首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Previous studies suggested that there are large discrepancies in the intensity trend of the zonally averaged Hadley circulation (ZAHC) among different reanalyses. As the land, ocean, and topography are not evenly distributed, the ZAHC may mask the regional variability. Changes in the regional HC have important implications for regional climate change. Here, we detect the long-term trend of the boreal spring regional Hadley circulation intensity over the western Pacific (WPHC) since 1979 in both hemispheres using six reanalysis datasets. Unlike the ZAHC, we find that the trend of the spring WPHC intensity is consistent among various reanalysis datasets. All reanalyses show pronounced strengthening trends for the WPHC in both the Northern and Southern Hemisphere, which may be partly attributable to the robust warming trends of sea surface temperature in the tropical western Pacific. The result could improve our understanding of Hadley circulation variability at the regional scale and has implications for regional climate changes.  相似文献   

2.
Simulated variability and trends in Northern Hemisphere seasonal snow cover are analyzed in large ensembles of climate integrations of the National Center for Atmospheric Research’s Community Earth System Model. Two 40-member ensembles driven by historical radiative forcings are generated, one coupled to a dynamical ocean and the other driven by observed sea surface temperatures (SSTs) over the period 1981–2010. The simulations reproduce many aspects of the observed climatology and variability of snow cover extent as characterized by the NOAA snow chart climate data record. Major features of the simulated snow water equivalent (SWE) also agree with observations (GlobSnow Northern Hemisphere SWE data record), although with a lesser degree of fidelity. Ensemble spread in the climate response quantifies the impact of natural climate variability in the presence and absence of coupling to the ocean. Both coupled and uncoupled ensembles indicate an overall decrease in springtime snow cover that is consistent with observations, although springtime trends in most climate realizations are weaker than observed. In the coupled ensemble, a tendency towards excessive warming in wintertime leads to a strong wintertime snow cover loss that is not found in observations. The wintertime warming bias and snow cover reduction trends are reduced in the uncoupled ensemble with observed SSTs. Natural climate variability generates widely different regional patterns of snow trends across realizations; these patterns are related in an intuitive way to temperature, precipitation and circulation trends in individual realizations. In particular, regional snow loss over North America in individual realizations is strongly influenced by North Pacific SST trends (manifested as Pacific Decadal Oscillation variability) and by sea level pressure trends in the North Pacific/North Atlantic sectors.  相似文献   

3.
Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; ~900–1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations—especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA—a remarkable, yet incompletely understood episode of Late Holocene climatic change.  相似文献   

4.
2018年7月北半球天气气候显著异常,极端事件高发。欧洲、北非、东亚以及北美的大部分地区均遭受严重的高温热浪侵袭;印度、东南亚、中国西南部以及日本西部等地出现极端降水;西太平洋台风活动异常活跃,移动路径偏北。初步诊断表明,北半球中高纬度,由低层到高层稳定维持的异常高压系统是导致北半球中高纬度大部分地区高温热浪持续发生的直接原因。其中异常偏强、偏北的副热带高压,以及增强、东伸的南亚高压与东亚地区持续高温和极端降水事件直接相关;低层菲律宾周围异常活跃的对流活动和强盛的西南水汽输送共同导致南亚、东南亚地区极端降水发生。热带太平洋大部分地区偏暖的海温条件和菲律宾附近异常气旋性环流则与异常活跃的台风活动有关。更需要关注的是,北半球尤其是东亚地区大气环流的异常主要受海洋表面热力状况以及其他区域大气环流遥相关的影响。  相似文献   

5.
Effects of Land Cover Conversion on Surface Climate   总被引:11,自引:0,他引:11  
This study investigates the effects of large-scale human modification of land cover on regional and global climate. A general circulation model (Colorado State University GCM) coupled to a biophysically-based land surface model (SiB2) was used to run two 15-yr climate simulations. The control run used current vegetation distribution as observed by satellite for the year 1987 to derive the vegetation's physiological and morphological properties. The twin simulation used a realistic approximation of vegetation type distribution that would exist in the absence of human disturbance.In temperate latitudes, where anthropogenic modification of the landscape has converted large areas of forest and grassland to cropland, conversion cools canopy temperatures up to 0.7 ° C in summer and 1.1 ° C in winter. This cooling results from both (1) morphological changes in vegetation which increase albedo and (2) physiological changes in vegetation which increase latent heat flux of crops compared with undisturbed vegetation during the growing season. In the tropics and subtropics, conversion warms canopy temperature by about 0.8 ° C year round. The warming results from a combination of morphological changes in vegetation offset by physiological changes that reduce latent heat flux of existing compared with undisturbed vegetation. If water efficient, tropical C4 grasses replace C3 vegetation, latent heat flux is further reduced.The overall effect of land cover conversion is cooling in temperate latitudes and warming in the tropics. Because the effects are opposite in sign in tropics and middle latitudes, they cancel each other when averaged globally. Over land, the surface temperature increased by 0.2 C in winter and remained essentially unchanged in summer. The effects on land surface hydrology were also small when averaged globally. The results suggest that the effects of land use change of the observed magnitude do not have a strong impact on the globally averaged climate but their signature at regional scales is significant and vary according to the type of land cover conversion.  相似文献   

6.
Modelled atmospheric response to changes in Northern Hemisphere snow cover   总被引:1,自引:0,他引:1  
The surface boundary conditions are altered in a numerical simulation of January climate by prescribing (a) higher and (b) lower than average snow extent over Northern Hemisphere land masses. The anomalies in snow cover are shown to have quite a strong impact on the mean climatic state. Associated with an increase in the areal extent of the snow, there is a significant reduction in temperature throughout the lower troposphere. There are also large increases in sea-level pressure over most land areas. Significant responses in the mass field are also seen at 500 hPa where reductions in atmospheric thickness lead to significant negative anomalies in the height field. Responses are also seen non-locally, over both the North Pacific and North Atlantic basins. The impact of increased snow on cyclone tracks is also examined. A reduction in cyclones is noted over both continents and over the western sectors of both ocean basins. Over the North Atlantic basin this reduction extends across over Europe, significantly weakening the storm track. In the North Pacific, cyclone density is reduced in the west while in the east, there is actually a strengthening of the storm tracks. There are corresponding changes in the genesis of cyclones in both of these regions. The change in cyclogenesis, intensity and density is demonstrated to be associated with changes in baroclinicity between the two experiments. The anomalous snow boundary conditions lead to significant changes in the meridional temperature gradients over both ocean basins which impact on the baroclinic zones. Received: 5 January 1996 / Accepted: 4 May 1996  相似文献   

7.
 The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the Atmospheric Model Intercomparison Project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979–1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. Large model-to-model variations were also seen in the simulations of the annual mean meridional stress field over equatorial Indian Ocean, south central Pacific, north east Pacific and equatorial eastern Pacific oceans. It is shown that the systematic errors in simulating the surface winds are related to the systematic errors in simulating the Inter-Tropical Convergence Zone (ITCZ) in its location and intensity. Weaker than observed annual mean southwesterlies simulated by most models over Somali is due to weaker than observed southwesterlies during the Northern Hemisphere summer. This is related to the weaker than observed land precipitation simulated by most models during the Northern Hemisphere summer. The diversity in simulation of the surface wind over Somali and equatorial Indian ocean is related to the diversity of AGCMs in simulating the precipitation zones in these regions. Received: 2 August 1996 / Accepted: 7 February 1997  相似文献   

8.
Climatic change due to land surface alterations   总被引:1,自引:0,他引:1  
A primitive equations global zonally averaged climate model is developed. The model includes biofeedback mechanisms. For the Northern Hemisphere the parameterization of biofeedback mechanisms is similar to that used by Gutman et al. (1984). For the Southern Hemisphere new parameterizations are derived. The model simulates reasonably well the mean annual zonally averaged climate and geobotanic zones.Deforestation, desertification and irrigation experiments are performed. In the case of deforestation and desertification there is a reduction in the surface net radiation, evaporation and precipitation and an increase in the surface temperature. In the case of irrigation experiment opposite changes occurred. In all the cases considered the changes in evapotranspiration overcome the effect of surface albedo modification. In all the experiments changes are smaller in the Southern Hemisphere.  相似文献   

9.
This paper introduces the experimental designs and outputs of the Diagnostic,Evaluation and Characterization of Klima(DECK),historical,Scenario Model Intercomparison Project(MIP),and Paleoclimate MIP(PMIP)experiments from the Nanjing University of Information Science and Technology Earth System Model version 3(NESM3).Results show that NESM3 reasonably simulates the modern climate and the major internal modes of climate variability.In the Scenario MIP experiment,changes in the projected surface air temperature(SAT)show robust“Northern Hemisphere(NH)warmer than Southern Hemisphere(SH)”and“land warmer than ocean”patterns,as well as an El Ni?o-like warming over the tropical Pacific.Changes in the projected precipitation exhibit“NH wetter than SH”and“eastern hemisphere gets wetter and western hemisphere gets drier”patterns over the tropics.These precipitation patterns are driven by circulation changes owing to the inhomogeneous warming patterns.Two PMIP experiments show enlarged seasonal cycles of SAT and precipitation over the NH due to the seasonal redistribution of solar radiation.Changes in the climatological mean SAT,precipitation,and ENSO amplitudes are consistent with the results from PMIP4 models.The NESM3 outputs are available on the Earth System Grid Federation nodes for data users.  相似文献   

10.
By employing the CCM1(R15L12)long-range spectral model, study is undertaken of the effects of sea surface temperature anomaly(SSTA) for tropical Indian ocean on circulation transformation in the early summer in East Asia in 1991. The results indicate that warmer SSTA contributes to the increasing of the temperature over the Plateau in early summer, resulting in the intensification of tropical easterly jet on 100 hPa and northward shift of Northern Hemisphere subtropical westerly jet in May. It is obviously favorable for the subtropical high enhancement over western Pacific Ocean in May and subtropical westerly jet maintaining at 35~40 °N in June, making the Mei-Yu come earlier and stay over the Changjiang basin in 1991. Furthermore, warmer SSTA is also advantageous to averaged temperature rise in East Asia land region and Nanhai monsoon development. These roles are helpful in accelerating the seasonal transition for East Asia in early summer.  相似文献   

11.
热带太平洋SST异常对IAP-9 LAGCM 年际变率影响的模拟   总被引:3,自引:0,他引:3  
通过1960~1989年实测的热带太平洋(30.5°N~30.5°S,120°E~70°W)SST(热带太平洋区域以外用气候平均值)强迫AGCM得到的结果,以此来研究热带SST的变化对全球大气环流年际变化的影响。首先,我们分析了南方涛动,分别给出了Tahiti和Darwin海平面气压异常及赤道附近(-5°S~5°N)外逸长波辐射(OLR)时间演变,都能很好与观测相比较。然后,讨论了全球大气环流对热带SST的变化的响应,全球主要的遥相关型都能很好地再现。最后,通过奇异值分解(SVD)技术研究了热带SST与冬季北半球500 hPa位势高度主要的耦合型,模拟的相关型与NCEP再分析资料的相关型非常相似。  相似文献   

12.
13.
The impact of land cover change on the atmospheric circulation   总被引:9,自引:1,他引:9  
 The NCAR Community Climate Model (version 3), coupled to the Biosphere Atmosphere Transfer scheme and a mixed layer ocean model is used to investigate the impact on the climate of a conservative change from natural to present land cover. Natural vegetation cover was obtained from an ecophysiologically constrained biome model. The current vegetation cover was obtained by perturbing the natural cover from forest to grass over areas where land cover has been observed to change. Simulations were performed for 17 years for each case (results from the last 15 years are presented here). We find that land cover changes, largely constrained to the tropics, SE Asia, North America and Europe, cause statistically significant changes in regional temperature and precipitation but cause no impact on the globally averaged temperature or precipitation. The perturbation in land cover in the tropics and SE Asia teleconnect to higher latitudes by changing the position and strength of key elements of the general circulation (the Hadley and Walker circulations). Many of the areas where statistically significant changes occur are remote from the location of land cover change. Historical land cover change is not typically included in transitory climate simulations, and it may be that the simulation of the patterns of temperature change over the twentieth century by climate models will be further improved by taking it into account. Received: 27 May 1999 / Accepted: July 2000  相似文献   

14.
刘晓东 《气象科学》1995,15(4):57-63
本文就我们5年来在下垫面强迫对东亚区域气候影响方面的研究进行了总结。这些工作包括青藏高原,陆面过程及热带西太平洋热源异常对短期气候变化影响的数值试验研究,积雪,地温及海温等下垫面状况与短期气候变化关系的分析研究,以及在特征地质时期的边界条件下对东亚古气候的数值模拟。  相似文献   

15.
The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.  相似文献   

16.
We have used NCEP/NCAR Reanalysis data and a Northern Hemisphere snow cover data set to analyze changes in freezing level heights and snow cover for the past three to five decades. All the major continental mountain chains exhibit upward shifts in the height of the freezing level surface. The pattern of these changes is generally consistent with changes in snow cover, both over the course of the year and spatially. We examined different free-air temperature parameters (dry bulb temperature, virtual temperature, and 700–500 hPa thickness) using the Reanalysis grid point valueslocated over the different mountain areas as defined in this study. The different trend values were in reasonably good agreement with each other, particularly over the second half of the record.Freezing level changes in the American Cordillera are strongly modulated by the El Niño/Southern Oscillation (ENSO) phenomenon and the freezing level heights (FLH) respond to both interannual and decadal-scale change in tropical Pacific sea surface temperature (SST). The 0.5 °C increase in SST recorded in the tropical Pacific since the 1950s accounts for approximately half of the increase in FLH in tropical and subtropical latitudes of the Cordilleran region during that same time.  相似文献   

17.
2000年全球重大气候事件概述   总被引:4,自引:0,他引:4       下载免费PDF全文
刘传凤 《气象》2001,27(4):16-19
2000年,全球气候仍持续较常年偏暖,赤道中,东太平洋强拉尼娜事件在年初再次达到峰值后,迅速减弱,强拉尼娜事件对全示,特别是对热带地区产生了较大的影响,北半球许多地区冬季出现几十年未有的严寒天气,夏季又出现罕见的热浪袭击,几十年来最严重的高温,干旱困扰合球,而亚洲南部,西欧,南部非洲,南美北部和许多地区暴雨频繁,一些地区遭到了本世纪最严重的洪涝灾害。  相似文献   

18.
Evaluating EOF modes against a stochastic null hypothesis   总被引:1,自引:2,他引:1  
In this paper it is suggested that a stochastic isotropic diffusive process, representing a spatial first order auto regressive process (AR(1)-process), can be used as a null hypothesis for the spatial structure of climate variability. By comparing the leading empirical orthogonal functions (EOFs) of a fitted null hypothesis with EOF modes of an observed data set, inferences about the nature of the observed modes can be made. The concept and procedure of fitting the null hypothesis to the observed EOFs is in analogy to time analysis, where an AR(1)-process is fitted to the statistics of the time series in order to evaluate the nature of the time scale behavior of the time series. The formulation of a stochastic null hypothesis allows one to define teleconnection patterns as those modes that are most distinguished from the stochastic null hypothesis. The method is applied to several artificial and real data sets including the sea surface temperature of the tropical Pacific and Indian Ocean and the Northern Hemisphere wintertime and tropical sea level pressure.  相似文献   

19.
2003年北半球大气环流及中国气候异常特征   总被引:12,自引:2,他引:12  
杨义文  许力  龚振淞 《气象》2004,30(4):20-24
2002年发生的厄尔尼诺事件于2003年初结束;受这次事件的影响,西太平洋副热带高压冬、春、夏、秋季持续偏强;夏季西伸脊点位置偏西;6、7月脊线位置偏南,8月偏北。初夏6月上中旬有贝加尔湖阻高影响,6月下旬至7月中旬有鄂霍次克海阻高影响;盛夏东亚夏季风异常偏强;青藏高原500hPa高度年趋势偏高,大部分地区冬季积雪少;热带对流强度年趋势偏弱。  相似文献   

20.
The northern fringe of the Asian summer monsoon region (NASM) in China refers to the most northwestern extent of the Asian summer monsoon. Understanding the characteristics and underlying mechanisms of drought variability at long and short time-scales in the NASM region is of great importance, because present and future water shortages are of great concern. Here, we used newly developed and existing tree-ring, historical documentary and instrumental data available for the region to identify spatial and temporal patterns, and possible mechanisms of drought variability, over the past two millennia. We found that drought variations were roughly consistent in the western (the Qilian Mountains and Hexi Corridor) and eastern (the Great Bend of the Yellow River, referred to as GBYR) parts of the NASM on decadal to centennial timescales. We also identified the spatial extent of typical multi-decadal GBYR drought events based on historical dryness/wetness data and the Monsoon Asia Drought Atlas. It was found that the two periods of drought, in AD 1625–1644 and 1975–1999, exhibited similar patterns: specifically, a wet west and a dry east in the NASM. Spatial characteristics of wetness and dryness were also broadly similar over these two periods, such that when drought occurred in the Karakoram Mountains, western Tianshan Mountains, the Pamirs, Mongolia, most of East Asia, the eastern Himalayas and Southeast Asia, a wet climate dominated in most parts of the Indian subcontinent. We suggest that the warm temperature anomalies in the tropical Pacific might have been mainly responsible for the recent 1975–1999 drought. Possible causes of the drought of 1625–1644 were the combined effects of the weakened Asian summer monsoon and an associated southward shift of the Pacific Intertropical Convergence Zone. These changes occurred due to a combination of Tibetan Plateau cooling together with more general Northern Hemisphere cooling, rather than being solely due to changes in the sea surface temperature of the tropical Pacific. Our results provide a benchmark for comparing and validating paleo-simulations from general circulation model of the variability of the Asian summer monsoon at decadal to centennial timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号