treatments and the untreated control were not significant. Significantly elevated NO3-N concentrations were observed in soil water in the buffer zone, indicating the importance of a buffer zone at least 10 m wide between manure spreading zones and an adjacent water course.  相似文献   

9.
为研究太湖流经不同类型缓冲带的入湖河流水体氮污染特征,于2011年9 12月连续对流经4种不同类型缓冲带入湖河流沿程共32个样点进行采样,分析各样点的氮浓度及变化趋势.结果表明,流经农田型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内不断减小,到入湖河口处有轻微上升;流经养殖塘型、村落型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内变化不大,到接近入湖河口时浓度显著升高;流经生态型缓冲带入湖河流中各氮元素形态沿程不断降低.在流经4种类型湖泊缓冲带入湖河流中,流经农田型、养殖塘型和生态型缓冲带的入湖河流以硝态氮为氮元素的主要存在形态,而流经村落型缓冲带的入湖河流中硝态氮和铵态氮同为氮元素的主要存在形态.总氮浓度、铵态氮浓度与缓冲带类型均呈极显著正相关关系,外源污染排入对流经缓冲带的入湖河流中氮元素总量及形态产生较大影响.流经生态型缓冲带入湖河流净化效果最佳,总氮、硝态氮和铵态氮浓度削减率分别为60%、53%和61%.  相似文献   

10.
Spatio‐temporal variations in nitrogen and phosphorus concentrations in groundwater were analysed and related to the variations in hydrological conditions, vegetation type and substrate in an alluvial ecosystem. This study was conducted in the Illwald forest in the Rhine Plain (eastern France) to assess the removal of nutrients from groundwater in a regularly flooded area. We compared both forest and meadow ecosystems on clayey‐silty soils with an anoxic horizon (pseudogley) at 1·5–2 m depth (eutric gley soil) and a forest ecosystem on a clayey‐silty fluviosoil rich in organic matter with a gley at 0·5 m depth (calcaric gley soil). Piezometers were used to measure the nutrient concentrations in the groundwater at 2 m depth in the root layer and at 4·5 m depth, below the root layer. Lower concentrations of nitrate and phosphate in groundwater were observed under forest than under meadow, which could be explained by more efficient plant uptake by woody species than herbaceous plants. Thus NO3‐N inputs by river floods were reduced by 73% in the shallow groundwater of the forested ecosystem, and only by 37% in the meadow. Compared with the superficial groundwater layer, the lowest level of nitrate nitrogen (NO3‐N) and the highest level of ammonium nitrogen (NH4‐N) were measured in the deep layer (under the gley horizon at 2·5 m depth), which suggests that the reducing potential of the anoxic horizon in the gley soils contributes to the reduction of nitrate. Nitrate concentrations were higher in the groundwater of the parcel rich in organic matter than in the one poorer in organic matter. Phosphate (PO4‐P) concentrations in both shallow and deep groundwater are less than 62 to 76% of those found in surface water which can be related to the retention capacity of the clay colloids of these soils. Moreover, the temporal variations in nutrient concentrations in groundwater are directly related to variations in groundwater level during an annual hydrological cycle. Our results suggest that variations in groundwater level regulate spatio‐temporal variations in nutrient concentrations in groundwater as a result of the oxidation–reduction status of soil, which creates favourable or unfavourable conditions for nutrient bioavailability. The hydrological variations are much more important than those concerning substrate and type of vegetation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
入湖河口湿地四种植物群落类型的土壤氮素空间分布特征   总被引:1,自引:0,他引:1  
任奎晓  陈开宁  黄蔚  施娴 《湖泊科学》2012,24(6):849-857
对江苏省溧阳市大溪水库的洙漕河河口湿地中香蒲、水蓼、灯心草和芦苇四种植物生物量、氮含量及植物群落的土壤氮素分布特征进行研究,结果表明:四种植物地上生物量、地上组织氮含量、地下生物量、地下组织氮含量存在显著差异;土壤烧失量(LOI)、总氮(TN)、硝态氮(NO3--N)在垂直分布上表现为由表层向下减少的总体分布趋势,铵态氮(NH4+-N)浓度的剖面变化呈现先减少后增加的趋势;四种植物群落土壤氮浓度各不同,但均大于对照,以有机氮为主,说明湿地具有一定的储氮能力;不同的植物群落影响湿地氮素的分布.相关性分析显示,土壤LOI与TN、NO3--N和NH4+-N均存在极显著相关性,无机氮构成比例较小,仅为1.41%,表明土壤中的氮素主要以有机氮的形式存在;土壤氮浓度与植物生物量及组织氮含量相关性不大,说明土壤氮形态浓度不仅受到植物生长的影响,同时也可能受到植物根区环境、微生物数量与活性等的影响.  相似文献   

12.
Subsurface brines with high nitrate (NO3?) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ~525 mg/L (as N), NO3? in the coastal sabkhas of Abu Dhabi is enriched in 15N (mean δ15N ~17‰), which is an enigma. A NO3? solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17O, δ15N, and δ18O data suggest approximately 80 to 90% of the NO3? could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density‐driven free‐convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near‐surface oxygenated NO3? bearing water downward where it encounters reducing conditions and mixes with oxygen‐free ascending geologic brines. In this environment, NO3? is partially reduced to nitrogen gas (N2), thus enriching the remaining NO3? in heavy isotopes. The isotopically fractionated NO3? and nitrogen gas return to the near‐surface oxidizing environment on the upward displacement leg of the free‐convection cycle, where the nitrogen gas is released to the atmosphere and new NO3? is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000‐year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3?.  相似文献   

13.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The American cranberry (Vaccinium macrocarpon Ait.) is an important part of the cultural heritage and economy of Southeastern Massachusetts, yet water quality concerns and wetland protection laws challenge its commercial production. Here, we report inputs and outputs of water, nitrogen (N), and phosphorus (P) for a 2.12‐ha cranberry bed over a 2‐year period from 2013 to 2015. Water‐budget analysis indicated that precipitation contributed 40%, floodwater 37%, irrigation 15%, and groundwater 8% of water inputs to the cranberry bed. Minor annual variation in surface water discharge (~90 mm·year?1 or 3%) contrasted with large decreases in net (= outputs ? inputs) nutrient export, from 16.2 to 9.1 kg N·ha?1·year?1 for total (dissolved + suspended particulate) nitrogen (TN) and from 3.34 to 1.47 kg P·ha?1·year?1 for total phosphorus (TP) between Years 1 and 2. Annual variation in net TN and TP export was tied to decreases in spring and summer nutrient export and controlled by the combined effects of fertilizer management, soil biogeochemistry, and hydrology. The relatively high spring TN export in Year 1 was associated with coincident increases in soil temperature and rainfall. A second factor was the timing of fertilizer application, which occurred 1 day prior to a major summer storm (i.e., third largest daily rainfall since 1926) and was responsible for up to 15% and 9% of the Year 1 TN and TP export, respectively. Nutrient budgets, which balanced water and fertilizer inputs with water, fruit, and vegetative outputs, were consistent with the burial of 21.6 kg N·ha?1·year?1 and 7.27 kg P·ha?1·year?1. Field measurements indicated that burial would increase TN and TP in the shallow (0–5 cm) rooting zone by 14% and 6%, respectively, which seemed plausible based on the relatively young age of the bed (4–5 years) and new root growth patterns in Vaccinium plants.  相似文献   

15.
以太湖重度蓝藻水华发生的西北湖区为研究对象,从河口至湖心区设置5个采样点,于2012年10月至2013年10月逐月采集表层水体样品,测定了水温、溶解氧和浮游细菌丰度,并分析了浮游植物群落结构的组成、溶解性无机氮(DIN)和有机氮(DON)浓度以及氮磷比.研究结果表明,太湖西北湖区浮游植物主要由蓝藻、硅藻、绿藻和隐藻组成.可能由于风、浪等混合作用使太湖西北湖区不同采样点之间蓝藻细胞密度没有显著差异.蓝藻生物量在浮游植物中所占比例最高为34%±15%,春季部分点位隐藻生物量高于50%,表明隐藻与蓝藻的相互竞争趋势显著.CCA排序图结果表明,DIN、DON浓度以及总氮∶总磷比(TN∶TP比)是影响西北湖区浮游植物优势属分布的重要环境因子.5个采样点铵态氮(NH_4~+-N)与DIN浓度具有显著差异,与DON浓度没有显著差异.夏季蓝藻水华暴发期间,可能由于蓝藻的吸收利用引起NH_4~+-N和硝态氮(NO_3~--N)浓度迅速降低.此外,由于NH_4~+-N浓度还可能受到沉积物NH_4~+-N释放的影响,因此,蓝藻细胞密度与NO_3~--N的相关系数和显著水平均高于NH_4~+-N.夏季TN∶TP比和DIN∶TP比降至最低,表明该湖区浮游植物,尤其是蓝藻的生长可能受到氮限制.蓝藻细胞密度与DON浓度呈显著负相关,表明在氮限制条件下,DON可能是蓝藻氮素利用的重要补充.  相似文献   

16.
Understanding the influence of complex interactions among hydrological factors, soil characteristics and biogeochemical functions on nutrient dynamics in overland flow is important for efficiently managing agricultural nonpoint pollution. Experiments were conducted to assess nutrient export from Ultisol soils in the Sunjia catchment, Jiangxi province, southern China, between 2003 and 2005. Four plots were divided into two groups: two peanut plots and two agroforestry (peanut intercropped with citrus) plots. During the study period, we collected water samples for chemical analyses after each rainfall event that generated overland flow to assess nutrient export dynamics. The concentrations of potassium (K) and nitrate‐N (NO3–N) in overland flow were higher during the wetting season (winter and early spring). This reflects the solubility of K and NO3–N, the accumulation of NO3–N during the dry season and an increase in desorption processes and mixing with pre‐event water caused by prolonged contact with soil in areas with long‐duration, low‐intensity rainfall. In contrast, concentrations of total nitrogen (TN) and total phosphorus (TP) were higher during the wet season (late March to early July) and during the dry season (mid‐July to the end of September or early October). This was due to the interaction between specific hydrological regimes, the properties of the Ultisol and particulate transport processes. Variations in nutrient concentrations during storm events further identified that event water was the dominant source of total nitrogen and total phosphorus, and pre‐event water was the dominant source of NO3–N. In addition, the results obtained for the different land uses suggest that agroforestry practices reduce nutrient loss via overland flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Shi Qi  Wei Liu  Heping Shu  Fei Liu  Jinzhu Ma 《水文研究》2020,34(20):3941-3954
The sources and storage of soil NO3 in the western Tengger Desert, Northwest China, were explored using water chemistry analysis and stable isotope techniques. In line with the expansion and development of oases, part of the desert has been transformed into cultivated land and artificial forest land. The mean soil NO3 contents found in areas of cultivated land and artificial forest were 123.06 mg kg−1 and 1.26 mg kg−1, far higher and slightly lower than the background desert soil values, respectively. The δ15N-NO3 and δ18O-NO3 values in cultivated soils ranged from 1.00 to 11.81 ‰, and from −1.85 to 8.99 ‰, respectively, and the mean mNO3/Cl value in cultivated soils was 2.3. These figures would appear to demonstrate that the rapid increase in the nitrate content in soils is principally due to the use of nitrogen fertilizer. Such increases in soil NO3 storage is likely to promote the leaching of nitrogen into the groundwater where coarsely textured soils exist, the pollution of water sources used for irrigation water, and extreme precipitation events. The δ15N-NO3 and δ18O-NO3 values in groundwater ranged from 3.72 to 6.54 ‰, and from −0.19 to 12.06 ‰, respectively, mainly reflecting the nitrification of soil nitrogen. These values appeared similar to those measured in the soil water in adjacent areas of cultivated land and vegetated desert, indicating that the groundwater has been affected by both natural and artificial NO3. Artificial afforestation of desert regions would therefore seem to be a useful way of reducing the threat posed by anthropogenic sources to the circulation of NO3-N within arid regions, as well as promoting wind sheltering and sand fixation. This study explored the NO3 storage and groundwater quality responses to oasis development in arid areas in an attempt to provide effective information for local agricultural organizations and agricultural nitrogen management models.  相似文献   

18.
The temporal variability in nitrogen (N) transport in the Corbeira agroforestry catchment (NW Spain) was analysed from October 2004 to September 2008. Nitrate (NO3–N) and total Kjeldahl nitrogen (TKN) loads and concentrations were determined at various timescales (annual, seasonal and event). The results revealed a strong intra‐annual and inter‐annual variability in N transport influenced by weather patterns and consequently by the hydrological regime. Mean annual export of total N in the catchment was 5.5 kg ha?1 year?1, with NO3–N being the dominant form. Runoff events comprised 10% of the study period but contributed 40 and 61% of the total NO3–N and TKN loads, respectively. The NO3–N and TKN concentrations were higher during runoff events than under baseflow conditions, pointing to diffuse sources of N. The mobilization of TKN during runoff events was attributed to surface runoff, while NO3–N might be related to subsurface and groundwater flow. Runoff events were characterized by high variability in N loads and concentrations. Higher variability was observed in N loads than in N concentrations, indicating that event magnitude plays an important role in N transport in this catchment; event magnitude explained approximately 96% of the NO3–N load. However, a combination of variables related to runoff event intensity (rainfall, discharge increase and kinetic energy) explained only 66% of the TKN load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The hydrology and nitrogen biogeochemistry of a riparian zone were compared before and after the construction of beaver dams along an agricultural stream in southern Ontario, Canada. The beaver dams increased surface flooding and raised the riparian water table by up to 1·0 m. Increased hydraulic gradients inland from the stream limited the entry of oxic nitrate‐rich subsurface water from adjacent cropland. Permeable riparian sediments overlying dense till remained saturated during the summer and autumn months, whereas before dam construction a large area of the riparian zone was unsaturated in these seasons each year. Beaver dam construction produced significant changes in riparian groundwater chemistry. Median dissolved oxygen concentrations were lower in riparian groundwater after dam construction (0·9–2·1 mg L?1) than in the pre‐dam period (2·3–3·9 mg L?1). Median NO3‐N concentrations in autumn and spring were also lower in the post‐dam (0·03–0·07 mg L?1) versus the pre‐dam period (0·1–0·3 mg L?1). In contrast, median NH4‐N concentrations in autumn and spring months were higher after dam construction (0·3–0·4 mg L?1) than before construction (0·13–0·14 mg L?1). Results suggest that beaver dams can increase stream inflow to riparian areas that limit water table declines and increase depths of saturated riparian soils which become more anaerobic. These changes in subsurface hydrology and chemistry have the potential to affect the transport and transformation of nitrate fluxes from adjacent cropland in agricultural landscapes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
三峡库区消落带土壤有机质和全氮含量分布特征   总被引:13,自引:3,他引:10  
郭劲松  黄轩民  张彬  方芳  付川 《湖泊科学》2012,24(2):213-219
在三峡库区消落带落干期间(2010年4月),对库区巫山-重庆主城区段消落带土壤有机质(OM)和全氮(TN)含量分布及与土壤理化性质的相关性进行了调查研究.结果表明该区域消落带土壤OM和TN含量均较低,分别为10.70±4.03和0.84±0.39 mg/g,且服从正态分布.消落带土壤碳氮比(C/N)较低,推测消落带土壤无机氮在淹水期间存在向上覆水体释放的可能性.在与其它关于土壤OM和TN含量研究的比较中,研究区域内土壤OM和TN含量处于偏低的水平;而在与对照带样品的比较分析中发现,消落带样品的OM和TN含量变异系数均偏低,因此消落带干湿交替可减小不同区域消落带之间土壤OM和TN含量差异.相关性分析表明,消落带土壤pH、ORP、TN与OM之间呈显著正相关,可见研究范围内消落带土壤氮形态可能主要以有机氮的形式存在于有机质中,而C/N与TN呈负相关,与OM相关性不显著,表明C/N的大小主要取决于TN含量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号