首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Journal of Geodynamics》1999,27(4-5):567-583
Upper mantle P and S wave velocities in the western South America region are obtained at depths of foci from an analysis of travel time data of deep earthquakes. The inferred velocity models for the Chile–Peru–Ecuador region reveal an increase of P velocity from 8.04 km/s at 40 km to 8.28 km/s at 250 km depth, while the S velocity remains almost constant at 4.62 km/s from 40 to 210 km depth. A velocity discontinuity (probably corresponding to the L discontinuity in the continental upper mantle) at 220–250 km depth for P and 200–220 km depth for S waves, with a 3–4% velocity increase, is inferred from the velocity–depth data. Below this discontinuity, P velocity increases from 8.54 km/s at 250 km to 8.62 km/s at 320 km depth and S velocity increases from 4.81 km/s at 210 km to 4.99 km/s at 290 km depth. Travel time data from deep earthquakes at depths greater than 500 km in the Bolivia–Peru region, reveal P velocities of about 9.65 km/s from 500 to 570 km depth. P velocity–depth data further reveal a velocity discontinuity, either as a sharp boundary at 570 km depth with 8–10% velocity increase or as a broad transition zone with velocity rapidly increasing from 560 to 610 km depth. P velocity increases to 10.75 km/s at 650 km depth. A comparison with the latest global average depth estimates of the 660 km discontinuity reveals that this discontinuity is at a relatively shallow depth in the study region. Further, a velocity discontinuity at about 400 km depth with a 10% velocity increase seems to be consistent with travel time observations from deep earthquakes in this region.  相似文献   

2.
Love and Rayleigh wave phase velocities are analyzed with the goal of retrieving information about the anisotropic structure of the Iberian lithosphere. The cross-correlation method is used to measure the interstation phase velocities between diverse stations of the ILIHA network at periods between 20 and 120 s. Despite the 2-D structure of the network, the Love wave data are too few to enable an analysis of phase velocity azimuthal variations. Azimuthal averages of Love and Rayleigh wave phase velocities are calculated and inverted both in terms of isotropic and anisotropic structures. Realistic isotropic models explain the Rayleigh wave and short-period Love wave phase velocities. Therefore no significant anisotropy needs to be introduced in the crust and down to 100 km depth in the upper mantle to explain our data. A discrepancy is observed only at long periods, where the data are less reliable. Love wave data at periods between 80 and 120 s remain 0.15 km/s faster than predicted by isotropic models explaining the long-period Rayleigh wave data. Possibilities of biases in the measurements due to interferences with higher modes are examined but seem unlikely. A transversely isotropic model with 8% of S-wave velocity anisotropy in the upper mantle at depths larger than 100 km can explain the whole set of data. In terms of a classical model of mantle anisotropy, this corresponds to 100% of the crystals perfectly oriented in the horizontal plane in a pyrolitic mantle. This is a rather extreme model, which predicts at time delay between 0 and 2 seconds for split SKS.  相似文献   

3.
AP-wave velocity model for the upper mantle beneath eastern and southern Africa is proposed. The top 250 km of the model is characterized by relatively low velocities similar to those deduced for the upper mantle beneath the western United States of America. At greater depths, the velocities gradually change to normal mantle values.  相似文献   

4.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:7,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

5.
6.
The densities of silicate liquids with basic, picritic, and ultrabasic compositions have been estimated from the melting curves of minerals at high pressures. Silicate liquids generated by partial melting of the upper mantle are denser than olivine and pyroxenes at pressures higher than 70 kbar, and garnet is the only phase which is denser than the liquid at pressures from 70 kbar to at least 170 kbar. In this pressure range, garnet and some fraction of liquid separate from ascending partially molten diapirs. It is therefore suggested that aluminium-depleted komatiite with a high Ca/OAl2O3 ratio may be derived from diapirs which originated in the deep upper mantle at pressures from 70 kbar to at least 140 kbar (200–400 km in depth), where selective separation of pyropic garnet occurs effectively. On the other hand, aluminium-undepleted komatiite is probably derived from diapirs originating at shallower depths (< 200 km). Enrichment of pyropic garnet is expected at depths greater than 200 km by selective separation of garnet from ascending diapirs. The 200-km discontinuity in the seismic wave velocity profile may be explained by a relatively high concentration of pyropic garnet at depths greater than 200 km.  相似文献   

7.
Tetsuo  Irifune 《Island Arc》1993,2(2):55-71
Abstract Phase transformations in model mantle compositions and those in subducting slabs have been reviewed to a depth of 800 km on the basis of recent high-pressure experimental data. Seismic velocity and density profiles in these compositions have also been calculated using these and other mineral physics data. The nature of the seismic velocity and density profiles calculated for a pyrolite composition was found to generally agree with those determined by seismic observations (e.g. PREM). The locations of the seismic discontinuities at 400 and 670 km correspond almost exactly to the depths where the transformations of the olivine component to denser phases take place. Moreover, the steep gradients in the seismic velocity/density profiles observed between these depths are qualitatively consistent with those expected from the successive transformations in the complementary pyroxene-garnet component in the pyrolite composition. Further, the calculated seismic velocity and density values agree well with those observed in the upper mantle and mantle transition region within the uncertainties attached to these calculations and observations. Pyrolite or peridotite compositions are thus most likely to represent the composition of the mantle above 670 km depth, although some degrees of chemical heterogeneity may exist in the transition region. The observed sharp discontinuous increases of seismic velocities and density at this depth may be attributed either to the phase transformation to a perovskite-bearing assemblage in pyrolite or to chemical composition changes. Density profiles in subducted slabs have been calculated along adequate geotherms assuming that the slabs are composed of the former oceanic crust underlain by a thicker harzburgitic layer. It is shown that the former oceanic crust is substantially less dense than the surrounding pyrolite mantle at depths below 670 km, while it is denser than pyrolite in the upper mantle and the transition region. The subducted former oceanic crust may be trapped in this region, forming a geochemically enriched layer at the upper mantle-lower mantle boundary. Thick and cool slabs may penetrate into the lower mantle, but the chemically derived buoyancy may result in strong deformation and formation of megalith structures around the 670 km seismic discontinuity. These structures are consistent with those detected by recent seismic tomography studies for subduction zones.  相似文献   

8.
华北地区上地幔温度及岩石圈厚度分布研究   总被引:2,自引:2,他引:0       下载免费PDF全文
杨嵩  熊熊  郑勇  单斌 《地球物理学报》2013,56(11):3855-3867
上地幔温度是控制地幔流变性和动力学过程的关键参数之一.本文利用高分辨率S波地震层析成像速度结果,基于岩石温度与地震波速度的关系,研究了华北地区上地幔50~300 km深度范围内的温度分布和"热"岩石圈厚度.为了验证结果的可靠性,本文用计算的上地幔60 km深度处的温度作为底面约束,得到了相应的地表热流.计算地表热流与观测地表热流之间符合程度较好,相对误差大部分都在地表热流观测误差范围之内.通过对上地幔的温度分布进行分析,我们研究发现:(1)在上地幔浅部,温度与地表构造之间有很好的对应关系.在小于170 km的深度上,温度呈现东高西低的分布态势.温度较高的区域集中在东部的河淮盆地、渤海湾盆地、华北平原和中部陆块的交界处、西部鄂尔多斯高原北缘的银川―河套地堑以及阴山地区,同时,这些地区的岩石圈厚度也相应较薄,大约为80~100 km;(2)西部的鄂尔多斯高原是整个华北地区岩石圈地幔温度最低的地区,比东部地区低200~400 ℃,岩石圈厚度相应最厚,平均岩石圈厚度达到140~150 km,最厚处超过160 km.(3)在170 km以下的软流圈地幔部分,温度分布发生反转,西部温度高于东部,表明东、西部陆块在地质历史时期经历了不同的深部地幔动力学过程.  相似文献   

9.
体波波形反演对青藏高原上地幔速度结构的研究   总被引:10,自引:5,他引:5       下载免费PDF全文
采用波形反演方法对青藏高原地区震中距8°-38°范围内的宽频带炸波波形进行拟合,研究该地区上地幔平均速度结构以及上地幔纵、横波速度的横向不均匀性结果表明青藏高原地区的平均地壳厚度约为68km,上地幔盖层平均厚度约为30-40km,速度约为8.10km/s雅鲁藏布江附近地壳厚度最大,约80km,相应的上地幔Pn速度为8.15km/s左右,青藏高原中部地区的地壳平均厚度约68-70km.位于拉萨地块北部的羌塘地块S波速度相对较低,其地壳和上地慢的平均S波速度分别比拉萨地块低1%和2%以上34°N以北,90°E附近的区域存在明显的上地幔P波低速异常区,P波的平均速度小于7.8km/s据此结果及前人工作,推断印度板块的俯冲可能以雅鲁藏布江缝合带附近为界,青藏高原巨大的地壳厚度是由于欧亚板块碰撞造成地壳缩短与增厚引起.  相似文献   

10.
We use telluric and magnetic data of the diurnal variation recorded in Europe, Australia and North America to study the magnetotelluric tensor in the 6h–24h period range. We use associate directions and we eliminate the effects of deviation of telluric currents. We thus obtain for each observatory reliable phases and apparent resistivity values representative of the neighbouring stratified substratum. It appears that the values obtained in the four European observatories (Saint-Maur, France; Ebro, Spain; Toledo, Spain; Nagycenk, Hungary) give similar results and that these results are different from those obtained either in Tucson (USA) or in Watheroo (Australia).Using Bostick transform we interpret these phase and apparent resistivity values in terms of conductivity of the upper mantle. We discuss then the conductivity heterogeneities in terms of change either in temperature, or partial melting or percentage of fluids of the upper mantle: at depths of about 300 km, the upper mantle appears to be 100 °C hotter under Australia than under Europe; the probable presence of fluids at depths about 100 km in the southwestern North America upper mantle appears to be responsible for the high observed conductivities. All these conductivity values are coherent with tomography results from Woodhouse and Dziewonsky: high (low) conductivities are cohernet with low (high)seismic wave velocities.  相似文献   

11.
Teleseismic data recorded by stations in the Swedish National Seismic Network (SNSN) are used for a study of upper mantle structure beneath the Baltic Shield using the receiver function technique. The data show very clear conversions from the 410 and 660 km discontinuities. The signals associated with P to S conversions at these discontinuities arrive 1-2 s earlier than predicted by global models such as IASP91 or PREM. We interpret this as a manifestation of higher than average velocities in the mantle beneath the shield, consistent with lower than average global temperatures. For a 1400 km profile along the network, we observe variations of around 1 second in delay times of P410s and slightly less for P660s. Under the assumption that the mantle discontinuities are at a given constant depth, the delay times of the mantle converted phases are tomographically inverted to reveal P and S velocity structure below the stations. Synthetic tests show that this tomographic inversion has the potential to resolve P and S velocity variations at structural scales adequate for upper mantle studies. Results from application to real data appear to be consistent with independently produced mantle velocity structures deduced from normal tomographic arrival time data. For the P velocity model, a north-dipping body of (relatively) low velocity is found for the central part of the profile at 58-64°N. A sharp contrast from low to high velocities that may be associated with the Proterozoic-Archean boundary is found at 66°N.  相似文献   

12.
本文以太行山为界将华北地区分为东西两部分,东部为河淮块体,西部为鄂尔多斯块体.利用最小二乘法,从混合路径基阶瑞利面波群速度频散提取两块体的纯路径频散,并反演其地壳、上地幔的层状结构.所得结表果明,两块体的面波频散和地壳、上地幔结构存在明显差异.东部的河淮块体地壳较薄,地壳内平均速度比西部的鄂尔多斯块体壳内平均速度约低0.13km/s,壳内20km深度左右出现低速层;而西部的块体壳内速度成层递增,未见低速层出现.两块体上地幔顶部速度均偏低,地幔低速层的埋藏深度基本相同.但西部块体地幔低速层厚,且比东部块体地幔低速层的速度约低0.3km/s.  相似文献   

13.
本文以太行山为界将华北地区分为东西两部分,东部为河淮块体,西部为鄂尔多斯块体.利用最小二乘法,从混合路径基阶瑞利面波群速度频散提取两块体的纯路径频散,并反演其地壳、上地幔的层状结构.所得结表果明,两块体的面波频散和地壳、上地幔结构存在明显差异.东部的河淮块体地壳较薄,地壳内平均速度比西部的鄂尔多斯块体壳内平均速度约低0.13km/s,壳内20km深度左右出现低速层;而西部的块体壳内速度成层递增,未见低速层出现.两块体上地幔顶部速度均偏低,地幔低速层的埋藏深度基本相同.但西部块体地幔低速层厚,且比东部块体地幔低速层的速度约低0.3km/s.  相似文献   

14.
We apply a forward-modeling approach to high-quality arrival time data from 23 deep earthquakes greater than 400 km depth to investigate the detailed structure of the subducting Pacific slab beneath the Japan Sea. Our results show that a finger-like anomaly exists within the subducting Pacific slab below 400 km depth, which has a P-wave velocity 5% lower than the surrounding slab velocity (or 3% lower than that of the normal mantle), suggesting the existence of a metastable olivine wedge (MOW) in the slab. The MOW top and bottom depths are 400 and 560 km, respectively. The MOW is estimated to be about 50 km wide at 400 km depth and close to the slab upper boundary. At 560 km depth the MOW is located at about 25 km below the slab upper boundary. Most of the deep earthquakes are located in the MOW. Our results favor transformational faulting as the mechanism for deep earthquakes.  相似文献   

15.
A two dimensional velocity model of the upper mantle has been compiled from a long-range seismic profile crossing the West Siberian young plate and the old Siberian platform. It revealed considerable horizontal and vertical heterogeneity of the mantle. A sharp seismic boundary at a depth of 400 km outlines the high-velocity gradient transition zone, its base lying at a depth of 650 km. Several layers with different velocities, velocity gradients and wave attenuation are distinguished in the upper mantle. They likewise differ in their inner structure. For instance, the uppermost 50–70 km of the mantle are divided into blocks with velocities from 7.9–8.1 to 8.4–8.6 km s?1.Comparison of the travel-time curves for the Siberian long-range profile with those compiled from seismological data for Europe distinguished large-scale upper mantle inhomogeneities of the Eurasian continent and allowed for the correlation of tectonic features and geophysical fields. The velocity heterogeneity of the uppermost 50–100 km of the mantle correlates with the platform age and heat flow, i.e., the young plates of Western Europe and Western Siberia have slightly lower velocities and higher heat flows than the ancient East European and Siberian platforms. At greater depths (150–250 km) the upper mantle velocities increase from the ocean to the inner parts of the continent. The structure of the transition zone differs significantly beneath Western Europe and the other parts of Eurasia. The sharp boundary at a depth of 400 km, traced throughout the whole continent as the boundary reflecting intensive waves, transforms beneath Western Europe into a gradient zone. This transition zone feature correlates with positions of the North Atlantic-west Europe geoid and heat-flow anomalies.  相似文献   

16.
We have constrained the shear-wave structure of crust and upper mantle beneath Iceland by analyzing fundamental mode Rayleigh waves recorded at the ICEMELT and HOTSPOT seismic stations in Iceland. The crust varies in thickness from 20 to 28 km in western and northern Iceland and from 26 to 34 km in eastern Iceland. The thickest crust of 34–40 km lies in central Iceland, roughly 100 km west to the current location of the Iceland hotspot. The crust at the hotspot is ∼32 km thick and is underlain by low shear-wave velocities of 4.0–4.1 km/s in the uppermost mantle, indicating that the Moho at the hotspot is probably a weak discontinuity. This low velocity anomaly beneath the hotspot could be associated with partial melting and hot temperature. The lithosphere in Iceland is confined above 60 km and a low velocity zone (LVZ) is imaged at depths of 60 to 120 km. Shear wave velocity in the LVZ is up to 10% lower than a global reference model, indicating the influence of the Mid-Atlantic Ridge and the hotspot in Iceland. The lowest velocities in the LVZ are found beneath the rift zones, suggesting that plume material is channeled along the Mid-Atlantic Ridge. At depths of 100 to 200 km, low velocity anomalies appear at the Tjornes fracture zone to the north of Iceland and beneath the western volcanic zone in southwestern Iceland. Interestingly, a relatively fast anomaly is imaged beneath the hotspot with its center at ∼135 km depth, which could be due to radial anisotropy associated with the strong upwelling within the plume stem or an Mg-enriched mantle residual caused by the extensive extraction of melts.  相似文献   

17.
Calibration of the Tibetan Plateau Using Regional Seismic Waveforms   总被引:3,自引:0,他引:3  
We use the recordings from 51 earthquakes produced by a PASSCAL deployment in Tibet to develop a two-layer crustal model for the region. Starting with their ISC locations, we iteratively fit the P-arrival times to relocate the earthquakes and estimate mantle and crustal seismic parameters. An average crustal P velocity of 6.2–6.3 km/s is obtained for a crustal thickness of 65 km while the P velocity of the uppermost mantle is 8.1 km/s. The upper layer of the model is further fine-tuned by obtaining the best synthetic SH waveform match to an observed waveform for a well-located event. Green's functions from this model are then used to estimate the source parameters for those events using a grid search procedure. Average event relocation relative to the ISC locations, excluding two poorly located earthquakes, is 16 km. All but one earthquake are determined by the waveform inversion to be at depths between 5 and 15 km. This is 15 km shallower, on average, than depths reported by the ISC. The shallow seismicity cut-off depth and low crustal velocities suggest high temperatures in the lower crust. Thrust faulting source mechanisms dominate at the margins of the plateau. Within the plateau, at locations with surface elevations less than 5 km, source mechanisms are a mixture of strike-slip and thrust. Most events occurring in the high plateau where elevations are above 5 km show normal faulting. This indicates that a large portion of the plateau is under EW extension.  相似文献   

18.
According to a Sino-U. S. joint project, eleven broadband digital PASSCAL seismometers had been deployed inside the Tibetan Plateau, of which 7 stations were on the profile from Lhasa to Golmud and other 4 stations situated at Maxin, Yushu, Xigatze and Linzhi. Dispersions and phase velocities of the Rayleigh surface waves (10s–120s) were obtained on five paths distributed in the different blocks of Tibetan Plateau. Inversions of the S-wave velocity structures in Songpan-Ganzi block, Qiang-Tang block, Lhasa block and the faulted rift zone were obtained from the dispersion data. The results show that significant lateral variation of the S-wave velocity structures among the different blocks exists. The path from Wenquan to Xigatze (abbreviated as Wndo-Xiga) passes through the rift-zone of Yadong-Anduo. The phase velocities of Rayleigh waves from 10s to 100s on this path are significantly higher than that on other paths. The calculated mean crustal velocity on this path is 3.8 km/s, much greater than that on other paths, where mean crustal velocities of 3.4–3.5 km/s are usually observed. Low velocity zones with different thicknesses and velocities are observed in the middle-lower crust for different paths. Songpan-Ganzi block, located in the northern part of Tibetan Plateau is characterized by a thinner crust of 65 km thick and a prominent low velocity zone in the upper mantle. The low velocity zone with a velocity of 4.2 km/s is located at a depth form 115 km to 175 km. While in other blocks, no low velocity zone in the upper mantle is observed. The value of Sn in Songpan-Ganzi is calculated to be 4.5 km/s, while those in Qiang-Tang and Lhasa blocks are about 4.6 km/s. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 566–573, 1992.  相似文献   

19.
Cross-correlation functions of noise are constructed on 119 interstation paths from seismic noise records at stations of Eastern Europe. Dispersion curves of the group velocity of Rayleigh waves obtained from the cross-correlation functions are used for constructing the three-dimensional distribution of the velocity of transverse waves on the East European platform and in adjacent regions by methods of surface-wave tomography. The mean velocity in the crust is minimum in the region of the Caspian depression and Black Sea basin (<3.3 km/s) and maximum in the Baltic shield area (>3.7 km/s). The upper mantle beneath the Baltic and Ukrainian shields is characterized by increased velocity and the absence of the asthenospheric layer. Reduced velocities are noted in the upper mantle of the Black Sea basin. A low-velocity anomaly in the shape of a vertical column is revealed at depths of 200–300 km in the central part of the Dnieper-Donets aulacogen, which confirms the existence of a paleorift in this region.  相似文献   

20.
It is well established that the Earth's uppermost mantle is anisotropic, but observations of anisotropy in the deeper mantle have been more ambiguous. Radial anisotropy, the discrepancy between Love and Rayleigh waves, was included in the top 220 km of PREM, but there is no consensus whether anisotropy is present below that depth. Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to structure in the first few hundred kilometers and therefore do not provide information on anisotropy below. Higher mode surface waves, however, have sensitivities that extend to and below the transition zone and should thus give insight about anisotropy at greater depths, but they are very difficult to measure. We previously developed a new technique to measure higher mode surface wave phase velocities with consistent uncertainties. These data are used here to construct probability density functions of a radially anisotropic Earth model down to approximately 1500 km. In the uppermost mantle, we obtain a high probability of faster horizontally polarized shear wave speed, likely to be related to plate motion. In the asthenosphere and transition zone, however, we find a high probability of faster vertically polarized shear wave speed. To a depth of 1500 km in the lower mantle, we see no significant shear wave anisotropy. This is consistent with results from laboratory measurements which show that lower mantle minerals are anisotropic but LPO is unlikely to develop in the pressure–temperature conditions present in the mid-mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号