首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Artificial recharge plays a pivotal role in the sustainable management of groundwater resources. This study proposes a methodology to delineate artificial recharge zones as well as to identify favorable artificial recharge sites using integrated remote sensing (RS), geographical information system (GIS) and multi-criteria decision making (MCDM) techniques for augmenting groundwater resources in the West Medinipur district of West Bengal, India, which has been facing water shortage problems for the past few years. The thematic layers considered in this study are: geomorphology, geology, drainage density, slope and aquifer transmissivity, which were prepared using IRS-1D imagery and conventional data. Different themes and their corresponding features were assigned proper weights based on their relative contribution to groundwater recharge in the area, and normalized weights were computed using the Saaty’s analytic hierarchy process (AHP). These thematic layers were then integrated in the GIS environment to delineate artificial recharge zones in the study area. The artificial recharge map thus obtained divided the study area into three zones, viz., ‘suitable,’ ‘moderately suitable’ and ‘unsuitable’ according to their suitability for artificial groundwater recharge. It was found that about 46% of the study area falls under ‘suitable’ zone, whereas 43% falls under the ‘moderately suitable’ zone. The western portion of the study area was found to be unsuitable for artificial recharge. The artificial recharge zone map of the study area was found to be in agreement with the map of mean groundwater depths over the area. Furthermore, forty possible sites for artificial recharge were also identified using RS and GIS techniques. Based on the available field information, check dams are suggested as promising artificial recharge structures. The results of this study could be used to formulate an efficient groundwater management plan for the study area so as to ensure sustainable utilization of scarce groundwater resources.  相似文献   

2.
During the last three decades, remotely sensed data (both satellite images and aerial photographs) have been increasingly used in groundwater exploration and management exercises. An integrated approach has been adopted in the present study to delineate groundwater recharge potential zones using RS and GIS techniques. IRS-1C satellite imageries and Survey of India toposheets are used to prepare various thematic layers viz. geology, soil, land-use, slope, lineament and drainage. These layers were then transformed in to raster data using feature to raster converter tool in ArcGIS 9.3 software. The raster maps of these factors are allocated a fixed score and weight computed from Influencing Factor (IF) technique. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. Subjective weights are assigned to the respective thematic layers and overlaid in GIS platform for the identification of potential groundwater recharge zones within the study area. Then these potential zones were categories as ‘high’, ‘moderate’, ‘low’, ‘poor’. The resulted map shows that 19 % of the area has highest recharge potential, mainly confined to buried pediplain, agriculture land-use and river terraces (considerable amount of precipitated water percolates into subsurface), 28 % of the area has moderate groundwater recharge potentiality and rest of the area has low to poor recharge potentiality. The residual hills and linear ridges with steep slopes are not suitable for artificial recharge sites. Finally, 13 % of total average annual precipitated water (840 mm) percolates downward and ultimately contributes to recharge the aquifers in the Kovilpatti Municipality area. The paper is an attempt to suggest for maintaining the proper balance between the groundwater quantity and its exploitation.  相似文献   

3.
Systematic planning for groundwater exploration using modern techniques is essential for the proper utilization, protection and management of this vital resource. Enhanced Thematic Mapper Plus (ETM+) images, a geographic information system (GIS), a watershed modeling system (WMS) and weighted spatial probability modeling (WSPM) were integrated to identify the groundwater potential areas in the Sinai Peninsula, Egypt. Eight pertinent thematic layers were built in a GIS and assigned appropriate rankings. Layers considered were: rainfall, net groundwater recharge, lithology or infiltration, lineament density, slope, drainage density, depth to groundwater, and water quality. All these themes were assigned weights according to their relative importance to groundwater potentiality and their corresponding normalized weights were obtained based on their effectiveness factors. The groundwater potentiality map was finally produced by WSPM. This map comprises five gradational groundwater potentiality classes ranging from very high to very low. The validity of this unbiased GIS-based model was tested by correlating its results with the published hydrogeological map of Egypt and the actual borehole yields, where a concordant justification was reached. The map declared that the Sinai Peninsula is generally of moderate groundwater potentiality, where this class encompasses an area of 33,120?km2 which represents 52% of its total area.  相似文献   

4.
Flood spreading is an inexpensive method for flood mitigation and artificial recharge of aquifers that results in a large budget return for relatively small investment.It is necessary to study some regional characteristics in order to determine the appropriate areas for artificial groundwater recharge by flood spreading in Meimeh Basin, Isfahan Province, Iran. Necessary regional characteristics to be studied are: slope, infiltration rate, sediment thickness, transmissivity, and water quality. In this research to identify suitable areas for artificial recharge several thematic layers were prepared, assigning each layer to one of the mentioned characteristics. The thematic layers were classified to several classes based on the existing criteria. All of the classes of the thematic layers were integrated and analyzed using a decision support system (DSS) in a geographical information system (GIS) environment. Finally suitability of the integrated classes for artificial recharge was identified in which the following classes were separated:(i) Very suitable, (ii) suitable, (iii) moderate suitability, and (iv) unsuitable.The validity of the generated model was verified by applying the model to a number of successful floodwater spreading stations throughout Iran. The verified model showed satisfactory results for all of the stations. The results for Meimeh Basin showed that about 70% of the Quaternary sediments in the studied area are suitable and moderately suitable for artificial recharge by flood spreading.  相似文献   

5.
《地学前缘(英文版)》2020,11(5):1805-1819
In Punjab(Pakistan),the increasing population and expansion of land use for agriculture have severely exploited the regional groundwater resources.Intensive pumping has resulted in a rapid decline in the level of the water table as well as its quality.Better management practices and artificial recharge are needed for the development of sustainable groundwater resources.This study proposes a methodology to delineate favorable groundwater potential recharge zones(FPRI) by integrating maps of groundwater potential recharge index(PRI) with the DRASTIC-based groundwater vulnerability index(VI).In order to evaluate both indexes,different thematic layers corresponding to each index were overlaid in ArcGIS.In the overlay analysis,the weights(for various thematic layers) and rating values(for sub-classes) were allocated based on a review of published literature.Both were then normalized and modified using the analytical hierarchical process(AHP) and a frequency ratio model respectively.After evaluating PRI and FPRI,these maps were validated using the area under the curve(AUC) method.The PRI map indicates that 53% of the area assessed exists in very low to low recharge zones,22% in moderate,and 25% in high to excellent potential recharge zones.The VI map indicates that 38% of the area assessed exists in very low to low vulnerability,33% in moderate,and 29% in high to very high vulnerability zones.The FPRI map shows that the central region of Punjab is moderately-to-highly favorable for recharge due to its low vulnerability and high recharge potential.During the validation process,it was found that the AUC estimated with modified weights and rating values was 79% and 67%,for PRI and VI indexes,respectively.The AUC was less when evaluated using original weights and rating values taken from published literature.Maps of favorable groundwater potential recharge zones are helpful for planning and implementation of wells and hydraulic structures in this region.  相似文献   

6.
A wellhead protection study for the city of Sturgeon Bay, Wisconsin, USA, demonstrates the necessity of combining detailed hydrostratigraphic analysis with groundwater modeling to delineate zones of contribution for municipal wells in a fractured dolomite aquifer. A numerical model (MODFLOW) was combined with a particle tracking code (MODPATH) to simulate the regional groundwater system and to delineate capture zones for municipal wells. The hydrostratigraphic model included vertical and horizontal fractures and high-permeability zones. Correlating stratigraphic interpretations with field data such as geophysical logs, packer tests, and fracture mapping resulted in the construction of a numerical model with five high-permeability zones related to bedding planes or facies changes. These zones serve as major conduits for horizontal groundwater flow. Dipping fracture zones were simulated as thin high-permeability layers. The locations of exposed bedrock and surficial karst features were used to identify areas of enhanced recharge. Model results show the vulnerability of the municipal wells to pollution. Capture zones for the wells extend several kilometers north and south from the city. Travel times from recharge areas to all wells were generally less than one year. The high seasonal variability of recharge in the study area made the use of a transient model necessary. Electronic Publication  相似文献   

7.
Groundwater potential zone mapping has become easier with the inputs from Remote Sensing (RS) & Geographical Information System (GIS) techniques. Various thematic maps like geology, geomorphology, drainage density, slope, landuse/landcover etc can be easily generated through RS & GIS. The present study is aimed at generating groundwater potential map of Koshalya-Jhajhara (K-J) watershed by using integrated approach of RS & GIS. Various thematic layers have been generated and assigned weightages and ranks. These layers have been integrated in GIS software for generating Groundwater Potential Zone (GPZ) map of K-J watershed. The area falls into five categories of groundwater potential zones i.e. very good, good, moderate, poor and very Poor depending on the likelihood of availability of ground water. On the basis of this study it is found that only 5.83 km2 and 4.91 km2 area is under very good and good category of groundwater availability respectively. An area of 24.48 km2 is found under moderate category whereas dominant portion of K-J watershed i.e. 61.83 km2 and 37.87 km2 area falls under poor and very poor category of availability of groundwater respectively.  相似文献   

8.
Appropriate quantification and identification of the groundwater distribution in a hydrological basin may provide necessary information for effective management, planning and development of groundwater resources. Groundwater potential assessment and delineation in a highly heterogeneous environment with limited Spatiotemporal data derived from Gelana watershed of Abaya Chamo lake basin is performed, using integrated multi-criteria decision analysis (MCDA), water and energy transfer between soil and plant and atmosphere under quasi-steady state (WetSpass) models. The outputs of the WetSpass model reveal a favorable structure of water balance in the basin studied, mainly using surface runoff. The simulated total flow and groundwater recharge are validated using river measurements and estimated baseflow at two gauging stations located in the study area, which yields a good agreement. The WetSpass model effectively integrates a water balance assessment in a geographical information system (GIS) environment. The WetSpass model is shown to be computationally reputable for such a remote complex setting as the African rift, with a correlation coefficient of 0.99 and 0.99 for total flow and baseflow at a significant level of p-value<0.05, respectively. The simulated annual water budget reveals that 77.22% of annual precipitation loses through evapotranspiration, of which 16.54% is lost via surface runoff while 6.24% is recharged to the groundwater. The calibrated groundwater recharge from the WetSpass model is then considered when determining the controlling factors of groundwater occurrence and formation, together with other multi-thematic layers such as lithology, geomorphology, lineament density and drainage density. The selected five thematic layers through MCDA are incorporated by employing the analytical hierarchy process (AHP) method to identify the relative dominance in groundwater potential zoning. The weighted factors in the AHP are procedurally aggregated, based on weighted linear combinations to provide the groundwater potential index. Based on the potential indexes, the area then is demarcated into low, moderate, and high groundwater potential zones (GWPZ). The identified GWPZs are finally examined using the existing groundwater inventory data (static water level and springs) in the region. About 70.7% of groundwater inventory points are coinciding with the delineated GWPZs. The weighting comparison shows that lithology, geomorphology, and groundwater recharge appear to be the dominant factors influence on the resources potential. The assessment of groundwater potential index values identify 45.88% as high, 39.38% moderate, and 14.73% as low groundwater potential zones. WetSpass model analysis is more preferable in the area like Gelana watershed when the topography is rugged, inaccessible and having limited gauging stations.  相似文献   

9.
The Kucuk Menderes River Basin in western Turkey has been facing continuous groundwater-level decline for decades. Previous studies have suggested that, to avoid aquifer depletion in the basin, artificial recharge structures should be constructed. To assess artificial aquifer recharge potential in one of the subbasins, a two-dimensional (2-D) groundwater model was set up using SEEP/W software. The material functions and parameters used in the model for both saturated and unsaturated conditions were taken from previous studies. The model has been calibrated under transient conditions. The excess runoff volume that could be collected in the recharge basins was estimated from flood frequency analysis. Various scenarios were simulated to observe the change in groundwater level and storage with respect to different exceedance probabilities. Simulation results suggest that a significant increase in groundwater storage is achieved by applying surface artificial-recharge methods. In addition to the recharge basins, to reinforce the effect of artificial recharge, simulations are repeated with underground dam construction at the downstream side of the basin. Although groundwater storage is increased with the addition of the dam, the increase in groundwater storage was not sufficient to warrant the construction.  相似文献   

10.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

11.
This paper focuses on artificial groundwater recharge study in Ayyar basin, Tamil Nadu, India. The basin is covered by hard crystalline rock and overall has poor groundwater conditions. Hence, an artificial recharge study was carried out in this region through a project sponsored by Tamil Nadu State Council for Science and Technology. The Indian Remote Sensing satellite 1A Linear Imaging Self Scanning Sensor II (IRS 1A LISS II) satellite imagery, aerial photographs and geophysical resistivity data were used to prioritize suitable sites for artificial recharge and to estimate the volume of aquifer dimension available to recharge. The runoff water available for artificial recharge in the basin is estimated through Soil Conservation Service curve number method. The land use/land cover, hydrological soil group and storm rainfall data in different watershed areas were used to calculate the runoff in the watersheds. The weighted curve number for each watershed is obtained through spatial intersection of land use/land cover and hydrological soil group through GeoMedia 3.0 Professional GIS software. Artificial recharge planning was derived on the basis of availability of runoff, aquifer dimension, priority areas and water table conditions in different watersheds in the basin.  相似文献   

12.
The temporal and spatial distributions of precipitation are extremely uneven; so, careful management of water resources in Taiwan is crucial. The long-term overexploitation of groundwater resources poses a challenge to water resource management in Taiwan. However, assessing groundwater resources in mountainous basins is challenging due to limited information. In this study, a geographic information system (GIS) and stable base-flow (SBF) techniques were used to assess the characteristics of groundwater recharge considering the Wu River watershed in central Taiwan as a study area. First, a GIS approach was used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge were obtained from aerial photos, geological maps, a land use database, and field verification. Second, the SBF was used to estimate the groundwater recharge in a mountainous basin scale. The concept of the SBF technique was to separate the base-flow from the total streamflow discharge in order to obtain a measure of groundwater recharge. The SBF technique has the advantage of integrating groundwater recharge across an entire basin without complex hydro-geologic modelling and detailed knowledge of the soil characteristics. In this study, our approach for estimating recharge provides not only an estimate of how much water becomes groundwater, but also explains the characteristics of a potential groundwater recharge zone.  相似文献   

13.
The sustainable use of groundwater has become increasingly challenging due to extreme hydrological events and anthropogenic activity. In this study, the basin-scale groundwater response to precipitation variation was analyzed using an integrated model that comprises lumped models for land and river recharges and a distributed model for groundwater. The integrated model was applied to the Chih-Ben watershed, Taiwan, using 20?years (1988?C2007) of data. The hydrological data were analyzed for trends using statistical tests. Based on decreasing trends in precipitation and groundwater levels and an increasing trend in stream flow, the oblique-cut method was applied to precipitation and excess infiltration to assess land and streambed recharge. Distributed numerical groundwater modeling was used to simulate the basin-scale groundwater responses to precipitation variation and anthropogenic pumping. The model was calibrated using stable-isotope and groundwater-level data. The safe yields were estimated for the Chih-Ben watershed for dry, wet, and normal precipitation scenarios. The safe yield of groundwater was shown to vary with precipitation, which does not guarantee the sustainable use of groundwater resources. Instead, water resources should be assessed at a basin scale, taking into account the whole ecosystem, rather than only considering water for human consumption in the alluvium.  相似文献   

14.
Mujib watershed is an important groundwater basin which is considered a major source for drinking and irrigation water in Jordan. Increased dependence on groundwater needs improved aquifer management with respect to understanding deeply recharge and discharge issues, planning rates withdrawal, and facing water quality problems arising from industrial and agricultural contamination. The efficient management of this source depends on reliable estimates of the recharge to groundwater and is needed in order to protect Mujib basin from depletion. Artificial groundwater recharge was investigated in this study as one of the important options to face water scarcity and to improve groundwater storage in the aquifer. A groundwater model based on the MODFLOW program, calibrated under both steady- and unsteady-state conditions, was used to investigate different groundwater management scenarios that aim at protecting the Mujib basin. The scenarios include variations of abstraction levels combined with different artificial groundwater recharge quantities. The possibilities of artificial groundwater recharge from existing and proposed dams as well as reclaimed municipal wastewater were investigated. Artificial recharge options considered in this study are mainly through injecting water directly to the aquifer and through infiltration from reservoir. Three scenarios were performed to predict the aquifer system response under different artificial recharge options (low, moderate, and high) which then compared with no action (recharge) scenario. The best scenario that provides a good recovery for the groundwater table and that can be feasible is founded to be by reducing current abstraction rates by 20% and implementing the moderate artificial recharge rates of 26 million(M)m3/year. The model constructed in this study helps decision makers and planners in selecting optimum management schemes suitable for such arid and semi-arid regions.  相似文献   

15.
Many of the states in India have been facing water scarcity for more than 2 decades due to increased demand, because of the increase in population and higher living standards. Consequently, many states have almost fully utilized the available surface water resources and are exploiting groundwater to augment water supplies. Investigations were carried out in the upper Thurinjalar watershed of Ponnaiyar basin in Tamil Nadu to determine the availability of surface water and to investigate the potential for enhancing groundwater recharge to support the water demand in the watershed. Increasing the water availability would also enable the community to convert the 46% of the land area in the watershed that is currently underutilised into productive uses. The surface water potential for the upper Thurinjalar watershed was assessed by applying the USDA–NRCS model with daily time steps. This modelling exercise indicated that the annual runoff from the 323 km2 area of the watershed is 61 million m3. Groundwater recharge in the watershed was assessed by carrying out daily water balance method and indicated that about 43 million m3 of water from recharge is available on an annual basis or about 14% of annual rainfall. A simple regression model was developed to compute groundwater recharge from rainfall based on water balance computations and this was statistically verified. The modelling indicated that there is sufficient water available in the watershed to support current land uses and to increase the productivity of underutilised land in the area. The study also demonstrates that simple regression models can be used as an effective tool to compute groundwater recharge for ungauged basins with proper calibration.  相似文献   

16.
Groundwater is the most prioritized water source in India and plays an indispensable role in India's economy. The groundwater potential mapping is key to the sustainable groundwater development and management. A hybrid methodology is applied to delineate potential groundwater zones based on remote sensing, geographical information systems(GIS) and analytic hierarchy process(AHP) as on multicriteria decision making. For the purpose of demonstrating field application, Chittar watershed, Tamilnadu, India is studied as an example. The important morphological characteristics considered in the study are lithology, geomorphology, lineament density, drainage density, slope, and Soil Conservation Service–Curve Number(SCS-CN). These six thematic layers are generated in a GIS platform. Based on intersecting the layers, AHP method, the values for adopting the pairwise comparison normalized weight and normalized subclasses weightage were given. The normalized subclass weightage is input into each layer subclass. Then, weighted linear combination method is used to add the data layers in GIS platform to generate groundwater potential Index(GWPI) map. The GWPI map is validated based on the net recharge computed from the differences of measured groundwater levels between the pre-monsoon and post-monsoon in the year 2018. The kappa statistics are used to measure level spatial consistency between the GWPI and net recharge map. The overall average spatial matching accuracy between the two data sets is 0.86, while the kappa coefficient for GWPI with net recharge, 0.78. The results show that in Chittar watershed about 870 km~2 area is divided into high potential zone(i.e. sum of very high and high potential zone), 667 km~2 area, as the moderate one and the rest 105 km~2 area, as the poor zone(i.e. sum of very poor and poor potential zone).  相似文献   

17.
This paper aims at mapping the potential groundwater recharge zones in the southern part of Jordan Valley (JV). This area is considered as the most important part for agricultural production in Jordan. The methodology adopted in this study is based on utilizing the open ended SLUGGER-DQL score model, which was developed by Raymond et al (2009). Geographic information systems were used in this study to build up the different layers of this model and to create the potential groundwater recharge zones. Based on the generated SLUGGER-DQL potential map, it was found that about 70.8 % of the investigated area was categorized as high potential for groundwater recharge, 18.7 % as moderate, and 10.5 % as low potential for groundwater recharge. To validate the model results, sensitivity analysis was carried out to assess the influence of each model parameter on the obtained results. Based on this analysis, it was found that the slope parameter (S) is the most sensitive parameter among SLUGGER-DQL model parameters, followed by water level in summer (L), well density (D), water quality (Q), runoff availability (R), land use/land cover, geology (GE), whereas the lowest sensitive parameter is the geology parameter (GE). Moreover, the parameters R, D, and Q show the lowest effective weights. The effective weight for each parameter was found to differ from the assigned theoretical weight by SLUGGER-DQL index model.  相似文献   

18.
Groundwater resources in the semi-arid regions of southern India are under immense pressure due to large-scale groundwater abstraction vis-à-vis meager rainfall recharge. Therefore, understanding and evaluating the spatial distribution of groundwater is essential for viable utilization of the resource. Here, we assess groundwater potential at the watershed scale, in a semi-arid environment with crystalline aquifer system without a perennial surface water source using remote sensing, geophysical, and GIS-based integrated multi-parameter approach. GIS-based weighed overlay analysis is performed with input parameters, viz., geology, geomorphology, lineament density, land use, soil, drainage density, slope, and aquifer thickness. The watershed is categorized into four zones, namely, “very good” (GWP4), “good” (GWP3), “moderate” (GWP2), and “low” (GWP1) in terms of groundwater potential. Overall, ~?70% of the study area falls under moderate to low groundwater potential, indicating a serious threat to the future availability of the resource. Therefore, serious measures are required for maintaining aquifer resilience in this over-exploited aquifer (e.g., restricting groundwater withdrawal from GWP1 and GWP2 zones). Further, as the aquifer is under tremendous anthropogenic pressure, rainwater harvesting and artificial recharge during monsoon are advocated for sustainable aquifer management. Due to the direct dependence of crop production vis-à-vis farmer economy on groundwater, this study is an important step towards sustainable groundwater management and can be applied in diverse hydrological terrains.  相似文献   

19.
Morphometric analysis using remote sensing (RS) and geographical information system (GIS), in the recent study, has become an efficient method in the assessment of groundwater potential of a river basin. The present study focused on the morphometric analysis of Araniar river basin using RS and GIS techniques in the identification of groundwater potential zones for effective planning and management of groundwater resources of the basin. The study area was divided into six subbasins for the purpose of micro-level morphometric analysis. The main stream of the basin is of fifth order and drainage patterns of subbasins are mostly of dendritic and parallel type. Based on the linear, areal and relief parameters of subbasins, the groundwater potential zones of the basin were identified and the results substantiated with geomorphology map derived from RS data. The elongated shape, favourable drainage network, permeable geologic formation and low relief of the subbasins WS3, WS5 and WS6 make them the promising groundwater potential zones of Araniar river basin. The statistical analysis and overlay analysis of the morphometric parameters also indicated the subbasins WS3, WS5 and WS6 as high groundwater potential zones. The groundwater potential zone map when overlaid with groundwater fluctuation map indicated the suitable sites for artificial recharge structures.  相似文献   

20.
Groundwater vulnerability is a cornerstone in evaluating the risk of groundwater contamination and developing management options to preserve the quality of groundwater. Based on the professional model (DRASTIC model) and geographical information system (GIS) techniques, this paper carries out the shallow groundwater vulnerability assessment in the Zhangye Basin. The DRASTIC model uses seven environmental parameters (depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity) to characterize the hydrogeological setting and evaluate aquifer vulnerability. According to the results of the shallow groundwater vulnerability assessment, the Zhangye Basin can be divided into three zones: low groundwater vulnerability risk zone (risk index <120); middle groundwater vulnerability risk zone (risk indexes 120–140) and high risk zone (risk index >140). Under the natural conditions, the middle and high groundwater vulnerability risk zones of the Zhangye Basin are mainly located in the groundwater recharge zones and the important cities. The high, middle and low groundwater vulnerability risk zones of the Zhangye Basin cover around 17, 21 and 62% of study area, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号