首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The OH site in topaz is investigated by IR spectroscopy depending on the OH concentration and temperature. The two OH bands that can be distinguished are due to the local ordering of F and OH in opposite sites of the crystal structure. The first typical sharp band stems from OH groups with fluorine in the opposite (=acceptor) site. The second band occurs as a shoulder on the low-energy wing and is related to two opposite OH groups. The degree of local OH–OH ordering depends on the OH concentration and, due to statistical F/OH distribution, can be predicted by probability calculations. The substitution of OH for F has a non-linear effect on the increase of the lattice parameters. An autocorrelation analysis of the IR spectra revealed two temperature-induced phase transitions. At −135°C, the local symmetry changes from P1 to Pbn21, although this change involves only the H atoms. The transition from Pbn21 to Pbnm at 160°C is caused by changes of the local F/OH ordering in the crystal structure.  相似文献   

2.
Infrared absorption measurements were taken from 100 to 5000 cm?1 of a natural chondrodite and three dense hydrous magnesium silicates: phase A, phase B, and superhydrous phase B (shy-B). Raman spectra were also acquired from phase B and the chondrodite. Roughly half of the lattice modes are represented and our data are the first report of the low frequency modes. Comparison of our new spectra to symmetry analyses suggests that multiple sites for hydrogen exist for all the phases. The shy-B we examined crystallizes in P21 nm with two OH sites. Models for the density of states are constructed based on band assignments for the lattice modes and for the OH stretching vibrations. Heat capacity CP and entropy S calculated using Kieffer's formulation should be accurate within 3% from 200 to 800 K. Model values for CP at 298 K are 299.6 J/mol-K for chondrodite, 421.5 J/mol-K for phase A, 529.4 J/mol-K for shy-B, and 618.9 J/mol-K for phase B. Model values for S298 0 are 234.2 J/mol-K for chondrodite, 303.5 J/ mol-K for phase A, 377.9 J/mol-K for shy-B, and 473.3 J/mol-K for phase B. Debye temperatures are near 1000 K.  相似文献   

3.
Polarized Raman spectra were collected for single crystal buergerite (NaFe3Al6(BO3)3Si6O18(O0.92(OH)0.08)3F) from room temperature to near 1,375°C. Vibrational assignments to features in the room temperature spectra were determined by lattice dynamics calculations, where internal BO3 motions dominate modes near 1,300 cm−1, internal SiO4 displacements dominate modes between 900 and 1,200 cm−1, while less localized displacements within the isolated Si6O18 ring mix with motions within Na, Fe, Al, F, and BO3 environments for fundamental modes below 780 cm−1. At elevated temperatures, most buergerite Raman features broaden and shift to lower frequencies up to 900°C. Above this temperature, the lattice mode peaks evolve into broad bands, while OH stretch modes near 3,550 cm−1 disappear. According to Raman spectroscopy, X-ray diffraction, differential thermal analysis, and scanning electron microscopy, buergerite undergoes a complex transition that starts near 700°C and extends over a 310°C interval, where initially, Al and Fe probably become disordered within the Y- and Z-sites, and most F and all OH are later liberated. A reversible crystal-to-amorphous transition is seen by Raman for buergerite fragments heated as high as 930°C. Buergerite becomes permanently altered when heated to temperatures greater than 930°C; after cooling to room temperature, these altered fragments are comprised of mullite and Fe-oxide crystals suspended in an amorphous borosilicate matrix.  相似文献   

4.
Hydrogen bonding in topaz-OH, Al2SiO4(OH)2, was investigated by IR spectroscopic analysis of the temperature dependence of the OH-stretching frequencies. Low-temperature spectra ranging from −196 to −160°C prove the existence of four non-equivalent H-positions in the crystal structure from the occurrence of four different OH-bands. With increasing temperature, these bands merge first, above −160°C, into two OH-bands and then above 400°C into one asymmetric broad band. Shifting of the OH-bands is caused by thermally induced hydrogen order–disorder. Low temperature fixes the protons in their positions; increasing temperature induces proton movement and allows switching between the different positions. Autocorrelation analysis of the IR spectra reveals two phase transitions, one at about −155°C from P1 to Pbn2 1 characterized as static–dynamic change and the second at about 380°C from Pbn2 1 to Pbnm caused by disordering of the protons. The increasing symmetry with temperature is due to advanced proton movement and dynamical averages over the proton distribution densities.  相似文献   

5.
Stress-induced proton disorder in hydrous ringwoodite   总被引:1,自引:1,他引:0  
We have measured in situ high-pressure IR absorption of synthetic hydrous (MgxFe1−x)2SiO4 ringwoodites (x = 0.00 to 0.61) up to a maximum pressure of 30 GPa. In our study, we combined the megabar-type diamond-anvil cell (DAC) with conventional and synchrotron FTIR spectroscopy. The high-pressure measurements were performed in three different pressure-transmitting environments: (1) CsI powder, (2) cryogenically loaded liquid argon, and (3) cryogenically loaded liquid argon annealed at 8.6 GPa at temperature of 120°C before further pressure increase. Between 10 and 12 GPa, all the samples loaded with methods (1) and (2), independent on composition, showed a sudden disappearance of the prominent OH-stretching feature and simultaneous discontinuities and/or changes in the pressure dependence of lattice vibrations compared with spectra of samples loaded with method (3). In experiments performed with method (3) the OH-stretching vibrations as well as lattice vibrations could be observed up to 30 GPa and their pressure behavior (dν/dP) can well be described by linear fits. Molecular vibrations, such as the OH stretching, are sensitive to non-hydrostatic conditions, especially in minerals with highly symmetric structures. We interpret the disappearance of the OH bands using methods (1) and (2) as a stress-induced proton disordering in hydrous ringwoodite. Our results confirm that argon pressure medium produces strongly non-hydrostatic conditions comparable to CsI or KBr, if it is not thermally annealed at pressures above 8 GPa. Our results suggest that the transition observed in hydrous Mg-ringwoodite end member is not present in compositions containing Fe. By comparing the behavior of samples compressed in different environments, we suggest that sudden disappearance of the OH-stretching band in hydrous ringwoodite could be driven by deterioration of the quasi-hydrostatic stress condition instead of a pressure-induced effect.  相似文献   

6.
We present H2O analyses of MgSiO3 pyroxene crystals quenched from hydrous conditions in the presence of olivine or wadsleyite at 8–13.4 GPa and 1,100–1,400°C. Raman spectroscopy shows that all pyroxenes have low clinoenstatite structure, which we infer to indicate that the crystals were high clinoenstatite (C2/c) during conditions of synthesis. H2O analyses were performed by secondary ion mass spectrometry and confirmed by unpolarized Fourier transform infrared spectroscopy on randomly oriented crystals. Measured H2O concentrations increase with pressure and range from 0.08 wt.% H2O at 8 GPa and 1,300°C up to 0.67 wt.% at 13.4 GPa and 1,300°C. At fixed pressure, H2O storage capacity diminishes with increasing temperature and the magnitude of this effect increases with pressure. This trend, which we attribute to diminishing activity of H2O in coexisting fluids as the proportion of dissolved silicate increases, is opposite to that observed previously at low pressure. We observe clinoenstatite 1.4 GPa below the pressure stability of clinoenstatite under nominally dry conditions. This stabilization of clinoenstatite relative to orthoenstatite under hydrous conditions is likely owing to preferential substitution of H2O into the high clinoenstatite polymorph. At 8–11 GPa and 1,200–1,400°C, observed H2O partitioning between olivine and clinoenstatite gives values of D ol/CEn between 0.65 and 0.87. At 13 GPa and 1,300°C, partitioning between wadsleyite and clinoenstatite, D wd/CEn, gives a value of 2.8 ± 0.4.  相似文献   

7.
We performed in situ infrared spectroscopic measurements of OH bands in a forsterite single crystal between ?194 and 200 °C. The crystal was synthesized at 2 GPa from a cooling experiment performed between 1,400 and 1,275 °C at a rate of 1 °C per hour under high silica-activity conditions. Twenty-four individual bands were identified at low temperature. Three different groups can be distinguished: (1) Most of the OH bands between 3,300 and 3,650 cm?1 display a small frequency lowering (<4 cm?1) and a moderate broadening (<10 cm?1) as temperature is increased from ?194 to 200 °C. The behaviour of these bands is compatible with weakly H-bonded OH groups associated with hydrogen substitution into silicon tetrahedra; (2) In the same frequency range, two bands at 3,617 and 3,566 cm?1 display a significantly anharmonic behaviour with stronger frequency lowering (42 and 27 cm?1 respectively) and broadening (~30 cm?1) with increasing temperature. It is tentatively proposed that the defects responsible for these OH bands correspond to H atoms in interstitial position; (3) In the frequency region between 3,300 and 3,000 cm?1, three broad bands are identified at 3,151, 3,178 and 3,217 cm?1, at ?194 °C. They exhibit significant frequency increase (~20 cm?1) and broadening (~70 cm?1) with increasing temperature, indicating moderate H bonding. These bands are compatible with (2H)Mg defects. A survey of published spectra of forsterite samples synthesized above 5 GPa shows that about 75 % of the incorporated hydrogen belongs to type (1) OH bands associated with Si substitution and 25 % to the broad band at 3,566 cm?1 (type (2); 3,550 cm?1 at room temperature). The contribution of OH bands of type (3), associated to (2H)Mg defects, is negligible. Therefore, solubility of hydrogen in forsterite (and natural olivine compositions) cannot be described by a single solubility law, but by the combination of at least two laws, with different activation volumes and water fugacity exponents.  相似文献   

8.
 The incorporation of hydrogen (deuterium) into the coesite structure was investigated at pressures from 3.1 to 7.5 GPa and temperatures of 700, 800, and 1100 °C. Hydrogen could only be incorporated into the coesite structure at pressures greater 5.0 GPa and 1100 °C . No correlation between the concentration of trace elements such as Al and B and the hydrogen content was observed based on ion probe analysis (1335 ± 16 H ppm and 17 ± 1 Al ppm at 7.5 GPa, 1100 °C). The FTIR spectra show three relatively intense bands at 3575, 3516, and 3459 cm−11 to ν3, respectively) and two very weak bands at 3296 and 3210 cm−14 and ν5, respectively). The band at 3516 cm−1 is strongly asymmetric and can be resolved into two bands, 3528 (ν2a) and 3508 (ν2b) cm−1, with nearly identical areas. Polarized infrared absorption spectra of coesite single-crystal slabs, cut parallel to (0 1 0) and (1 0 0), were collected to locate the OH dipoles in the structure and to calibrate the IR spectroscopy for quantitative analysis of OH in coesite (ɛ i ,tot=190 000 ± 30 000 l mol−1 H2O cm−2). The polarized spectra revealed a strong pleochroism of the OH bands. High-pressure FTIR spectra at pressures up to 8 GPa were performed in a diamond-anvil cell to gain further insight into incorporation mechanism of OH in coesite. The peak positions of the ν1, ν2, and ν3 bands decrease linearly with pressure. The mode Grüneisen parameters for ν1, ν2, and ν3 are −0.074, −0.144 and −0.398, respectively. There is a linear increase of the pressure derivatives with band position which follows the trend proposed by Hofmeister et al. (1999). The full widths at half maximum (FWHM) of the ν1, ν2, and ν3 bands increase from 35, 21, and 28 cm−1 in the spectra at ambient conditions to 71, 68, and 105 in the 8 GPa spectra, respectively. On the basis of these results, a model for the incorporation of hydrogen in coesite was developed: the OH defects are introduced into the structure by the substitution Si4+(Si2)+4O2−= [4](Si2) + 4OH, which gives rise to four vibrations, ν1, ν2a, ν2b, and ν3. Because the OH(D)-bearing samples do contain traces of Al and B, the bands ν4 and ν5 may be coupled to Al and/or B substitution. Received: 19 December 2000 / Accepted: 23 April 2001  相似文献   

9.
Samples of enstatite and forsterite were crystallized in the presence of a hydrous fluid at 15 kbar and 1100 °C. Water contents in quenched samples were measured by 1H MAS NMR and by FTIR. If the samples were prepared in the same way, similar water concentrations were obtained by both methods. There is no evidence that one or the other method would severely over or underestimate water contents in nominally anhydrous minerals. However, measured water contents vary by orders of magnitude depending on sample preparation. The lowest water contents are measured by polarized FTIR spectroscopy on clear, inclusion-free single crystals. These water contents probably reflect the real point defect solubility in the crystals. Polycrystalline material shows much higher total water concentrations, presumably due to hydrous species on grain boundaries, growth defects, and in submicroscopic fluid inclusions. Grinding the sample in air further increases water concentration. This effect is even more pronounced if the sample is ground in water and subsequently dried at 150 °C. Polarized FTIR measurements on clear single crystals of enstatite saturated at 15 kbar and 1100 °C give 199 ± 25 ppm by weight of water. The spectra show sharp and strongly polarized bands. These bands are also present in spectra measured through turbid, polycrystalline aggregates of enstatite. However, in these spectra, they are superimposed on much broader, nearly isotropic bands resulting from hydrous species in grain boundaries, growth defects, and submicroscopic fluid or melt inclusions. Total water contents for these polycrystalline aggregates are between 2000 and 4000 ppm. Water contents measured by FTIR on enstatite powders are 5300 ppm after grinding in air and 12 600 ppm after grinding under water und subsequent drying at 150 °C. Received: 25 June 1999 / Revised, accepted: 4 October 1999  相似文献   

10.
 Using the high-pressure differential thermal analysis (HP-DTA) system in a cubic multianvil high-pressure apparatus, we measured the melting points of portlandite, Ca(OH)2, up to 6 GPa and 1000 °C. We detected endothermic behavior at the temperature and pressure conditions of 800 °C and 2.5 GPa, 769 °C and 3.5 GPa, 752 °C and 4.0 GPa, 686 °C and 5.0 GPa, and 596 °C and 6.0 GPa, respectively, due to melting of portlandite. By in situ X-ray studies under pressure, the melting of portlandite was observed at 730 °C and 4.32 GPa and at 640 °C and 5.81 GPa, respectively. Results of both HP-DTA and X-ray studies were consistent within experimental error. The melting is congruent and has a negative Clapeyron slope, indicating that liquid Ca(OH)2 has higher densities than crystalline portlandite in this pressure range. Received: 19 June 1999 / Revised, accepted: 11 September 1999  相似文献   

11.
 Cordierite precursors were prepared by a sol-gel process using tetraethoxysilane, aluminum sec.-butoxide, and Mg metal flakes as starting materials. The precursors were treated by 15-h heating steps in intervals of 100 °C from 200 to 900 °C; they show a continuous decrease in the analytical water content with increasing preheating temperatures. The presence of H2O and (Si,Al)–OH combination modes in the FTIR powder spectra prove the presence of both H2O molecules and OH groups as structural components, with invariable OH concentrations up to preheating temperatures of 500 °C. The deconvolution of the absorptions in the (H2O,OH)-stretching vibrational region into four bands centred at 3584, 3415, 3216 and 3047 cm−1 reveals non-bridging and bridging H2O molecules and OH groups. The precursor powders remain X-ray amorphous up to preheating temperatures of 800 °C. Above this temperature the precursors crystallize to μ-cordierite; at 1000 °C the structure transforms to α-cordierite. Close similarities exist in the pattern of the 1400–400 cm−1 lattice vibrational region for precursors preheated up to 600 °C. Striking differences are evident at preheating temperatures of 800 °C, where the spectrum of the precursor powder corresponds to that of conventional cordierite glass. Bands centred in the “as-prepared” precursor at 1137 and 1020 cm−1 are assigned to Si–O-stretching vibrations. A weak absorption at 872 cm−1 is assigned to stretching modes of AlO4 tetrahedral units and the same assignment holds for a band at 783 cm−1 which appears in precursors preheated at 600 °C. With increasing temperatures, these bands show a significant shift to higher wavenumbers and the Al–O stretching modes display a strong increase in their intensities. (Si,Al)–O–(Si,Al)-bending modes occur at 710 cm−1 and the band at 572 cm−1 is assigned to stretching vibrations of AlO6 octahedral units. A strong band around 440 cm−1 is essentially attributed to Mg–O-stretching vibrations. The strongly increasing intensity of the 872 and 783 cm−1 bands demonstrates a clear preference of Al for a fourfold-coordinated structural position in the precursors preheated at high temperatures. The observed band shift is a strong indication for increasing tetrahedral network condensation along with changes in the Si–O and Al–O distances to tetrahedra dimensions similar to those occurring in crystalline cordierite. These structural changes are correlated to the dehydration process starting essentially above 500 °C, clearly demonstrating the inhibiting role of H2O molecules and especially of OH groups. Received: 1 March 2002 / Accepted: 26 June 2002  相似文献   

12.
Lower crustal xenoliths erupted from an intraplate diatreme reveal that a portion of the New Zealand Gondwana margin experienced high‐temperature (HT) to ultrahigh‐temperature (UHT) granulite facies metamorphism just after flat slab subduction ceased at c. 110–105 Ma. PT calculations for garnet–orthopyroxene‐bearing felsic granulite xenoliths indicate equilibration at ~815 to 910°C and 0.7 to 0.8 GPa, with garnet‐bearing mafic granulite xenoliths yielding at least 900°C. Supporting evidence for the attainment of HT and UHT conditions in felsic granulite comes from re‐integration of exsolution in feldspar (~900–950°C at 0.8 GPa), Ti‐in‐zircon thermometry on Y‐depleted overgrowths on detrital zircon grains (932°C ± 24°C at aTiO2 = 0.8 ± 0.2), and correlation of observed assemblages and mineral compositions with thermodynamic modelling results (≥850°C at 0.7 to 0.8 GPa). The thin zircon overgrowths, which were mainly targeted by drilling through the cores of grains, yield a U–Pb pooled age of 91.7 ± 2.0 Ma. The cause of Late Cretaceous HT‐UHT metamorphism on the Zealandia Gondwana margin is attributed to collision and partial subduction of the buoyant oceanic Hikurangi Plateau in the Early Cretaceous. The halt of subduction caused the fore‐running shallowly dipping slab to rollback towards the trench position and permitted the upper mantle to rapidly increase the geothermal gradient through the base of the extending (former) accretionary prism. This sequence of events provides a mechanism for achieving regional HT–UHT conditions in the lower crust with little or no sign of this event at the surface.  相似文献   

13.
Cylinders of synthetic periclase single crystals were annealed at 0.15–0.5 GPa and 900–1200 °C under water-saturated conditions for 45 min to 72 h. Infrared spectra measured on the quenched products show bands at 3,297 and 3,312 cm?1 indicating V OH ? centers (OH-defect stretching vibrations in a half-compensated cation vacancy) in the MgO structure as a result of proton diffusion into the crystal. For completely equilibrated specimens, the OH-defect concentration, expressed as H2O equivalent, was calculated to 3.5 wt ppm H2O at 1,200 °C and 0.5 GPa based on the calibration method of Libowitzky and Rossmann (Am Min 82:1111–1115, 1997). This value was confirmed via Raman spectroscopy, which shows OH-defect-related bands at identical wavenumbers and yields an H2O equivalent concentration of about 9 wt ppm using the quantification scheme of Thomas et al. (Am Min 93:1550–1557, 2008), revised by Mrosko et al. (Am Mineral 96:1748–1759, 2011). Results of both independent methods give an overall OH-defect concentration range of 3.5–9 (+4.5/?2.6) ppm H2O. Proton diffusion follows an Arrhenius law with an activation energy E a = 280 ± 64 kJ mol?1 and the logarithm of the pre-exponential factor logDo (m2 s?1) = ?2.4 ± 1.9. IR spectra taken close to the rims of MgO crystals that were exposed to water-saturated conditions at 1,200 °C and 0.5 GPa for 24 h show an additional band at 3,697 cm?1, which is related to brucite precipitates. This may be explained by diffusion of molecular water into the periclase, and its reaction with the host crystal during quenching. Diffusion of molecular water may be described by logDH2O (m2 s?1) = ?14.1 ± 0.4 (2σ) at 1,200 °C and 0.5 GPa, which is ~ 2 orders of magnitude slower than proton diffusion at identical P-T conditions.  相似文献   

14.
In situ Raman spectra of hydrous wadsleyite (β-Mg2SiO4) with ~1.5 wt% H2O, synthesized at 18 GPa and 1,400°C, have been measured in an externally heated diamond anvil cell up to 15.5 GPa and 673 K. With increasing pressure (at room temperature), the three most intense bands at ~549, 720 and 917 cm−1 shift continuously to higher frequencies, while with increasing temperature at 14.5 GPa, these bands generally shift to lower frequencies. The temperature-induced frequency shifts at 14.5 GPa are significantly different from those at ambient pressure. Moreover, two new bands at ~714 and ~550 cm−1 become progressively significant above 333 and 553 K, respectively, and disappear upon cooling to room temperature. No corresponding Raman modes of these two new bands were reported for wadsleyite at ambient conditions, and they are thus probably related to thermally activated processes (vibration modes) at high-pressure and temperature conditions.  相似文献   

15.
FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration   总被引:1,自引:0,他引:1  
Our study of olivines from Canadian kimberlites shows that the application of FTIR spectroscopy significantly improves the reliability of olivine as a kimberlite indicator mineral (KIM). We have developed an algorithm that yields the water concentration and the normalized intensity of the OH IR absorption band at 3572 cm−1 from unpolished olivine grains of unknown thickness. For 80% of kimberlitic olivines these two parameters are significantly higher than those for olivines from non-kimberlitic magmas and consequently, olivines with water concentrations >60 ppm and a strong absorption band at 3572 cm−1 can be reliably classified as being kimberlitic.We have identified two major spectral features in the OH absorption bands of kimberlitic olivines that allow for a more detailed classification: (a) the presence of three types of high-requency OH absorption bands (Group 1A, 1B and 1C) and (b) the proportion of low-frequency OH absorption bands (Group 2) relative to high-frequency bands (Group 1). Comparison of our results with experimental studies suggests that differences within Group 1 OH absorption bands are due to different pressures of crystallization or hydrogenation. The three identified types of Group 1 OH absorption bands approximately correspond to high (P > 2 GPa, Group 1A), moderate (2-1 GPa, Group 1B), and low (<1 GPa, Group 1C) pressures of hydrogenation. Group 2 OH IR absorption bands in olivines with NiO > 3500 ppm are interpreted to reflect olivine-orthopyroxene equilibria and hence are indicative of xenocrystic olivine derived from lherzolitic or harzburgitic mantle sources. Interaction of xenocrystic olivine with hydrous kimberlitic melts with low silica activity likely will cause a gradual increase in Group 1 absorption bands. Therefore, FTIR spectra of olivine can be used to obtain qualitative estimates of the duration of interaction between mantle material and a kimberlitic melt.In addition to applications in kimberlite and diamond exploration, FTIR spectra of olivine phenocrysts, combined with mineral chemical data, may also provide insights into kimberlite evolution. Our data suggest that in some instances the ascent of kimberlitic magmas could have been interrupted at or near the Moho, followed by olivine crystallization and exsolution of aqueous fluids.  相似文献   

16.
Natural samples of typical cyclosilicates beryl and cordierite include water and carbon dioxide molecules in channels formed by the open cavities. Water molecules in the channels have two forms that are distinguished by whether they coordinate to extra-framework cations (type II) or not (type I). We measured polarized infrared (IR) spectra for thin sections of the (100) plane of beryl or the (100) and (010) planes (cb and ca planes) of cordierite under various temperature conditions. The spectral features of major bands clearly showed the distinguishable behavior of types I and II water molecules under high temperature as follows. Over the temperature range from room temperature to 800°C where rapid dehydration did not occur, the decrease in band heights for type II water molecules were smaller than those for type I, and band shifts were more predominant for type II water molecules. The decrease in band heights and band shifts of type I/II bands differed also for beryl and cordierite, which arises from the different ways in which water molecules are fixed in the channels. Dehydration was enhanced at 850°C. The IR spectra at room temperature quenched from 850°C both for beryl and cordierite showed that the vibrational bands related to type II water molecules were stable after those related to type I water molecules disappeared. In addition, frequency changes of type II bands were observed, possibly because of changes of coordination states of type II water molecules to extra-framework cations in the channels.  相似文献   

17.
High temperature infrared spectra of hydrous microcrystalline quartz   总被引:1,自引:0,他引:1  
A series of in-situ high temperature infrared (IR) measurements of water in an agate sample and in a milky quartz has been conducted in order to understand the nature of water in silica at high temperatures (50–700?°C) and the dehydration behavior. IR absorption bands of water molecules trapped in the milky quartz showed a systematic decrease in intensities and a shift from 3425?cm?1 at 50?°C toward 3590?cm?1 at 700?°C without any loss of water. This indicates a change in IR absorption coefficients corresponding to different polymeric states of water at different temperatures. The broad 3430?cm?1 band in the agate sample also showed a systematic decrease in IR intensity and a band shift toward higher frequency with increasing temperature (~700?°C). This indicates that the agate sample also contains fluid inclusion-like water. For this agate sample, a dehydration of loosely hydrogen-bonded molecular water occurred at lower temperatures (<200?°C). At higher temperatures (>400?°C), sharp bands around 3660 and 3725?cm?1 (3740?cm?1 at 50?°C) due to surface silanols, appeared. This indicates dehydration of H2O molecules that are hydrogen bonded to surface silanols. SiOH species in the agate are divided into three groups, namely SiOH group located at structural defects, surface silanols hydrogen bonded to each other and free surface silanols. Former two dehydrate below 700?°C and the dehydration rate of the SiOH at structural defects is faster than the other. IR spectra show that SiOH species decrease continuously even after the dehydration of most of H2O molecules. All these results provide realistic bases for the change in physicochemical states of different OH species in silica at high temperatures.  相似文献   

18.
Polarizedinfrared (IR) spectra of sanidine crystals from Volkesfeld, Eifel show the existence of two broad pleochroic absorption bands at 3,400 and 3,050 cm?1. Because overtones near 5,150 cm?1 were observed, the former bands are assigned to OH stretching frequencies of H2O molecules. On the basis of the pleochroic scheme of the bands it is proposed that H2O molecules occur as structural constituents entering theM site of the sanidine structure; the plane of the H2O molecules lies parallel to the symmetry plane.  相似文献   

19.
Experiments on water solubility in forsterite in the systems Mg2SiO4–K2Mg(CO3)2–H2O and Mg2SiO4–H2O–C were conducted at 7.5–14.0 GPa and 1200–1600 °C. The resulting crystals contain 448 to 1480 ppm water, which is 40–70% less than in the forsterite–water system under the same conditions. This can be attributed to lower water activity in the carbonate-bearing melt. The water content of forsterite was found to vary systematically with temperature and pressure. For instance, at 14 GPa in the system forsterite–carbonate–H2O the H2O content of forsterite drops from 1140 ppm at 1200 °C to 450 ppm at 1600 °C, and at 8 GPa it remains constant or increases from 550 to 870 ppm at 1300–1600 °C. Preliminary data for D-H-bearing forsterite are reported. Considerable differences were found between IR spectra of D-H- and H-bearing forsterite. The results suggest that CO2 can significantly affect the width of the olivine-wadsleyite transition, i.e., the 410-km seismic discontinuity, which is a function of the water content of olivine and wadsleyite.  相似文献   

20.
Neutron powder diffraction data of phase A (Mg7Si2O8(OH)6) were collected at ambient pressure and 3.2?GPa (calculated from the compressibility of phase A) from the deuterated compound, and the structure was refined using the Rietveld method. The derived crystal structure implies that hydrogen atoms occupy two distinct sites in phase A, both forming hydrogen bonds of different lengths with the same oxygen atom. This picture is supported by IR spectra, which exhibit two absorption bands at 3400 and 3513?cm?1 corresponding to OH stretching vibrations, and proton NMR spectra, which display two peaks with equal intensities and isotropic chemical shifts of 3.7 and 5?ppm. The D-D distance [D(1)-D(2) distance] at ambient pressure was found to be 2.09?±?0.02?Å from the neutron diffraction data and 2.09?±?0.05?Å from the NMR spectra. At 3.2?GPa, there is no statistically significant increase in the O-D interatomic distance while the hydrogen bonding interaction D···O appears to increase for one of the hydrogen sites, D(1), which has the stronger hydrogen bonding interaction compared with the other hydrogen, D(2), at ambient pressure. The O-D bond valences, determined indirectly from the D···O distances were 0.86 and 0.91 at ambient pressure, and 0.83 and 0.90?at 3.2?GPa, for D(1) and D(2), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号