首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
T. Jonas  C. Marty  J. Magnusson   《Journal of Hydrology》2009,378(1-2):161-167
The snow water equivalent (SWE) characterizes the hydrological significance of snow cover. However, measuring SWE is time-consuming, thus alternative methods of determining SWE may be useful. SWE can be calculated from snow depth if the bulk snow density is known. Thus, a reliable estimation method of snow densities could (a) potentially save a lot of effort by, at least partly, sampling snow depth instead of SWE, and would (b) allow snow hydrological evaluations, when only snow depth data are available. To generate a useful parameterization of the bulk density a large dataset was analyzed covering snow densities and depths measured biweekly over five decades at 37 sites throughout the Swiss Alps. Four factors were identified to affect the bulk snow density: season, snow depth, site altitude, and site location. These factors constitute a convenient set of input variables for a snow density model developed in this study. The accuracy of estimating SWE using our model is shown to be equivalent to the variability of repeated SWE measurements at one site. The technique may therefore allow a more efficient but indirect sampling of the SWE without necessarily affecting the data quality.  相似文献   

2.
The US Army ERDC CRREL and the US Department of Agriculture Natural Resources Conservation Service developed a square electronic snow water equivalent (e‐SWE) sensor as an alternative to using fluid‐filled snow pillows to measure SWE. The sensors consist of a centre panel to measure SWE and eight outer panels to buffer edge stress concentrations. Seven 3 m square e‐SWE sensors were installed in five different climate zones. During the 2011–2012 winter, 1.8 and 1.2 m square e‐SWE sensors were installed and operated in Oregon. With the exception of New York State and Newfoundland, the e‐SWE sensors accurately measured SWE, with R2 values between the sensor and manual SWE measurements of between 0.86 and 0.98. The e‐SWE sensor at Hogg Pass, Oregon, accurately measured SWE during the past 8 years of operations. In the thin, icy snow of New York during midwinter 2008–2009, the e‐SWE sensors overmeasured SWE because of edge stress concentrations associated with strong icy layers and a shallow snow cover. The New York e‐SWE sensors' measurement accuracy improved in spring 2009 and further improved during the 2011–2012 winter with operating experience. At Santiam Junction, measured SWE from the 1.8 and 1.2 m square e‐SWE sensors agreed well with the snow pillow, 3 m square e‐SWE sensor, and manual SWE measurements until February 2013, when dust and gravel blew onto the testing area resulting in anomalous measurements. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

3.
Historically, observing snow depth over large areas has been difficult. When snow depth observations are sparse, regression models can be used to infer the snow depth over a given area. Data sparsity has also left many important questions about such inference unexamined. Improved inference, or estimation, of snow depth and its spatial distribution from a given set of observations can benefit a wide range of applications from water resource management, to ecological studies, to validation of satellite estimates of snow pack. The development of Light Detection and Ranging (LiDAR) technology has provided non‐sparse snow depth measurements, which we use in this study, to address fundamental questions about snow depth inference using both sparse and non‐sparse observations. For example, when are more data needed and when are data redundant? Results apply to both traditional and manual snow depth measurements and to LiDAR observations. Through sampling experiments on high‐resolution LiDAR snow depth observations at six separate 1.17‐km2 sites in the Colorado Rocky Mountains, we provide novel perspectives on a variety of issues affecting the regression estimation of snow depth from sparse observations. We measure the effects of observation count, random selection of observations, quality of predictor variables, and cross‐validation procedures using three skill metrics: percent error in total snow volume, root mean squared error (RMSE), and R2. Extremes of predictor quality are used to understand the range of its effect; how do predictors downloaded from internet perform against more accurate predictors measured by LiDAR? Whereas cross validation remains the only option for validating inference from sparse observations, in our experiments, the full set of LiDAR‐measured snow depths can be considered the ‘true’ spatial distribution and used to understand cross‐validation bias at the spatial scale of inference. We model at the 30‐m resolution of readily available predictors, which is a popular spatial resolution in the literature. Three regression models are also compared, and we briefly examine how sampling design affects model skill. Results quantify the primary dependence of each skill metric on observation count that ranges over three orders of magnitude, doubling at each step from 25 up to 3200. Whereas uncertainty (resulting from random selection of observations) in percent error of true total snow volume is typically well constrained by 100–200 observations, there is considerable uncertainty in the inferred spatial distribution (R2) even at medium observation counts (200–800). We show that percent error in total snow volume is not sensitive to predictor quality, although RMSE and R2 (measures of spatial distribution) often depend critically on it. Inaccuracies of downloaded predictors (most often the vegetation predictors) can easily require a quadrupling of observation count to match RMSE and R2 scores obtained by LiDAR‐measured predictors. Under cross validation, the RMSE and R2 skill measures are consistently biased towards poorer results than their true validations. This is primarily a result of greater variance at the spatial scales of point observations used for cross validation than at the 30‐m resolution of the model. The magnitude of this bias depends on individual site characteristics, observation count (for our experimental design), and sampling design. Sampling designs that maximize independent information maximize cross‐validation bias but also maximize true R2. The bagging tree model is found to generally outperform the other regression models in the study on several criteria. Finally, we discuss and recommend use of LiDAR in conjunction with regression modelling to advance understanding of snow depth spatial distribution at spatial scales of thousands of square kilometres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Four satellite‐based snow products are evaluated over the Tibetan Plateau for the 2007–2010 snow seasons. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow cover daily L3 Global 500‐m grid products (MOD10A1 and MYD10A1), the National Oceanic and Atmospheric Administration Interactive Multisensor Snow and Ice Mapping System (IMS) daily Northern Hemisphere snow cover product and the Advanced Microwave Scanning Radiometer – Earth Observing System Daily Snow Water Equivalent were validated against Thematic Mapper (TM) snow cover maps of Landsat‐5 and meteorological station snow depth observations. The overall accuracy of MOD10A1, MYD10A1 and IMS is higher than 91% against stations observations and than 79% against Landsat TM images. In general, the daily MODIS snow cover products show better performance than the multisensor IMS product. However, the IMS snow cover product is suitable for larger scale (~4km) analysis and applications, with the advantage over MODIS to allow for mitigation for cloud cover. The accuracy of the three products decreases with decreasing snow depth. Overestimation errors are most common over forested regions; the IMS and Advanced Microwave Scanning Radiometer – Earth Observing System Snow Water Equivalent products also show poorer performance that the MODIS products over grassland. By identifying weaknesses in the satellite products, this study provides a focus for the improvement of snow products over the Tibetan plateau. The quantitative evaluation of the products proposed here can also be used to assess their relative weight in data assimilation, against other data sources, such as modelling and in situ measurement networks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Wetlands are now being integrated into oil sands mining landscape closure design plans. These wetland ecosystems will be constructed within a regional sub‐humid climate where snowfall represents ~25% of annual precipitation. However, few studies focus on the distribution of snow and, hence, the storage of winter precipitation in reclaimed oil sands landscapes. In this study, the distribution, ablation and fate of snowmelt waters are quantified within a constructed watershed in a post‐mining oil sands environment. Basin‐averaged peak SWE was 106 mm, with no significant difference between reclaimed slopes with vegetation and those that were sparsely vegetated or bare. Snow depth was greatest and more variable near the toe of slopes and became progressively shallower towards the crest. Snow ablation started first on the vegetated slope, which also exhibited the maximum observed ablation rates. This enhanced melt was attributed to increased absorption of short‐wave radiation by vegetation stems and branches. Recharge to reclaimed slopes and a constructed aquifer during the snowmelt period was minimal, as the presence of ground frost minimized infiltration. Accordingly, substantial surface run‐off was observed from all reclaimed slopes, despite being designed to reduce run‐off and increase water storage. This could result in increased flashiness of downstream watercourses during the spring freshet that receive run‐off from post‐mining landscapes where large reclaimed slopes are prolific. Run‐off ratios for the reclaimed slopes were between 0.7 and 0.9. Thus, it is essential to consider snow dynamics when designing landscape‐scale constructed ecosystems. This research demonstrates that the snowmelt period hydrology within reclaimed landscapes is fundamentally different from that reported for natural settings and represents one of the first studies on snow dynamics in constructed watershed systems in the post‐mined oil sands landscape. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Ground‐penetrating radar (GPR) has become a promising technique in the field of snow hydrological research. It is commonly used to measure snow depth, density, and water equivalent over large distances or along gridded snow courses. Having built and tested a mobile lightweight set‐up, we demonstrate that GPR is capable of accurately measuring snow ablation rates in complex alpine terrain. Our set‐up was optimized for efficient measurements and consisted of a multioffset radar with four pairs of antennas mounted to a plastic sled, which was small enough to permit safe and convenient operations. Repeated measurements at intervals of 2 to 7 days were taken during the 2014/2015 winter season along 10 profiles of 50 to 200 m length within two valleys located in the eastern Swiss Alps. Resulting GPR‐based data of snow depth, density, and water equivalent, as well as their respective change over time, were in good agreement with concurrent manual measurements, in particular if accurate alignment between repeated overpasses could be achieved. Corresponding root‐mean‐square error (RMSE) values amounted to 4.2 cm for snow depth, 17 mm for snow water equivalent, and 22 kg/m3 for snow density, with similar RMSE values for corresponding differential data. With this performance, the presented radar set‐up has the potential to provide exciting new and extensive datasets to validate snowmelt models or to complement lidar‐based snow surveys.  相似文献   

7.
Snowcover areal depletion curves inferred from the moderate resolution imaging spectroradiometer (MODIS) are validated and then applied in NASA's catchment‐based land surface model (CLSM) for numerical simulations of hydrometeorological processes in the Kuparuk River basin (KRB) of Alaska. The results demonstrate that the MODIS snowcover fraction f derived from a simple relationship in terms of the normalized difference snow index compares well with Landsat values over the range 20 ≤ f ≤ 100%. For f < 20%, however, MODIS 500 m subpixel data underestimate the amount of snow by up to 13% compared with Landsat at spatial resolutions of 30 m binned to equivalent 500 m pixels. After a bias correction, MODIS snow areal depletion curves during the spring transition period of 2002 for the KRB exhibit similar features to those derived from surface‐based observations. These results are applied in the CLSM subgrid‐scale snow parameterization that includes a deep and a shallow snowcover fraction. Simulations of the evolution of the snowpack and of freshwater discharge rates for the KRB over a period of 11 years are then analysed with the inclusion of this feature. It is shown that persistent snowdrifts on the arctic landscape, associated with a secondary plateau in the snow areal depletion curves, are hydrologically important. An automated method is developed to generate the shallow and deep snowcover fractions from MODIS snow areal depletion curves. This provides the means to apply the CLSM subgrid‐scale snow parameterization in all watersheds subject to seasonal snowcovers. Improved simulations and predictions of the global surface energy and water budgets are expected with the incorporation of the MODIS snow data into the CLSM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The spatial distribution of snow water equivalent (SWE) is a key variable in many regional‐scale land surface models. Currently, the assimilation of point‐scale snow sensor data into these models is commonly performed without consideration of the spatial representativeness of the point data with respect to the model grid‐scale SWE. To improve the understanding of the relationship between point‐scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE within 1‐, 4‐ and 16‐km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California, Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE to evaluate the sensor representativeness of larger‐scale conditions. Unlike previous research, we did not find consistent high biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53 assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This study quantified changes in snow accumulation and ablation with forest defoliation in a young pine stand attacked by mountain pine beetle, a mature mixed species stand, and a clearcut in south‐central British Columbia. From 2006 to 2012, as trees in the pine stand turned from green to grey, average canopy transmittance increased from 27% to 49%. In the mixed stand, transmittance remained constant at 19%. In 2009, the year of greatest needle loss, average snow surface litter cover in the pine stand was 29% (range 4 – 61%), compared to ≤9% in other years and over double that in the mixed stand. By 2012, litter accumulation in the now‐grey pine stand was only a sixth of that in the mixed stand. Inter‐annual variability in the weather had the greatest effect on snow accumulation and ablation, with the greatest differences between both forested stands and the clearcut occurring in 2010, the year of lowest SWE. Differences in snow accumulation between the pine and mixed stand increased in 2010 as a result of decreased snow interception in the young stand after needlefall. Average ablation rates in the attacked stand were most different from the mixed stand in 2009 and 2012, the years with the largest and smallest over‐winter needle loss, respectively. This study shows that grey, non‐pine, and understory trees moderate snow response to changes in the main canopy. It also highlights the complex interrelationships between ecohydrological processes key to assessing watershed response to forest cover loss in snow dominated hydrologic regimes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

Measuring winter solid and liquid precipitation with high temporal resolution in remote or higher elevation regions is a challenging task because of undercatch and power supply issues. However, the number of micro-meteorological stations and ultrasonic height sensors in mountain regions is steadily increasing. To gain more benefit from such stations, a new simple approach for EStimating SOlid and LIquid Precipitation (ESOLIP) is presented. The method consists of three main steps: (1) definition of precipitation events using micro-meteorological data, (2) quantification of solid and liquid precipitation using wet-bulb temperature and filtered snow height and (3) calculation of fresh snow density. ESOLIP performance was validated using data from a heated rain gauge, snow pillow and daily manual observations both for single precipitation events and over three winter seasons. Results proved ESOLIP as an effective approach for precipitation quantification, where snow height observations and basic meteorological measurements (air temperature, solar radiation, wind speed, relative humidity), but no reliable rain gauges are available.  相似文献   

11.
Winter‐forest processes affect global and local climates. The interception‐sublimation fraction (F) of snowfall in forests is a substantial part of the winter water budget (up to 40%). Climate, weather‐forecast and hydrological modellers incorporate increasingly realistic surface schemes into their models, and algorithms describing snow accumulation and snow‐interception sublimation are now finding their way into these schemes. Spatially variable data for calibration and verification of wintertime dynamics therefore are needed for such modelling schemes. The value of F was determined from snow courses in open and forested areas in Hokkaido, Japan. The value of F was related to species and canopy‐structure measures such as closure, sky‐view fraction (SVF) and leaf‐area index (LAI). Forest structure was deduced from fish‐eye photographs. The value of F showed a strong linear correlation to structure: F = 0·44 ? 0·6 × SVF for SVF < 0·72 and F = 0 for SVF > 0·72, and F = 0·11 LAI. These relationships seemed valid for evergreen conifers, larch trees, alder, birch and mixed deciduous stands. Forest snow accumulation (SF) could be estimated from snowfall in open fields (So) and to LAI according to SF = So (1 ? 0·11 LAI) as well as from SVF according to SF = So (0·56 + 0·6 SVF) for SVF < 0·72. The value of SF was equal to So for SVF values above 0·72. The value of sky‐view fraction was correlated to the normalized difference snow index (NDSI) using a Landsat‐TM image for observation plots exceeding 1 ha. Variables F and SF were related to NDSI for these plots according to: F = ?0·37NDSI + 0·29 and SF = So (0·81 + 0·37NDSI). These relationships are somewhat hypothetical because plot‐size limitation only allowed one sparse‐forest observation of NDSI to be used. There is, therefore, a need to confirm these relationships with further studies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Snow in the McMurdo Dry Valleys is a potential source of moisture for subnivian soils in a cold desert ecosystem. In a water‐limited environment, enhanced soil moisture is expected to provide more favourable conditions for subnivian soil communities. In addition, snow cover insulates the underlying soil from air temperature extremes. Quantifying the spatial and temporal patterns of seasonal snow accumulation and ablation is necessary to understand these dynamics. Repeat high‐resolution imagery acquired for the 2009–2010 austral summer was used to map the seasonal distribution of snow across Taylor and Wright valleys, Southern Victorialand, Antarctica. An edge detection algorithm was used to perform an object‐based classification of snow‐covered area. Coupled with topographic parameters obtained from a 30‐m digital elevation model, unique distribution patterns were characterized for five regions within the neighbouring valleys. Time lapses of snow distribution in each region provide insight into spatially variable aerial ablation rates (change in area of landscape covered by snow) across the region. A strong coastal to interior gradient of decreasing snow‐covered area was evident for both Taylor and Wright valleys. The surrounding regions of Lake Fryxell, Lake Hoare, Lake Bonney, Lake Brownworth, and Lake Vanda exhibited losses of snow‐covered area of 9.61 km2 (?93%), 1.63 km2 (?72%), 1.07 km2 (?97%), 2.60 km2 (?82%), and 0.25 km2 (?96%), respectively, as measured from peak accumulation in October to mid‐January. Differences in aerial ablation rates within and across local regions suggest that both topographic variation and regional microclimates influence the ablation of seasonal snow cover. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Snow water equivalent (SWE) is an important indicator used in hydrology, water resources, and climate change impact. There are various methods of estimating SWE (falling in 3 categories: indirect sensors, empirical models, and process‐based models), but few studies that provide comparison across these different categories to help users make decisions on monitoring site design or method selection. Five SWE estimation methods were compared against manual snow course data collected over 2 years (2015–2016) from the Dorset Environmental Science Centre, including the gamma‐radiation‐based CS725 sensor, 3 empirical estimation models (Sexstone snow density model, McCreight & Small snow density model, and a meteorology‐based model), and the University of British Columbia Watershed Model snow energy‐balance model. Snow depth, density, and SWE were measured at the Dorset Environmental Science Centre weather station in south‐central Ontario, on a daily basis over 6 winters from 2011 to 2016. The 2 snow density‐based models, requiring daily snow depth as input, gave the best performance (R2 of .92 and .92 for McCreight & Small and Sexstone models, respectively). The CS725 sensor that receives radiation coming from soil penetrating the snowpack provided the same performance (R2 = .92), proving that the sensor is an applicable method, although it is expensive. The meteorology‐based empirical model, requiring daily climate data including temperature, precipitation and solar radiation, gave the poorest performance (R2 = .77). The energy‐balance‐based University of British Columbia Watershed Model snow module, only requiring climate data, worked better than the empirical meteorology‐based model (R2 = .9) but performed worse than the density models or CS725 sensor. Given differences in application objectives, site conditions, and budget, this comparison across SWE estimation methods may help users choose a suitable method. For ongoing and new monitoring sites, installation of a CS725 sensor coupled with intermittent manual snow course measurements (e.g., weekly) is recommended for further SWE method estimation testing and development of a snow density model.  相似文献   

14.
Native Nothofagus forests in the midlatitude region of the Andes Cordillera are notorious biodiversity hot spots, uniquely situated in the Southern Hemisphere such that they develop in snow‐dominated reaches of this mountain range. Spanning a smaller surface area than similar ecosystems, where forests and snow coexist in the Northern Hemisphere, the interaction between vegetation and snow processes in this ecotone has received lesser attention. We present the first systematic study of snow–vegetation interactions in the Nothofagus forests of the Southern Andes, focusing on how the interplay between interception and climate determines patterns of snow water equivalent (SWE) variability. The Valle Hermoso experimental catchment, located in the Nevados de Chillán vicinity, was fitted with eight snow depth sensors that provided continuous measurements at varying elevations, aspect, and forest cover. Also, manual measurements of snow properties were obtained during snow surveys conducted during end of winter and spring seasons for 3 years, between 2015 and 2017. Each year was characterized by distinct climatological conditions, with 2016 representing one of the driest winters on record in this region. Distance to canopy, leaf area index, and total gap area were measured at each observational site. A regression model was built on the basis of statistical analysis of local parameters to model snow interception in this kind of forest. We find that interception implied a 23.2% reduction in snow accumulation in forested sites compared with clearings. The interception in these deciduous trees represents, on average, 23.6% of total annual snowfall, reaching a maximum measured interception value of 13.8‐mm SWE for all snowfall events analysed in this research.  相似文献   

15.
Snowpack water equivalent (SWE) is a key variable for water resource management in snow-dominated catchments. While it is not feasible to quantify SWE at the catchment scale using either field surveys or remotely sensed data, technologies such as airborne LiDAR (light detection and ranging) support the mapping of snow depth at scales relevant to operational water management. To convert snow depth to water equivalent, models have been developed to predict SWE or snowpack density based on snow depth and additional predictor variables. This study builds upon previous models that relate snowpack density to snow depth by including additional predictor variables to account for (1) long-term climatologies that describe the prevailing conditions influencing regional snowpack properties, and (2) the effect of intra- and inter-year variability in meteorological conditions on densification through a cumulative degree-day index derived from North American Regional Reanalysis products. A non-linear model was fit to 114 506 snow survey measurements spanning 41 years from 1166 snow courses across western North America. Under spatial cross-validation, the predicted densities had a root-mean-square error of 47.1 kg m−3, a mean bias of −0.039 kg m−3, and a Nash-Sutcliffe Efficiency of 0.70. The model developed in this study had similar overall performance compared to a similar regression-based model reported in the literature, but had reduced seasonal biases. When applied to predict SWE from simulated depths with random errors consistent with those obtained from LiDAR or Structure-from-Motion, 50% of the SWE estimates for April and May fell within −45 to 49 mm of the observed SWE, representing prediction errors of −15% to 20%.  相似文献   

16.
A 10‐km gridded snow water equivalent (SWE) dataset is developed over the Saint‐Maurice River basin region in southern Québec from kriging of observed snow survey data for evaluation of SWE products. The gridded SWE dataset covers 1980–2014 and is based on manual gravimetric snow surveys carried out on February 1, March 1, March 15, April 1, and April 15 of each snow season, which captures the annual maximum SWE (SWEM) with a mean interpolation error of ±19%. The dataset is used to evaluate SWEM from a range of sources including satellite retrievals, reanalyses, Canadian regional climate models, and the Canadian Meteorological Centre operational snow depth analysis. We also evaluate a number of solid precipitation datasets to determine their contribution to systematic errors in estimated SWEM. None of the evaluated datasets is able to provide estimates of SWEM that are within operational requirements of ±15% error, and insufficient solid precipitation is determined to be one of the main reasons. The Climate System Forecast Reanalysis is the only dataset where snowfall is sufficiently large to generate SWEM values comparable to observations. Inconsistencies in precipitation are also found to have a strong impact on year‐to‐year variability in SWEM dataset performance and spread. Version 3.6.1 of the Canadian Land Surface Scheme land surface scheme driven with ERA‐Interim output downscaled by Version 5.0.1 of the Canadian Regional Climate Model was the best physically based model at explaining the observed spatial and temporal variability in SWEM (root‐mean‐square error [RMSE] = 33%) and has potential for lower error with adjusted precipitation. Operational snow products relying on the real‐time snow depth observing network performed poorly due to a lack of real‐time data and the strong local scale variability of point snow depth observations. The results underscore the need for more effort to be invested in improving solid precipitation estimates for use in snow hydrology applications.  相似文献   

17.
The spatio‐temporal distribution of snow in a catchment during ablation reflects changes in the total amount of snow water equivalent and is thus a key parameter for the estimation of melt water run‐off. This study explores possible rules behind the spatial variability of snow depth during the ablation season in a small Alpine catchment with complex topography. The snow depth observations are based on more than 160 000 terrestrial laser scanner data points with a spatial resolution of 1 m, which were obtained from 11 scanning campaigns of two consecutive ablation seasons. The analysis suggests that for estimating cumulative snow melt dynamics from the catchment investigated, assessing the initial snow distribution prior to the melt season is more important than addressing spatial differences in the melt behaviour. Snow volume and snow‐covered area could be predicted well using a conceptual melt model assuming spatially uniform melt rates. However, accurate results were only obtained if the model was initialized with a pre‐melt snow distribution that reflected measured mean and standard deviation. Using stratified melt rates on the other hand did not improve the model results. At least for sites with similar meteorological and topographical conditions, the model approach presented here comprises an efficient way to estimate snow depletion dynamics, especially if persistent snow accumulation pattern between years facilitate the characterization of the initial snow distribution prior to the melt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain‐front scale is important for improvements in large‐scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snow‐covered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale‐up snowmelt models. Unfortunately, the kinds of ground‐based observations that are used to develop depletion curves are expensive to gather and impractical for large areas. We describe an approach incorporating remotely sensed fractional SCA (FSCA) data with coinciding daily snowmelt SWE outputs during ablation to quantify the shape of a depletion curve. We joined melt estimates from the Utah Energy Balance Snow Accumulation and Melt Model (UEB) with FSCA data calculated from a normalized difference snow index snow algorithm using NASA's moderate resolution imaging spectroradiometer (MODIS) visible (0·545–0·565 µm) and shortwave infrared (1·628–1·652 µm) reflectance data. We tested the approach at three 500 m2 study sites, one in central Idaho and the other two on the North Slope in the Alaskan arctic. The UEB‐MODIS‐derived depletion curves were evaluated against depletion curves derived from ground‐based snow surveys. Comparisons showed strong agreement between the independent estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The influence of trees on the ground thermal regime is important to the overall winter energy exchange in a snow-covered, forested watershed. In this work, spatial zones around a single conifer tree were defined and examined for their controls on the snow cover, snow-ground interface temperatures and frozen ground extent. A large white spruce (Picea glauca), approximately 18 m tall with a crown diameter of 7.5 m and located in northern Vermont, was the subject of this study. The tree was instrumented with thermistors to measure the snow-ground interface temperature between the tree trunk and 6 m from the tree into undisturbed snow. Four distinct zones around the conifer are defined that affect the snow distribution characteristics: adjacent to the trunk; the tree well; the tree crown perimeter; and the unaffected area away from the tree. At the time of peak snow accumulation and during the ablation season, snow depth and density profiles were measured. The area beneath the canopy accumulated 34% of the snow accumulated in the undisturbed zone. By the end of the ablation season, the depth of snow under the canopy had decreased to 18% of the undisturbed snow depth. The tree and branch characteristics of spruce in this temperate climate resulted in a different snow depth profile compared with previous empirical relationships around a single conifer. A new relationship is presented for snow distribution around conifer trees that has the ability to better fit data from a variety of conifer types than previously published relationships. Less snow beneath the canopy led to colder snow-ground interface temperatures than measured in undisturbed snow. The depth of frozen ground in the different zones was modelled using a simple analytical solution that showed deeper frost penetration in the tree well than beneath the undisturbed snow.  相似文献   

20.
Chunyu Dong  Lucas Menzel 《水文研究》2017,31(16):2872-2886
A camera network with hourly resolution was used to monitor the complex snow processes in montane forest environments. We developed a semi‐automatic procedure to interpret snow depths from the digital images, which exhibited high consistency with manual measurements and station‐based recordings. To extract snow interception dynamics, six binary classification methods were compared. The MaxEntropy classifier demonstrated better performance than the other methods under conditions of varying illumination and was therefore selected as the method used for quantifying snow in tree canopies. Snow accumulation and ablation on the ground, as well as snow loading and unloading in the forest canopies, were investigated using snow parameters derived from the time‐lapse photography monitoring. The influences of meteorologic conditions, forest cover, and elevation on the snow processes were also considered. Time‐lapse photography proved to be an effective and low‐cost approach for collecting useful information on snow processes and facilitating the set‐up of hydrological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号