首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南极冰盖的物质平衡研究:进展与展望   总被引:2,自引:0,他引:2       下载免费PDF全文
南极冰盖物质平衡最新的研究进展表明,西南极洲表现出两种变化模式,西部在增厚,而北面在更快地减薄。西南极冰盖总体可能正在减薄,其物质损失的速率可能足以使海平面每年上升近0.2mm。东南极冰盖物质不平衡可能很小,甚至其符号还不能被确定。南极半岛正在经历着快速变化。目前还不能可靠地估算南极冰盖的物质平衡状态。同时,大型冰川的停滞,一些冰川流速加快,冰盖大范围加速减薄,冰架大面积的快速崩解和支流冰川的加速,以及着地线强烈的底部融化等显示出南极冰盖存在快速变化。南极冰盖物质平衡未来的重点研究领域是开展冰盖表面高程变化的监测与模拟,确定表面物质平衡及其在各冰流盆地的分布,着地线的冰流通量,冰架底部的融化,了解冰后期冰盖退缩的动力过程,以及开发、对比和改进与冰盖物质平衡模拟和预测相关的各种模型。  相似文献   

2.
南极冰盖与冰川的快速变化   总被引:1,自引:0,他引:1       下载免费PDF全文
近10年的观测研究表明,南极冰盖和冰川存在快速的变化阿蒙森海扇区的主要冰流系统正在迅速变薄,减薄趋势可上溯至内陆150km处;罗斯冰流出现了停滞或明显减速,有的流动方向发生了改变,引发冰流袭夺;南极半岛冰架大面积崩塌,补给冰川加速,冰川出现了跃动;变暖的海水进一步侵蚀了冰架,着地线附近底部冰层融化强烈。上述发现改变了南极冰盖缓慢变化的传统观点,并对今后的冰川动力学研究,冰流模型模拟,冰盖物质平衡研究及预测具有重要意义。  相似文献   

3.
Late Quaternary Lakes in the McMurdo Sound Region of Antarctica   总被引:2,自引:0,他引:2  
Lake levels within the enclosed drainage basins of the Dry Valleys adjacent to McMurdo Sound have fluctuated widely during the Late Quaternary due to (a) local climate change and the consequent variation in the evaporation–precipitation regime, and (b) glacial fluctuations, resulting in changes in the catchment and meltwater drainage areas of the glaciers and, in some cases, in the volumes of the available lake basins. Three types of lakes can be distinguished on the basis of their water source: (1) lakes receiving the bulk of their water from melting of local alpine glaciers; (2) proglacial lakes associated with outlet glaciers from the East Antarctic Ice Sheet; (3) proglacial lakes associated with the marine oxygen-isotope stage 2 Ross Sea ice sheet and its precursors. The Dry Valleys contain an exceptionally long lacustrine record, extending back at least 300,000 years. Lacustrinesedimentation is cyclical, occurring over periods of about 100,000 years. During the last such cycle, relatively small lakes, both adjacent to East Antarctic outlet glaciers and fed by meltwater from alpine glaciers, existed during stage 5. However, these local lakes gave way to large proglacial lakes adjacent to the Ross Sea ice sheet in stage 2. The same relationship apparently occurred during the previous 100,000-year cycle. Dating of lacustrine sediments suggests that lakes proglacial to the Ross Sea ice sheet have existed during episodes of sea-level lowering during global glaciations. Lakes proglacial to outlet glaciers from the East Antarctic Ice Sheet have formed coincident with episodes of high eustatic sea level during interglacial periods.  相似文献   

4.
More than 250 radiocarbon dates of lacustrine algae and marine shells afford a chronology for Ross Sea drift in eastern Taylor Valley. Dates of algae that lived in ice-dammed Glacial Lake Washburn show that grounded Ross Sea ice blocked the mouth of Taylor Valley between 8340 and 23,800 14C yr bp . Ross Sea ice was at its maximum position at the Hjorth Hill moraine between 12,700 and 14,600 14C yr bp and was within 500m distance of this position as late as 10,794 14C yr bp . The implication is that the flow line of the Ross Sea ice sheet which extended around northern Ross Island and across McMurdo Sound to Taylor Valley must have remained intact, and hence that a grounded ice sheet must have existed east of Ross Island as late as 8340 14C yr bp . Evidence from ice-dammed lakes in Taylor Valley and from shells from McMurdo Sound suggests grounding-line retreat from the vicinity of Ross Island between 6500 and 8340 14C yr bp . If this is correct, then most recession to the present-day grounding line on the Siple Coast took place subsequently in the absence of significant deglacial sea-level rise. Rising sea level may have triggered internal mechanisms within the ice sheet that led to retreat, but did not in itself drive continued ice-sheet recession. Ice retreat, once set in motion, continued in the absence of sea-level forcing. If correct, this hypothesis implies that the grounding line could continue to recede into the interior reservoir of the West Antarctic Ice Sheet.  相似文献   

5.
Geochemical data and geophysical measurements from a 554-m ice-core from Taylor Dome, East Antarctica, provide the basis for climate reconstruction in the western Ross Embayment through the entire Wisconsinan and Holocene. In comparison with ice cores from central East and West Antarctica, Taylor Dome shows greater variance of temperature, snow accumulation, and aerosol concentrations, reflecting significant variability in atmospheric circulation and air mass moisture content. Extreme aridity during the last glacial maximum at Taylor Dome reflects both colder temperatures and a shift in atmospheric circulation patterns associated with the advance of the Ross Sea ice sheet and accounts for regional alpine glacier retreats and high lake levels in the Dry Valleys. Inferred relationships between spatial accumulation gradients and ice sheet configuration indicate that advance of the Ross Sea ice sheet began in late marine isotope stage 5 or early stage 4. Precise dating of the Taylor Dome core achieved by trace-gas correlation with central Greenland ice cores shows that abrupt deglacial warming at Taylor Dome was near-synchronous with the ∼14.6 ka warming in central Greenland and lags the general warming trend in other Antarctic ice cores by at least 3000 years. Deglacial warming was following by a warm interval and transient cooling between 14.6 and 11.7 ka, synchronous with the Bølling/Allerød warming and Younger Dryas cooling events in central Greenland, and out of phase with the Antarctic Cold Reversal recorded in the Byrd (West Antarctica) ice core. Rapid climate changes during marine isotope stages 4 and 3 at Taylor Dome are similar in character to, and may be in phase with, the Northern Hemisphere stadial–interstadial (Dansgaard–Oeschger) events. Results from Taylor Dome illustrate the importance of obtaining ice cores from multiple Antarctic sites, to provide wide spatial coverage of past climate and ice dynamics.  相似文献   

6.
Earlier work in northeast Greenland has suggested a limited advance of the Greenland Ice Sheet during the Last Glacial Maximum (LGM). However, this concept has recently been challenged by marine geological studies, indicating grounded ice on the continental shelf at this time. New 10Be‐ages from the Store Koldewey island, northeast Greenland, suggest that unscoured mountain plateaus at the outer coast were covered at least partly by cold‐based ice during the LGM. It is, however, still inconclusive whether this ice was dynamically connected to the Greenland Ice Sheet or not. Regardless of the LGM ice sheet extent, the 10Be results from Store Koldewey add to a growing body of evidence suggesting considerable antiquity of crystalline unscoured terrain near present and Pleistocene ice sheet margins.  相似文献   

7.
This paper discusses predicted evolution patterns of present-day changes of ice thickness, surface elevation, and bedrock elevation over the Greenland and Antarctic continents. These were obtained from calculations with dynamic 3-D ice sheet models which were coupled to a visco-elastic solid Earth model. The experiments were initialized over the last two glacial cycles and subsequently averaged over the last 200 years to obtain the current evolution. The calculations indicate that the Antarctic Ice Sheet is still adjusting to the last glacial-interglacial transition yielding a decreasing ice volume and a rising bedrock elevation of the order of several centimetres per year. The Greenland Ice Sheet was found to be close to a stationary state with a mean thickness change of only a few millimetres per year, but the calculations revealed large spatial differences. Predicted patterns over Greenland are characterized by a small thickening over the ice sheet interior and a general thinning of the ablation area. In Antarctica, almost all of the predicted changes are concentrated in the West Antarctic Ice Sheet, which is still retreating at both the Weddell and Ross Sea margins. Over most of both ice sheets, the model indicates that the surface elevation trend is dominated by ice thickness changes rather than by bedrock elevation changes.  相似文献   

8.
During the last glacial maximum, a coalescent ice mass consisting of the grounded Ross Sea ice sheet and an expanded Wilson Piedmont Glacier covered the southern Scott Coast. This coalescent ice mass was part of a larger grounded ice sheet that occupied the Ross Sea Embayment during the last glacial maximum. Deglaciation of the western Ross Sea Embayment adjacent to the southern Scott Coast was delayed until shortly before 6500 14C yr bp , aconclusion based on ages of marine shells from McMurdo Sound, a relative sea-level curve, and algae that lived in ice-dammed lakes. Therefore, most recession of grounded ice in the Ross Sea Embayment occurred in mid to late Holocene time, after deglacial sea-level rise due to melting of Northern Hemisphere ice sheets essentially was accomplished. Rising sea level alone could not have driven grounding-line retreat back to the present-day Siple Coast.  相似文献   

9.
Transport of moisture-bearing air to the Antarctic is one of the important factors that control the mass balance of the ice sheet. Here, we investigate the distribution of air-parcel transport using a backward trajectory analysis over the entire Antarctic ice sheet, based on whether the air parcel was located inside or outside of Antarctica at 5 days before arrival. At this time, we considered the air from outside Antarctica to be moisture rich. Oceanic air was found to dominate in West Antarctica throughout the year, whereas air from inland was more prominently distributed around East Antarctica, especially in summer. In East Antarctica, there was a significant seasonal variation: air from inland dominated in summer, while air of oceanic origin dominated in winter. The distribution of air parcels that came from oceanic/inland sources was similar to the accumulation map (based on satellite data), which indicates that oceanic air parcels could be a substitute for moisture transport to the Antarctic. To determine the future impacts of climate change (e.g., sea level rise), more precise predictions of the variations in the surface mass balance will be required. Our results contribute towards the improved understanding of the spatial distributions of accumulation and aerosols found in Antarctic snow and ice cores.  相似文献   

10.
南极区域潮汐是计算南极物质平衡和南极冰架表面冰流速的重要影响因素,同时对于研究冰架崩解和全球气候变暖具有重要作用。南极潮汐测量的方法从最初的实时测量,发展到了卫星测高和遥感监测以及建立数值模型预测的阶段。已有研究表明潮汐周期与冰架表面流速间存在一定关联,例如Filchner-Ronne冰架和Ross冰架的潮汐变化与冰流速度的联系为:在大潮时冰流速度达到最快,小潮时冰流速度达到最慢。研究还对南极典型冰架区域潮汐特征及对冰架表面冰流速、高程变化等的影响进行了总结。今后的研究不仅需要继续关注西南极和南极半岛的潮汐变化,更加需要对东南极稀疏的区域进行潮汐观测,这对于构建整个南极潮汐数据库和提高数值模型的精度具有重要意义。  相似文献   

11.
在全球气候变暖的背景下,冰架系统是监视和预测冰盖稳定性的理想研究区域。然而传统的冰架观测与调查方法只能从某一侧面揭示冰架的运动状态和演化信息,无法预测其未来变化;冰盖模式作为非常有潜力的数值计算方法,成为研究和预测冰盖/冰架演化的热点领域。Lambert冰川-Amery冰架系统是东南极冰盖最大的冰川系统,对于研究东南极冰盖的物质平衡和冰盖稳定性具有重要意义。使用PISM冰盖模式,对该冰川系统的流动过程进行模拟,得到冰表面流速场数据,并将模拟流速场与实测数据进行对比,发现两者在大部分区域吻合较好,但在冰架前缘处呈现出一些差异。进一步讨论差异可能的来源以及模拟可以改进的地方。  相似文献   

12.
接地线是内陆固定冰盖和漂浮冰架的分界线,其位置的准确界定直接影响到南极冰盖物质平衡的计算。随着技术的发展,接地线的提取手段已经逐步从小范围的实地无线电回波测厚和GPS探测,发展到大范围的遥感观测。遥感观测主要包括4种技术手段,即流体静力学平衡、坡度分析、重复轨道分析以及差分干涉测量。以遥感观测为基础,国际上已发布5种全南极接地线产品,包括MOA、ASAID、ICESat、MEaSUREs以及Synthesized接地线产品。随着卫星数据源的丰富,改进接地线提取方法并高精度提取接地线,扩大接地线研究的时间尺度并对全南极进行长时序的接地线动态变化监测,结合冰架底部消融、冰底地形和海洋温度等参数,深入分析其变化原因和机制以及接地线变化与气候变化相互关系的建模等,将会成为南极接地线研究的新热点。  相似文献   

13.
史久新 《极地研究》2018,30(3):287-302
本文介绍了近期南极冰架-海洋相互作用的研究进展。冰架底部融化速率大于前缘崩解通量,成为南极冰盖质量损失的首要途径。冰架下的海洋按照底部融化驱动因素的不同,可以分为由高密度陆架水驱动的冷冰腔和由变性绕极深层水驱动的暖冰腔。威德尔海的菲尔希纳-龙尼冰架和罗斯海的罗斯冰架属于冷冰腔,占南极冰架总面积的2/3,却只贡献了15%的净融化;东南太平洋扇区阿蒙森海和别林斯高晋海等若干属于暖冰腔的小型冰架,虽然只占南极冰架总面积的8%,却贡献了超过一半的冰架融水。以往看做冷冰腔的东南极托滕冰架和埃默里冰架,也相继发现有变性绕极深层水进入冰腔并造成底部融化。冰架对海洋有冷却和淡化的作用。冷冰腔输出的冰架水具有海洋中最低的温度,对南极陆架水性质乃至南极底层水的形成都有影响。冰架融化加剧,可能是近期观测到的南极底层水淡化的原因。  相似文献   

14.
南极冰盖物质平衡与海平面变化研究新进展   总被引:2,自引:0,他引:2       下载免费PDF全文
本文在简要介绍冰盖物质平衡及其对海平面影响的基础上,从整体法和分量法两个方面总结了南极冰盖物质平衡研究的最新进展,并分析了影响其物质平衡的不确定因素。研究表明,整个南极冰盖物质平衡呈现负增长的趋势,其中西南极Amundsen海湾附近的冰盖物质流失最为明显。另外,南极冰盖边缘的大部分地区还呈现变薄的趋势。南极冰盖物质流失是引起海平面上升的最大潜在因素之一,其冰架的缓冲作用、冰盖的不稳定性和冰盖底部融水的作用等不确定因素对南极冰盖物质平衡具有重要的影响。未来随着观测技术和数据处理技术的不断提高,南极冰盖物质平衡的估算及其不确定因素有望得到进一步的认识,从而为预测海平面的上升范围提供更多的理论和技术支撑。  相似文献   

15.
东南极内陆格罗夫山地区基岩暴露年龄研究   总被引:6,自引:2,他引:4       下载免费PDF全文
采自东南极内陆格罗夫山地区两个冰原岛峰的五个基岩样品的原地生成宇宙成因核素1 0 Be和2 6Al测试结果表明 ,这五个样品的最小暴露年龄都在 2Ma左右 ,远远早于末次冰期极盛期 (LGM )。结合野外工作表明 ,格罗夫山地区中晚上新世以来至今冰盖厚度至少下降了 2 0 0m ,从那时起到现在 ,包括末次冰期极盛期 (LGM)在内 ,东南极冰盖表面高程都未曾再达到中晚上新世以前的冰盖表面高度  相似文献   

16.
The Antarctic climate system involves many complex interactions between the atmosphere, oceans and ice and is sensitive to variations in these components. Ice shelves represent the ice–ocean–atmosphere interface of the Antarctic continent and are therefore very important indicators of climate change in the region. The Amery Ice Shelf is the largest ice shelf in East Antarctica and has been the focus of many scientific research projects over the past 50 years. This paper presents a history of the use of spatial science techniques from basic survey equipment to satellite systems in Australian research projects based on the Amery Ice Shelf (and surrounding glaciers) since 1955. The application of these spatial data to projects based primarily in the fields of geodesy, glaciology, climatology, and oceanography has allowed the measurement and monitoring of the physical, dynamic and environmental characteristics of this large and remote region. This new information provides scientists with a better understanding of the ice shelf/ocean/atmosphere system allowing future monitoring to observe the effects of global climate change.  相似文献   

17.
《Geomorphology》2005,64(1-2):25-65
Surficial deposits in eastern and central Wright Valley, Antarctica, record multiple inland incursions of grounded ice from the Ross Sea Embayment. Glacial geologic mapping, coupled with 42 AMS 14C dates of lacustrine algae and 10 40Ar/39Ar dates of basalt erratics, indicate westward ice expansion at least eight times during the Pliocene and Quaternary. The most extensive westward incursion resulted in an advance of at least 21 km beyond the margin of present-day Wright Lower Glacier, accompanied by ice thickening of ≥500 m at the location of the present-day Wilson Piedmont Glacier in the eastern valley mouth. Large proglacial lakes and glaciolacustrine sedimentation coincide with at least some of these advances.  相似文献   

18.
Tidal motion is the source of short-term vertical motion that an ice shelf experiences, and hence has a significant impact on ice shelves. During the 2003/2004 Austral summer season, five days of GPS measurements were carried out on the front of the Amery Ice Shelf (AIS), East Antarctica, by the 20th Chinese National Antarctica Research Expedition (CHINARE). The GPS data was processed using GAMIT/GLOBK software with 2-hour static data segment and the vertical precision is less than 0.18 m. To verify our results for the vertical component, we compare the ice shelf GPS tidal signal with a tidal result derived from tide gauge measurements at China's Zhongshan Station on Antarctica. Comparison of the GPS results with the tide gauge were in good agreement in amplitude at the few cm level, which indicates that the tide under the front of Amery Ice Shelf is irregular semidiurnal tide, the maximal tidal differences is approximately 2 m. GPS data can be used to validate the ocean tide model around the Antarctic area and such studies are important to improve our knowledge of the Antarctic ice shelf mass balance and dynamical models of ice sheet/ocean interaction.  相似文献   

19.
Dome A冰川学研究进展及深冰芯计划展望   总被引:3,自引:0,他引:3       下载免费PDF全文
目前,位于东南极冰盖分冰岭中心的冰穹-Dome A已成为深入理解南极冰盖演化、稳定性和找寻地球气候久远记录的研究热点。通过整理总结在Dome A获得的冰川学研究进展,结合国际冰芯科学研究计划(International Partnerships in Ice Core Sciences,简称IPICS)有关寻找最古老冰芯的相关资料,对Dome A的气象要素、地貌、冰厚、冰下地形、冰体流速、冰盖内部结构等环境特征进行归纳分析,讨论Dome A冰川学的最新发展及其对深冰芯钻探计划的影响,并分析概述Dome A深冰芯钻探需考虑的问题和未来发展动向。  相似文献   

20.
ABSTRACT. Hydrovolcanic deposits, interbedded tills and recycled microfossils, together with erosion anomalies in the Marie Byrd Land (MBL) landscape, each provide a portion of the record of glaciation and deglaciation events from late Oligocene to the present. We have attempted to synthesize these data sources to provide a more complete record, and to reconcile them with climatic events recorded elsewhere in Antarctica and the deep sea. The MBL data suggest that the late Oligocene was marked by the development of an ice cap at Mount Petras, where the MBL dome was beginning to rise from a near-sea-level position. Furthermore, unusually advanced cirque development in the dome crest area is difficult to explain unless there was a period of effective cirque erosion in that area between c. 25 and 15 Ma BP. These inferences are consistent with evidence from the Ross Sea for an expansion of the West Antarctic Ice Sheet (WAIS) in mid-Miocene (15–17 Ma BP) time.
The deep sea oxygen isotope proxy record has been interpreted to show the inception of West Antarctic glaciation around 6 Ma BP. This can perhaps be reconciled with the terrestrial record if one considers (1) the observation that large volume changes in the WAIS cannot produce a ω18O signal that is significantly outside limits of error, and (2) that the landscape in West Antarctica has evolved from very low regional relief in the Oligocene, to more than 2 km of local relief in the present day, as a result of dome uplift since c. 27 Ma BP, and the growth of large volcanoes since c. 19 Ma BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号