首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The structure and variability of the inter-tropical convergence zone (ITCZ) in the SW Indian Ocean in the austral summer is investigated. The ITCZ is identified by satellite microwave (SSMI) precipitable water (PW) values > 5 g cm–2, minimum outgoing longwave radiation (OLR) values < 220 W m–2 and the pattern of convergence in the low level (850 hPa) winds. According to OLR climatology, the ITCZ lies over 15°S latitude to the west of Madagascar (40–50°E), but near 10°S to the east of 60°E. Inter-annual and intra-seasonal variability is induced by the interaction of the convective NW monsoon and subsident easterly trades. Symptoms of the structure and variability are presented using tropical cyclone (TC) tracks, axes of PW exceedences and OLR, 850hPa wind and PW fields in the period 1988–1990. The shape and intensity of the ITCZ is modulated by the strength of the NW monsoon off east Africa and by standing vortices in the SW Indian Ocean. The topography of Madagascar imparts a distinctive break in convective characteristics, and distinguishes the SE African ITCZ from its maritime counterpart.With 6 Figures  相似文献   

2.
Summary Tropical cyclones (TC) in the data-sparse SW Indian Ocean region are studied through climatological and statistical associations and case study structure. Differences between summers with more and less TC are identified with a view to the prediction of seasonal frequencies. In summers with more TC, upper easterlies and lower westerlies over the equatorial zone north of Madagascar form a Walker cell anomaly in conjunction with the east phase of the stratospheric quasi-biennial oscillation (QBO), while sea surface temperatures (SST) are above normal in the preceding spring (>28°C). In the sub-tropics, easterly trade winds strengthen while mid-latitude westerlies shift polewards and SST are below normal (<23°C). OLR departures in more TC summers are <–15 Wm–2 over region frequented by tropical cyclones.Two tropical cyclone events are selected for analysis which rank highest in terms of rainfall on Mauritius. Danielle formed near 13°S, 65°E and tracked southwest across Mauritius on 19 January 1964. A radiosonde time-height section is analysed for departures from climatology and thermodynamic structure. The profile of equivalent potential temperature is rather uniform near the center of the TC, decreasing from 350°K near the surface. Dry stable air is present in the 600hPa layer around the perimeter. TC Hyacinthe was quasistationary to the east of Madagascar causing rainfall in excess of 500 cm on Reunion Island from 15–27 January 1980. OLR anomaly plots and satellite imagery indicate that Hyacinthe was spawned in association with an eastward moving convective wave and reached maximum intensity (–92 Wm–2) and radius (>1000 km) from 21 to 26 January 1980.With 14 Figures  相似文献   

3.
Summary Climatic patterns associated with extreme modes of summer rainfall over southern Africa are investigated using composite techniques. Differences between the wet summers of the mid-1970s and the dry summers of the early 1980s are highlighted. In dry summers both the Southern Oscillation Index (SOI) and Quasi-Biennial Oscillation (QBO) are negatively biased. Composite difference fields of outgoing longwave radiation (OLR), sea surface temperature (SST), and upper and lower tropospheric wind are analysed. The OLR difference field indicates the widespread nature of convective variations with a consistent sign in the domain 15–33° S, 0–40° E. An area of opposing sign is conspicuous over the southwest Indian Ocean and represents a dipole, whereby wet summers over southern Africa coincide with dry summers over the adjacent ocean. This dipole behaviour is an expression of the primary mode of interannual climatic variability in the region. SST composite differences are negative over a wide portion of the central equatorial Indian Ocean and SE Atlantic, and positive to the south of Africa where the Agulhas Current flows. Wind composites reveal distinctive circulation differences in the extreme summers considered. In the tropical zone off the east coast of Africa difference vectors indicate upper westerly and lower easterly circulation anomalies, and distinguish a pathway for moist Indian Ocean air. A deep anticyclonic gyre is located over the region of positive SST differences in the sub-tropics to the SE of Africa. The identification of climatic patterns in extreme summers offers some useful guidelines in seasonal forecasts.With 6 Figures  相似文献   

4.
Summary Variability of the summer climate of Madagascar is studied using area-averaged rainfall (1961–1992) and ECMWF meteorological data (1987–1992). Rainfall time series illustrate a seasonal onset in late December, a convective peak in mid-February and cessation near the end of March. Convective cycles with periods of 10–20 and 40 days are common. The former are contributed by easterly waves and the latter by monsoon surges which may resonate with the Madden Julian Oscillation. Using ECMWF January–February means, the summer climate of the Madagascar region is described. Characteristics of the region include SST>28°C, a quasi-permanent, topographic trade wind trough, sudden cyclogenesis, and distinct circulation regimes with easterly (westerly) shear to the north (south). The most poleward limit of deep convection and sustained uplift is near 20°S, 45°E. A convective vortex embedded in the ITCZ is a prevalent feature owing to the interaction of the NW monsoon and local topography.With 11 Figures  相似文献   

5.
Summary Wave-organized convective features in the southwest Indian Ocean are described using Hovmoller composites of satellite imagery, OLR anomalies and ECMWF precipitable water departures during the southern summer. Westward movement of large convective elements is noted in the 10–20°S latitude band in about half of the years between 1970 and 1984. A study of 47 convective systems from satellite imagery establishes the climatological features, including zonal propagation speeds for maritime systems in the range –2 to –4 m s–1, wavelengths of 25–35° longitude (3,000 km), lifespans of 10–20 days and convective areas of 7–10° longitude (800 km). Transient convective waves over the tropical SW Indian Ocean are slower and more diverse than their northern hemisphere counterparts. Interannual tendencies in the frequency and mode are studied. Wet summers over SE Africa correspond with an increased frequency of westward moving convective systems, whereas in dry summers convective systems tend to be quasi-stationary. INSAT data composites provide additional insight into the convective structure and show that tropical waves penetrated into southern Africa in February 1988. A more quantitative assessment of transient convective waves is provided by Hovmoller composites of OLR anomalies and precipitable water departures. Both display westward moving systems in 1976 and 1984 and highlight the wide variety and mixed mode character of convective waves. A case study is analyzed which illustrates the deepening of a moist, unstable layer coincident with the westward passage of a convective wave.With 12 Figures  相似文献   

6.
Summary This study investigates the circulation anomalies associated with the intraseasonal evolution of wet and dry years over western Tanzania (29–37° E, 11.5–4.75° S) and how the onset and withdrawal of the rainy season as well as its wet spell characteristics are modified. It is found that for wet years, the rains begin earlier and end later, with strong wet spells occurring during the season, and there tend to be a greater number of moderate wet spells (although not necessarily more intense wet spells) than in dry years. In dry years, late onset and early cessation of the rainy season occur, often with an extended dry spell soon after the onset, and there tend to be a greater number of dry spells within the season. Large negative outgoing long wave radiation (OLR) anomaly values tend to be located between 20° and 40° E with anomalous westerly flow at 850 hPa occurring across the continent from 10° E to the tropical western Indian Ocean during wet spells in the anomalously wet seasons. Anomalously dry seasons are characterised by large positive OLR anomalies over 30–50° E as well as easterly anomalies at 850 hPa and westerly anomalies at 200 hPa. Eastward propagating intraseasonal anomalies are slower during the wet years implying that the convection remains over Tanzania longer. On the intraseasonal scale, Hovmoeller analyses of OLR and 850 and 200 hPa zonal wind indicate that convection over western Tanzania may be associated with a flux of moisture from the tropical southeast Atlantic and Congo basin followed by weak easterlies from the tropical western Indian Ocean.On interannual scales, wet (dry) years are characterized over the Indian Ocean by weaker (stronger) equatorial westerlies and weaker (stronger) trades that lead to less (more) export of equatorial moisture away from East Africa and increased (decreased) low-level moisture flux convergence over southern Tanzania, respectively. These anomalies arise from an anticyclonic (cyclonic) anomaly over the tropical western Indian Ocean during wet (dry) austral summers that may be related to cool (warm) SST anomalies there. Large scale modulation of the Indian Ocean Walker cell is also evident in both cases, but particularly for the dry years.Current affiliation: Tanzania Meteorological Agency, P.O. Box 3056, Dar es Salaam, Tanzania  相似文献   

7.
基于1982—2013年逐月NCEP资料及GODAS资料,采用回归分析、合成分析以及2.5层简化海洋模式数值模拟等方法,研究了热带东印度洋的大气和海洋过程对印度洋海温偶极子(IOD,Indian Ocean Dipole)东极(IODE,IOD East pole)海温异常的影响。结果表明,IODE海温异常的演变超前IOD西极(IODW,IOD West pole)海温异常的演变,并对IOD事件的生成和发展起到关键作用。初夏,来自阿拉伯海、中南半岛地区以及孟加拉湾西南部的水汽输送,导致孟加拉湾东部出现强降水。降水释放的潜热在热带东印度形成了一个跨越赤道的经向环流,有利于加强赤道东印度洋的过赤道气流,并在苏门答腊沿岸形成偏南风异常。该异常偏南风通过影响混合层垂向夹卷混合过程和纬向平流过程,导致IODE海温迅速下降。随后赤道东南印度洋异常东南风迅速增强以及赤道中印度洋东风异常的出现,增强了自东南印度洋向西印度洋的水汽输送,削弱了向孟加拉湾的水汽输送,使西南印度洋的降水增强,孟加拉湾东部的降水减弱。因此,IOD达到盛期前孟加拉湾东部的降水通过局地经向环流在苏门答腊沿岸形成偏南风异常,导致苏门答腊沿岸迅速的降温,并最终导致IOD事件的发生。  相似文献   

8.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

9.
This study examines wave disturbances on submonthly (6–30-day) timescales over the tropical Indian Ocean during Southern Hemisphere summer using Japanese Reanalysis (JRA25-JCDAS) products and National Oceanic and Atmospheric Administration outgoing longwave radiation data. The analysis period is December–February for the 29 years from 1979/1980 through 2007/2008. An extended empirical orthogonal function (EEOF) analysis of daily 850-hPa meridional wind anomalies reveals a well-organized wave-train pattern as a dominant mode of variability over the tropical Indian Ocean. Daily lagged composite analyses for various atmospheric variables based on the EEOF result show the structure and evolution of a wave train consisting of meridionally elongated troughs and ridges along the Indian Ocean Intertropical Convergence Zone (ITCZ). The wave train is oriented in a northeast–southwest direction from Sumatra toward Madagascar. The waves have zonal wavelengths of about 3,000–5,000 km and exhibit westward and southwestward phase propagation. Individual troughs and ridges as part of the wave train sequentially travel westward and southwestward from the west of Sumatra into Madagascar. Meanwhile, eastward and northeastward amplification of the wave train occurs associated with the successive growth of new troughs and ridges over the equatorial eastern Indian Ocean. This could be induced by eastward and northeastward wave energy dispersion from the southwestern to eastern Indian Ocean along the mean monsoon westerly flow. In addition, the waves modulate the ITCZ convection. Correlation statistics show the average behavior of the wave disturbances over the tropical Indian Ocean. These statistics and other diagnostic measures are used to characterize the waves obtained from the composite analysis. The waves appear to be connected to the monsoon westerly flow. The waves tend to propagate through a band of the large meridional gradient of absolute vorticity produced by the mean monsoon westerly flow. This suggests that the monsoon westerly flow provides favorable background conditions for the propagation and maintenance of the waves and acts as a waveguide over the tropical Indian Ocean. The horizontal structure of the wave train may be interpreted as that of a mixture of equatorial Rossby waves and mixed Rossby-gravity wavelike gyres.  相似文献   

10.
Summary This study has used low Outgoing Longwave Radiation (OLR) values to study the structure and evolution of the active convection across Equatorial Eastern Africa (EEA) region (5° N to 10° S, 28° E to 42° E) during the northern hemisphere spring season. This involved the examination of the map patterns and cross-sections of OLR data as derived from once-daily NOAA's Operational Polar Orbiting satellites within the period June 1974 to May 1991.The results from the study indicated that before March the mean ITCZ was active over the west Indian Ocean and Central Africa. The migration northwards of the zone of active ITCZ was associated with pre-season evolution patterns over the extratropics. The time-longitude cross-sections further indicated evidence that low OLR values were already occurring over central Africa to the west of 35° E before March. Such low OLR values penetrated to the east of 35° E in some occasions. Theresults from the study suggest that behind the surges of extratropical frontal systems strong meridional flow does occur and that these are associated with the advance of the ITCZ further northwards from extratropical regions of southern Africa. Then, active convection occurred over EEA region and this extended westwards to cover West Africa as well. The withdrawal of the ITCZ from the EEA region was however associated with the establishment of a centre of low OLR values to the southwest of Peninsula India.The results from the study further revealed that the years 1981/1984 has the lowest/highest mean OLR values in the region within the period 1974 to 1991. The time-latitude cross-sections of the anomalous years indicated that active convection crossed the EEA region from south to north of the equator early/late during the anomalous wet/dry years of 1981/1984. The number of pentads with low OLR were also more/less during 1981/1984 respectively.With 9 Figures  相似文献   

11.
赤道印度洋—太平洋海面经向风的年际低频振荡   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对COADS1950—1979年海面经向风和海温资料的分析,本文探讨了印度洋—太平洋近赤道地区经向风的长期变化特征及其与厄尼诺发生发展间的关系。结果表明:(1)热带太平洋辐合带系统与海温具有相同的季节变化趋势,冬季赤道辐合带和高海温位于南半球,夏季位于北半球。厄尼诺年经向风发生异常,近赤道地区出现强烈的经向风辐合。(2)近赤道经向风存在准2年(QBO),准3.5年(SO)和准5年(FYO)3种年际低频振荡。QBO对厄尼诺年经向风异常起着重要作用,SO对厄尼诺年和冷水年的经向风变化均十分重要,这两种振荡可以很好的拟合经向风的实际变化,FYO则起着加强的作用。(3)经向风年际低频振荡起源于印度洋—海洋大陆和东太平洋沿岸地区,南北半球冬季风异常和东太平洋沿岸地区信风异常是其主要原因。(4)季风—信风(V)相互作用表现为当异常经向风扰动从季风区东传到信风区时明显增幅,这与信风区海气系统之间时间尺度约1年的自我正反馈有关。  相似文献   

12.
Summary Climatic determinants of summer (Nov-Mar) rainfall over southern Africa are investigated through analysis of sea surface temperatures (SST), outgoing longwage radiation (OLR) and tropospheric wind with respect to the Southern Oscillation Index (SOI) and the stratospheric quasi-biennial oscillation (QBO). Index-to-field correlation maps are presented at various lags for the austral spring and summer seasons to establish the spatial dependence and evolution of coherent, statistically significant features. The SOI signal is reflected in upper-level zonal wind anomalies over the equatorial Atlantic Ocean during spring. SSTs in the central Indian Ocean are significantly negatively correlated with the SOI in summer. On the other hand, OLR correlations are weak over southern Africa in the summer, implying that the SOI signal may not dominate interannual convective variability.QBO correlations with SST are relatively weak, but with 200 hPa zonal winds over the western equatorial Ocean, positive correlations are noted. A standing wave pattern is described in the sub-tropics. The OLR correlation pattern represents a dipole with increased convection over eastern and southern Africa in contrast to reduced convection over Madagascar when the QBO is in west phase.Contingency analyses indicate that the global indices are unreliable predictors in isolation. However the characteristics and domain of influence of SOI and QBO signals are identified and may offer useful inputs to objective multivariate models for different modes of southern African rainfall variability.With 12 Figures  相似文献   

13.
Teleconnections between equatorial African climate and the surrounding circulation are examined using a convective index over the Congo River Basin in March to May (MAM) and July to September (JAS) seasons. Its influence on the wider region is determined through lag correlation and cross-wavelet analysis. During seasons of deeper convection, easterly winds weaken over the tropical Atlantic (anomalous flow toward Africa), whilst upper westerly winds weaken over southern Africa (in JAS). We view this as zonal overturning with ascent over the equatorial African lowlands and Congo River Basin that spreads moisture to the North African Sahel, with influence from the Pacific El Niño. Another facet of our study is the relationship between East African highlands rainfall and the Indian Ocean circulation. We find coupling between the Indian Ocean Rossby wave, a thermocline oscillation and Walker cell over the Indian Ocean that induces shifts in rainfall, particularly in the October to December season.  相似文献   

14.
Summary The meteorological structure of flood-producing weather systems affecting northern Madagascar is examined using ECMWF data. Daily rainfall in the austral summer is used to select 16 cases for a composite analysis of flood events in the period 1987–1992. Anomaly maps demonstrate a pair of convective vortices over SE Africa and the SW Indian Ocean which converge over northern Madagascar. Thermodynamic variables indicate an eastward shift of unstable moist conditions from SE Africa. A surge of monsoon northwesterlies and upper tropical easterlies are key features of flood producing systems over NW Madagascar.With 8 Figures  相似文献   

15.
Based on analysis of the meridional winds over oceanic areas and SST for 1950-1979 extracted from the data sets of COADS, the long-term variability of the meridional winds over the equatorial Indian-Pacific oceans and its relationship to the onset and development of El Nino events have been studied. The major results are as follows:(1) There is a great similarity between ITCZ over the Pacific and SST in the seasonal trend, with ITCZ and high SST found in the Southern Hemisphere in winter and in the Northern Hemisphere in summer.During El Nino years, unusual meridional winds were often observed, with significant convergence of meridional winds occurring over near-equatorial regions.(2) For the near-equatorial meridional winds, there are three types of interannual LFO:QBO, SO, FYO. QBO plays an important role in the unusual behavior of meridional winds for El Nino years, while SO is very important for both El Nino and cold water years. These two oscillations may fit well to the observed variation in the meridional wind. FYO may enhance the variation of meridional winds.(3) Interannual LFO of meridional winds originates in the Indian Ocean-Maritime Continent and coastal area of East Pacific. Unusual activities of winter monsoon in both hemispheres and trade winds off the coastal area of East Pacific are believed to be their major cause.(4) Monsoon-trade interaction shows up in the significant amplification of the disturbances of meridional winds while they propagate eastward from monsoon area to trade wind area.  相似文献   

16.
Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.  相似文献   

17.
Summary The largest part of Kenya exhibits two major rainy seasons, the March–May «long rains» and the October–December «short rains», both related to the passage of the ITCZ, but differing in the amount of rainfall recorded and its interannual variability. In order to investigate whether these differences also apply at intraseasonal time-scales, daily rainfall data for the peak month of each rainy season (April and November) were collected for 7 consecutive years (1982–1988). The network comprises 68 stations, from which a classification of the spatial patterns of daily rainfall anomalies has been performed. Wind anomalies corresponding to the various rainfall types and to specific regional rainfall departures were determined using four pilot balloon stations and one radiosonde station. They revealed that there exist significant differences between upper-air circulation anomalies exhibited in the «long» and «short» rainy seasons, especially as far as rain spells in the Eastern Highlands are concerned. In that region, easterly anomalies in the «short rains» period are associated with an increase in rainfall. During the «long rains», enhanced easterlies more generally coincide with an overall drop of convection in the country. In Western Kenya, wet conditions are more systematically associated to westerly wind anomalies.With 12 Figures  相似文献   

18.
A 37-year simulation of global climate by a 9-level GCM on an 8°×10° grid showed realistic interannual variation of the computed precipitation over the African Sahel. The model includes an interactive ocean so that interannual variations of sea-surface temperature (SST) also occur. Comparison of an ensemble of five summers that were rainy over the Sahel with five summers of simulated drought showed that insufficient ambient moisture was the immediate cause of the lack of moist convection. The drier conditions are shown to result from weaker moisture advection over the southeast Atlantic Ocean. Weaker southerly winds there and lower sea-level pressure gradients seemed to result from anomalously warm SST. Such SST anomalies have been linked to Sahelian drought in previous observational studies. These regional circulations that were conducive to lower rainfall rates during the north African summer monsoon were not manifestations of the more generalized zonal mean circulation.  相似文献   

19.
基于诊断,本文计算了1982~2014年江南春雨的开始时间、结束时间和总降水量,分析了江南春雨的气候特征和年际变化,探讨了前冬Nino3.4区域海温异常与江南春雨的联系及可能机理。结果表明,江南春雨的起止时间和总降水量都具有显著的年际变化,前冬赤道东太平洋海温与江南春雨总量存在显著的正相关。前冬Nino3.4指数为正时,一方面通过Walker环流在赤道120°E附近区域激发出异常下沉运动以及低层异常反气旋,增强了南海地区低层西南气流以及水汽输送,另一方面与东太平洋海温变化相联系的印度洋增暖在赤道印度洋引发低层东风和孟加拉湾北部反气旋环流异常,进一步增强了江南地区的水汽输送;高层南亚地区则存在西风异常,对应江南上空辐散和抽吸作用加强,导致上升运动进一步增强,使得江南春雨总量增加;前冬Nino3.4指数为负时则次年春雨偏少;并且前冬El Ni?o事件的强度对春雨异常也有影响,前冬El Ni?o强(弱)的年份,海温异常的信号能(不能)持续到春季,江南春雨总量通常偏多(偏少)。另外,加入了前冬南极涛动指数和印度洋海盆一致模所建立的江南春雨总量的多元线性回归方程,其回归结果比基于单独的Nino3.4指数能更好地反映江南春雨的异常,可用于季节预测。  相似文献   

20.
徐志清  范可 《大气科学》2012,36(5):879-888
印度洋热力状况是影响全球气候变化和亚洲季风变异的一个重要的因素,但以往研究更多关注热带印度洋海温的变化,对南印度洋中高纬地区海温变化关注不够,由此限制了我们对印度洋的全面认识.本文研究了年际尺度上整个印度洋海温异常主导模态的特征及其对我国东部地区夏季降水的可能影响过程,以期望为气候变异研究及预测提供理论依据.研究结果表明:全印度洋海温异常年际变率的主导模态特征是在南印度洋副热带地区海温异常呈现西南—东北反向变化的偶极子模态,西极子位于马达加斯加以东南洋面,东极子位于澳大利亚以西洋面;同时,热带印度洋海温异常与东极子一致.当西极子为正的海温异常,东极子、热带印度洋为负异常时定义为正的印度洋海温异常年际变率模态;反之,则为负的印度洋海温异常年际变率模态.从冬至春,印度洋海温异常年际变率模态具有较好的季节持续性;与我国长江中游地区夏季降水显著负相关,而与我国华南地区夏季降水显著正相关.其可能的影响过程为:对于正的冬、春季印度洋海温异常年际变率模态事件,印度洋地区异常纬向风的经向大气遥相关使得热带印度洋盛行西风异常,导致春、夏季海洋性大陆对流减弱,使夏季西太平洋副热带高压强度偏弱、位置偏东偏北,造成华南地区夏季降水增多,长江中游地区降水减少;反之亦然.同时,印度洋海温异常年际变率模态可通过改变印度洋和孟加拉湾向长江中游地区的水汽输送而影响其夏季降水.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号