首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 906 毫秒
1.
“十三五”以来,围绕“我国煤矿井下煤层区域增透瓦斯高效抽采和坚硬顶板岩层弱化区域治理”两大难题,将定向长钻孔与分段压裂技术结合,通过技术攻关与装备研发及工程试验,在煤矿井下定向长钻孔分段水力压裂技术和装备研发及工程示范应用等方面均取得了明显进展。主要表现在如下4个方面:(1)开发了适合于煤矿井下煤岩层裸眼定向长钻孔不动管柱和动管柱两种分段水力压裂工艺技术与工具,不动管柱分段压裂工程应用钻孔长度突破了500 m,单孔压裂实现了5段;动管柱分段压裂钻孔长度工程应用突破了800 m,单孔压裂实现了17段。(2)研发了煤矿井下低压端加砂压裂泵组和高压端加砂压裂装置,低压端加砂泵组压力达到了70 MPa,排量达到90 m3/h,携砂比达到20%;高压端加砂压裂装备耐压能力达到55 MPa,一次连续加砂压裂的砂量达到750 kg;低压端和高压端加砂装备均在现场进行了工程应用,应用结果表明装备均具有较好携砂压裂能力。(3)建立了碎软煤层围岩分段压裂和硬煤顺层钻孔分段压裂区域增透瓦斯高效抽采技术模式,前者在山西阳泉矿区和陕西韩城矿区应用钻孔瓦斯抽采纯量均值分别达到了2 811 m3/d和1 559 m3/d,后者在陕西彬长矿区应用钻孔瓦斯抽采纯量达到了2 491 m3/d。(4)探索出了坚硬顶板强矿压煤矿井下定向长钻孔分段水力压裂主动超前区域弱化治理的新模式,工程应用钻孔长度突破了800 m,坚硬顶板分段水力压裂治理后,顶板来压步距、动载系数和最高压力值较未压裂区分别下降了18.9%~70.6%,5.8%~7.9%,13.7%~19.4%,有效治理了工作面坚硬顶板引起的强矿压灾害。随着煤矿井下分段水力压裂技术改进和煤矿智能开采发展的实际需要,提出了煤矿井下大排量高压力智能压裂泵组、井下长钻孔裸眼分段压裂智能工具等装备和煤矿井?地联合分段水力压裂技术研发方向,以更好地推动煤矿井下水力压裂技术与装备发展,为煤矿安全高效绿色智能开采提供技术和装备支撑。   相似文献   

2.
坚硬顶板条件下采煤工作面容易诱发冲击地压、煤与瓦斯突出、矿震及采空区飓风等动力灾害,严重威胁矿井的安全生产。基于裸眼分段压裂超前弱化模式,结合“压裂垮落体+煤柱+承重岩层”协同支撑理念,提出坚硬顶板分段压裂超前弱化解危技术。综合采用理论分析、技术研发、工程应用等方法,探索顶板分段压裂超前弱化解危机理,研究形成稳定协同支撑系统的定量判定公式,并在河东煤田保德煤矿开展工程应用。结果表明:根据判定公式可优选压裂目标层位,顶板分段水力压裂弱化技术实施过程中,最高压力22.43 MPa,破裂压降最大达6.17 MPa,单个钻场3个钻孔累计出现3.0 MPa以上压力降167次;根据压裂前后工作面来压情况可知,压裂后顶板来压步距、动载系数、来压均值分别降低35.02%、14.29%、13.87%,巷道变形得到有效控制,验证分段压裂能够形成人造协同支撑系统,实现坚硬顶板动力灾害的弱化解危。研究实践可为同类地质条件下顶板强矿压灾害防治提供技术借鉴。   相似文献   

3.
随着煤矿开采强度的不断增大,矿井逐渐向深部转移,冲击地压灾害日益严峻。而深部冲击地压矿井往往存在一层或多层坚硬厚岩层,这些坚硬顶板厚度较大,整体性强,突然断裂时会释放大量弹性能,易引发冲击地压事故,严重制约矿井安全生产。以陕西彬长矿区孟村矿为例,针对矿区内煤层埋藏深、普遍存在多种坚硬厚岩层的特殊情况,提出针对性治理措施:对顶板上方0~80 m范围内厚度超过10 m的坚硬厚岩层进行破断、弱化处理,对煤层上方0~30 m范围的低位岩层采取顶板深孔爆破预裂措施,对煤层上方30~60 m范围内的中位坚硬岩层采取顶板定向长钻孔水力压裂措施,对煤层60 m以上高位坚硬岩层采取地面水平井分段压裂措施;使高、中、低位顶板产生的裂缝在垂向上实现贯穿,将顶板“切割”成相对规则的“块状”结构,使上覆岩层应力由“硬传递”转化为“软传递”;并结合煤层大直径孔卸压、煤层爆破等煤层卸压措施,形成了区域与局部相结合、煤层与岩层全覆盖的“井上下”立体防治模式。工程实践证明:采用“井上下”立体防治模式后,工作面103 J以上微震事件降低88%,周期来压强度降低23%,来压持续时间缩短61%,防冲效果良好。该技术模式的成功...  相似文献   

4.
工作面上覆坚硬顶板往往不易垮落,破断后易形成动压灾害。以神东矿区布尔台煤矿为背景,针对典型坚硬顶板造成的强矿压动力灾害问题,采用数值模拟、理论分析的方法分析并揭示坚硬顶板弱化前后的应力演化特征及顶板破断机理,提出超前区域防治技术并应用于现场实践。结果表明:坚硬顶板破断演化特征分为3个阶段,即“长悬臂梁”阶段—“砌体梁滑落失稳”阶段—重新压实阶段,其中“长悬臂梁”阶段支架上方顶板应力显著增大至6.8 MPa,破断前支架上方顶板应力为破断后的2倍,其临界破断产生的应力释放是引起强矿压的根本原因,这也是弱化改造控制的主要阶段。基于坚硬顶板灾害发生机理,提出“广域大空间”超前区域防治技术,阐述了绿色、精准、广域的防治优势,以及钻孔轨迹控制、封孔质量控制、多孔联动效应的关键技术及治理评价体系。结合数值模拟进一步验证防治技术的可靠性,当“长悬臂梁”结构弱化后,其破断前支架上方顶板应力为4.6 MPa,降幅32.4%,顶板破断演化特征3个阶段演变为来压前阶段—“砌体梁滑落失稳”阶段—重新压实阶段,弱化后顶板各阶段支架上方顶板应力降幅达到32.4%~79.4%,表明预成裂隙弱面和降低坚硬层完整性能够有效改变顶板破断结构,显著降低来压强度。实践表明:压裂过程产生多次压降,降幅均达到3 MPa以上,探测裂缝发育长度达到30 m以上,压裂前后工作面周期来压步距降幅44.9%,支架来压载荷降幅18.1%,治理效果良好。研究结果可为类似矿区动力灾害治理提供借鉴。   相似文献   

5.
为了解决碎软煤层本煤层钻孔施工困难,瓦斯抽采浓度低,抽采效果差,无法实现大面积区域预抽的问题,在现有煤矿井下定向钻进技术和水力压裂技术的基础上,结合前期研究成果,提出了顶板梳状长钻孔分段水力压裂技术,并在韩城矿区桑树坪二号井进行了现场试验。现场施工顶板梳状长钻孔主孔长度588 m,包含8个分支孔,钻孔总进尺1 188 m,主孔距煤层0~3.28 m,平面上覆盖约12.5 m。采用不动管柱分段水力压裂工艺,分4段进行水力压裂施工,累计注水2 012 m3,最大泵注压力8.74 MPa。压裂后最大影响半径大于30 m,且裂缝主要位于钻孔下方,向煤层延伸。压裂钻孔稳定抽采阶段瓦斯抽采纯量1.18 m3/min,抽采瓦斯体积分数平均43.54%。顶板梳状长钻孔分段水力压裂钻孔瓦斯抽采纯量是水力割缝钻孔的1.2倍,是本煤层顺层钻孔的4.0倍。试验结果表明,顶板梳状长钻孔分段水力压裂技术可有效避免本煤层常规钻孔施工过程中存在的塌孔、卡钻、喷孔等问题,实现了碎软低渗煤层大面积区域瓦斯预抽,为碎软低渗煤层区域瓦斯预抽提供了新思路和新方法。   相似文献   

6.
针对碎软煤层渗透率低、瓦斯抽采衰减快、压裂不均匀、裂缝易闭合、瓦斯抽采效果差、无法实现区域瓦斯超前预抽的问题,提出了煤层顶板定向长钻孔水力加砂分段压裂强化瓦斯抽采的技术思路,研发适合煤矿井下煤层顶板定向长钻孔水力加砂分段压裂煤层增透技术,研制了成套的煤矿井下水力加砂压裂泵组装备、定向喷砂射孔装置及工具组合、防砂封隔器及工具组合。水力压裂泵组装备最大排量90 m3/h,最大泵注压力70 MPa,最大携砂能力20%,支撑剂粒径小于等于1 mm;定向喷砂射孔装置通过水压驱动喷射器定向,最大旋转角度180°;防砂封隔器最大承压70 MPa,最大膨胀系数为2。研发的定向长钻孔连续定向喷砂射孔工艺技术和定向长钻孔拖动式水力加砂分段压裂工艺技术,在山西阳泉新景煤矿井下开展工程试验,完成2个压裂钻孔(孔深均为609 m)共计16段水力加砂分段压裂施工,累计实施80次定向喷砂射孔作业,石英砂的体积分数2%~3%,定向喷砂射孔压力22.6~28.6 MPa,共计使用石英砂19.8 t;水力加砂分段压裂单段注入压裂液153.8~235.1 m3、核桃壳砂的体积分数2.02%~2.56%,累计注入压裂液2 808.57 m3,注入核桃壳砂36.47 t;综合评价本次水力加砂分段压裂影响半径为20~38 m,统计分析压裂后2个钻场100 d瓦斯抽采数据,1号钻场、2号钻场日均瓦斯抽采纯量分别为1 025、2 811m3。试验结果表明:压裂装备加砂量大,施工排量大,能够实现连续作业,压裂后煤层透气性显著增加,极大地提高瓦斯抽采浓度和瓦斯抽采纯量。研究成果对碎软煤层区域瓦斯增透提供新思路,为我国类似矿区区域瓦斯超前治理提供技术借鉴。   相似文献   

7.
工作面长度的增加是导致采场矿压强度增加的原因之一。通过相似模拟试验证明了覆岩能破断成梯形台形态,并指出了梯形台形成机制及梯形台的参数计算原理。利用梯形台分析了工作面长度对覆岩破断规律的影响,指出了梯形台与关键层理论的关系。基于薄板理论推导了岩层破断步距的计算公式,分析了工作面长度对梯形台空间结构演化及采场矿压显现特征的影响。结果表明:由于覆岩按梯形台破断,工作面长度较短时,加载层厚度较小,来压强度小。对比研究了赵庄2号井1305大采高工作面(工作面长度为85 m)和1302大采高工作面(工作面长度为180 m)矿压特征。结果表明:1305工作面基于梯形台和薄板理论进行选型计算,支架计算工作阻力为4 738 kN,现场选用额定阻力5 500 kN能够满足顶板控制的要求;1302工作面基于梁理论进行选型计算,支架计算工作阻力为7 623 kN,现场需选用额定阻力7 800 kN才能满足顶板控制的要求。  相似文献   

8.
黄澎涛 《探矿工程》2021,48(S1):187-194
针对我国目前冲击地压防治工程人员身处冲击危险区域,无法实现区域先行、超前治理的局面,论文提出了矿井冲击地压关键层远程钻孔水力压裂防治技术。分析了我国冲击地压矿井的地质条件和近几年重大冲击地压灾害的特点,认为华北石炭—二叠系煤田和侏罗系煤田很多冲击地压煤矿煤层上覆地层,普遍发育厚层坚硬的砂岩关键层,能量的释放符合冲击地压形成的“3因素”理论。经论证,关键层脆性强,硬度大,易于压裂,利用水力压裂法解除地应力是合适的;井下长钻孔、地面深孔和地面导斜钻孔的施工技术和钻孔水力压裂技术已成熟,实现远程钻孔水力压裂区域性的防治冲击地压是可行的。工业性试验显示,井下长钻孔顺层分段水力压裂长度可达800 m,水压可达40 MPa,裂缝半径为40 m;地面垂直钻孔分段压裂深度可达3000 m,压裂段高>100 m,压力达80 MPa,裂缝半径为100~200 m;地面导斜钻孔水平顺层段长度达1000 m,压力达80 MPa,裂缝半径为100~150 m;压裂前后煤体应力或支架压力的检测数据对比显示,压裂后的应力较压裂前降低了10 MPa以上,满足区域治理的要求,钻孔远程水力压裂在防治冲击地压上较传统方法具有显著超前优势、区域优势、效率优势、安全优势和环保优势,可以做到冲击地压防治区段的无人化,满足区域先行、超前治理的国家要求。  相似文献   

9.
瓦斯区域超前治理是实现煤矿安全、高效及智能化开采的重要保障,针对碎软煤层区域瓦斯高效抽采难题,以陕西韩城矿区3号煤层为研究对象,提出井下煤层顶板梳状长钻孔水力压裂区域瓦斯抽采模式。采用理论分析、数值模拟和现场试验等多手段相结合的方法,验证模式适用性,阐明紧邻煤层顶板梳状钻孔压裂裂缝延展规律、抽采机理和压裂曲线特征,进而建立适用于500 m孔深的集地质条件动态分析、分段水力压裂、封隔器遇阻解卡和压裂范围连续探查于一体的顶板梳状长钻孔裸眼分段水力压裂关键技术体系,实现煤层顶板梳状钻孔主孔轨迹距离煤层5 m左右、多段均匀压裂、压裂范围全孔监测和孔内事故高效处理。以此为基础,在韩城桑树坪二号井开展2孔次的工程实践:压裂主孔深度588 m、距3号煤层2 m左右,单孔压裂6段,压裂范围探查深度381 m、压裂影响半径20 m以上;压裂后,钻孔抽采瓦斯平均体积分数40%以上、瓦斯抽采量1 m3/min以上,抽采效果是常规钻孔的4倍,120 d瓦斯抽采有效半径可达9 m,实现了碎软煤层瓦斯区域高效抽采。并提出了适用于碎软煤层大区域瓦斯抽采以及高瓦斯压力碎软强突煤层远程区域抽采卸压等规模化应用技术思路。   相似文献   

10.
穿层压裂是提高煤层顶板水平井产气量的关键技术,而应力干扰对煤层顶板水平井穿层分段压裂效果具有重要影响,为此,建立顶板水平井穿层分段压裂数值模型,研究应力干扰对穿层分段压裂裂缝扩展的影响规律。结果表明:煤层的岩石力学参数、压裂段间距和压裂施工方式是影响顶板水平井穿层压裂段间干扰的3个重要因素,随着煤层泊松比的降低,叠加应力逐渐增加,段间干扰程度增加;随着段间距离的增加,叠加应力逐渐减少、应力干扰逐渐减弱;顶板岩层内的叠加应力和应力干扰程度明显大于煤层;渗流扩散泄压施工产生的叠加应力明显低于连续压裂施工,段间干扰程度明显降低。研究得出连续施工的中硬煤层分段间距在90 m左右,软煤层分段间距在70~80 m较合理。扩散泄压压裂施工段间距相应降低,中硬煤层的分段间距在70 m左右、软煤层分段间距在60 m左右较合理。工程实践表明,顶板水平井分段压裂裂缝穿透了煤层,形成了较长裂缝,取得了较好的产气效果,实现对煤层的高效穿层压裂改造,研究结果为顶板水平井穿层压裂段间距优化提供了理论依据。   相似文献   

11.
In order to determine the rock mechanics characteristics, a uniaxial compression experiment for the hard sandstone in the 6305 working face of Jining No.3 Coal Mine was designed. The experimental results show that the bending energy is weakly impacted and the bending energy index is 66 kJ. To crack into the hard roof to prevent roof formation of rock burst with the Polish hydraulic fracturing technology. According to on-site hydraulic fracturing test, hydraulic fracturing radius of 6305 working face can reach 5–15 m. Finally, there is a little vibration, and energy is mainly concentrated range from 1000 to 10,000 J from the characteristics of mine waveform and spectrum distribution through microseismic monitoring system during the fracturing process. It shows that some microseismic events induced by hard roof after hydraulic fracturing have achieved the purpose of slow relief of hard roof and prevent the occurrence of rock burst.  相似文献   

12.
With hard roof conditions and the influence of side and front abutment pressures, pressure bump and large deformations periodically occur in the advanced support area of longwall face gob-side gateroads. To control the strong strata behaviours in gob-side gateroads, “directional hydraulic fracturing, to cut off the roof hanging over the adjacent gob area, and pre-fracturing of the roof, located behind the working face being extracted,” are performed. The directional initiation of hydraulic fracturing is controlled by pre-slotting, and this action guides the propagation of hydraulic fractures in three-dimensional space. The oriented fractures meet engineering requirements by cooperating with both the in situ ground stresses and the mining-induced stresses, as well as the technology of hydraulic fracturing. In field applications, hydraulic fracturing has proven to be a viable option for weakening hard roofs, destressing the side and front abutment pressures at the mining face and also transferring in situ and mining-induced stresses. Successful field tests in the Tongxin coal mine, Datong district, as well as other coal mines, show that hydraulic fracturing in both a hanging roof over an adjacent gob area and in the gob area behind the advancing working face controls the behaviour of strong strata material on the gob-side of gateroads in longwall mining and also guarantees safe extraction at the working face.  相似文献   

13.
Intensive strata behaviors are generated when the No. 8707 working face of the 8# coal seam in a coal mine is advanced by way of the pillars left over of the upper part of 7# close distance coal seam. The theoretical analysis, numerical simulation and filed measurement were utilized to obtain the rule of the stress change when the 8707 working face of the 8# coal seam passes the pillars left over of the 7# coal seam. Meanwhile, a pressure-relief mining (PRM) technology was put forward. According to the research results, when the 8707 working face in the 8# coal seam was advanced to the position that was 20 m in front of the pillar left over, the abutment pressure reached the maximum for 26 MPa and the stress concentration factor was 3.25, which was likely to give rise to the rock burst. With the advance of the working face, the abutment pressure was reduced slowly. As the 8707 working face advanced 15 m away the pillar left over, the transfixed shear failure region of 45° was found in the bedrocks of the upper and lower coal seams, which was readily to give rise to the shear rupture, leading to the rock burst. Based on the aforementioned research, this research carried out the PRM by applying the hydraulic fracturing technology on the coal roof and pillar, which can ensure the safety and efficient mining of working faces.  相似文献   

14.
针对煤矿井下作业空间小,供电供水能力有限,地面加砂压裂装备无法直接应用于煤矿井下的现状,提出了高压端加砂压裂的技术思路。基于液动冲击混携砂原理,研发了高压端连续水力加砂压裂装备。该装备不需要外部动力源进行混砂,而是通过压裂液流态和流场的变化形成旋流冲击实现混砂和携砂。理论分析、数值模拟和室内仿真试验均表明,该装备在原理上是可行性的,能够有效混砂和携砂。研发的装备整体耐压达到55 MPa,一次可装石英砂750 kg,可实现单个或者多个穿层钻孔的连续加砂压裂。配套设计了三通道并联的煤矿井下高压端连续水力加砂压裂控制系统,该系统通过矿用压风实现开关的开合,与压裂泵的控制系统协同对加砂过程实现远程集中控制,确保加砂过程安全可靠。运用该装备在安徽淮南矿区潘三煤矿进行了5个底板穿层钻孔的现场试验。结果表明:该装备携砂能力较强,仅需开启通道二即可实现有效加砂,最大连续加砂量150 kg,最大注水量316 m3,加砂压裂钻孔瓦斯抽采纯量、百孔瓦斯抽采量分别是清水压裂钻孔的2.38和2.03倍,增透效果明显。研发的装备可应用于煤矿井下高压水射流、水力切割以及水力加砂压裂等领域。   相似文献   

15.
刘跃东  林健  冯彦军  司林坡 《岩土力学》2018,39(5):1781-1788
为了揭示水压致裂法和巴西劈裂法测量岩石抗拉强度的关系,开展了理论和现场试验研究。基于经典的水压致裂法理论,推导了不同围压下钻孔破裂压力和抗拉强度。利用断裂力学理论建立了水压致裂法和巴西劈裂法测得抗拉强度的关系。利用预制切槽方法模拟天然裂纹,对水力裂缝的起裂压力进行了研究。结果表明:围压为最大主应力等于3倍最小主应力测得的抗拉强度大于围压为0测得的抗拉强度;水压致裂法和巴西劈裂法测量抗拉强度关系与应力场、裂纹长度、断裂韧度3个变量有关;通过在晋城矿区王台铺矿的预制切槽试验,运用断裂力学建立的抗拉强度计算式更为符合现场实际。研究结果可为坚硬难垮落顶板预制切槽的水力压裂设计提供参考。  相似文献   

16.
我国煤矿煤与瓦斯突出灾害严重影响煤矿安全生产。尽管近10年来这一灾害事故大幅度减少,但恶性事故依然发生,给矿工生命和煤矿安全生产造成严重损失。国内外现阶段的防治瓦斯突出技术,如水力压裂、水力割缝、水力冲孔、深孔爆破、密集钻孔等,不同程度地解决了防突安全掘进,但对于一些高瓦斯低渗透突出煤层,上述技术还难以从根本上解决消突安全快速掘进。所以,防突技术仍然是我国煤炭领域亟待攻关的重大科技难题。选取山西寿阳县新元煤矿31002工作面为试验案例,介绍CO2气相压裂技术方法,并探讨其防突掘进效果。新元煤矿开采的山西组3号煤层为低渗透突出煤层,前期主要采用密集钻孔预抽瓦斯防突措施,抽采达标时间长,掘进速度慢。高效抽采瓦斯,防止煤与瓦斯突出,保障煤巷安全快速掘进,是新元煤矿安全高效生产的重大技术难题。在新元矿采取的气相压裂措施概况如下:在掘进工作面前方实施双钻孔气相压裂;完成9个瓦斯抽采钻孔以覆盖巷道两侧各15 m安全范围;全部11个钻孔联网抽采3~5 d,防突参数K1值达标后恢复掘进。试验数据表明,气相压裂抽采防突技术措施的强化抽采效果显著,抽采效率大幅度提高,煤炮等动力现象减少,K1值降低,掘进割煤时巷道瓦斯浓度得以降低和均化,保障了连续安全掘进。实践证明,CO2气相压裂技术能够实现连续安全快速掘进理技术,在全国类似瓦斯地质条件煤矿中具有推广应用意义。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号