首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, unpublished archival documentary sources are used to explore the vulnerability to–and implications of–climatic variability and extreme weather events in colonial Mexico. Attention focuses on three regions covering a variety of environmental, social, economic, and political contexts and histories and located at key points along a north-south rainfall gradient: Chihuahua in the arid north, Oaxaca in the wetter south and Guanajuato located in the central Mexican highlands. A number of themes are considered. First, the significance of successive, prolonged, or combined climate events as triggers of agrarian crisis. Second, a case study demonstrating the national and regional impacts of a particularly devastating climate induced famine, culminating with the so-called ‘Year of Hunger’ between 1785 and 1786, is presented. The way in which social networks and community engagement were rallied as a means of fortifying social resilience to this and other crises will be highlighted. Third, the impacts of selected historical flood events are explored in order to highlight how the degree of impact of a flood was a function of public expectation, preparedness and also the particular socio-economic and environmental context in which the event took place. An overview of the spatial and temporal variations in vulnerability and resilience to climatic variability and extreme weather events in colonial Mexico is then provided, considering those recorded events that could potentially relate to broader scale, possibly global, climate changes.  相似文献   

2.
The climate of Namaqualand in the nineteenth century   总被引:1,自引:0,他引:1  
Southern African climatic change research is hampered by a lack of long-term historical data sets. This paper aims to extend the historical climate record for southern Africa to the semi-arid area of Namaqualand in the Northern Cape province of South Africa. This is achieved through extensive archival research, making use of historical documentary sources such as missionary journals and letters, traveller’s writings and government reports and letters. References to precipitation and other climatic conditions have been extracted and categorised, providing a proxy precipitation data set for Namaqualand for the nineteenth century. Notwithstanding problems of data accuracy and interpretation the reconstruction enables the detection of severe and extreme periods. Measured meteorological data, available from the late 1870s, was compared to the data set derived from documentary sources in order to ascertain the accuracy of the data set and monthly rainfall data has been used to identify seasonal anomalies. Confidence ratings on derived dry and wet periods, where appropriate, have been assigned to each year. The study extends the geographical area of existing research and extracts the major periods of drought and climatic stress, from the growing body of historical climate research. The most widespread drought periods affecting the southern and eastern Cape, Namaqualand and the Kalahari were 1820–1821; 1825–1827; 1834; 1861–1862; 1874–1875; 1880–1883 and 1894–1896. Finally, a possible correspondence is suggested between some of the widespread droughts and the El Nino Southern Oscillation (ENSO).  相似文献   

3.
A 680-year ring-width chronology of Sabina przewalskii Kom. was developed for Wulan area of northeastern Qinghai-Tibetan Plateau, China. Response function and correlation analyses showed that spring precipitation (May–June) is the critical limiting factor for tree-ring growth, and temperature in prior November may also play a role in affecting tree-ring growth. Excessive spring precipitation occurred during AD 1380s–1390s, 1410s–1420s, 1520s–1560s and 1938 to present. Dry springs occurred during AD 1430s–1510s, 1640s–1730s and 1780s–1890s most of which generally coincided with cold intervals of the Little Ice Age (LIA) on the plateau, suggesting that the LIA climate on the northeastern Qinghai-Tibetan Plateau might be characterized by three episodes of dry spring and cold autumn. The relatively driest spring and probably coldest autumn occurred in AD 1710s–1720s, 1787–1797, 1815–1824, 1869–1879 and 1891–1895. The extreme drought in AD 1787–1797 might result from little monsoon precipitation due to the failure of Asian monsoon in this period. The tree-ring data produced in this study contribute to the spatial expansion of proxy climate records for the Qinghai-Tibetan Plateau.  相似文献   

4.
May–July Standardized Precipitation Index (SPI) for the land area of most of Turkey and some adjoining regions are reconstructed from tree rings for the period 1251–1998. The reconstruction was developed from principal components analysis (PCA) of four Juniperus excelsa chronologies from southwestern and south-central Turkey and is based on reliable and replicable statistical relationships between climate and tree ring growth. The SPI reconstruction shows climate variability on both interannual and interdecadal time scales. The longest period of consecutive drought years in the reconstruction (SPI threshold ≤−1) is 2 yr. These occur in 1607–1608, 1675–1676, and 1907–1908. There are five wet events (SPI threshold ≥+1) of two consecutive years each (1330–1331, 1428–1429, 1503–1504, 1629–1630, and 1913–1914). A 5-yr moving average of the reconstructed SPI shows that two sustained drought periods occurred from the mid to late 1300s and the early to mid 1900s. Both episodes are characterized by low variability.  相似文献   

5.
Carbon storage and catchment hydrology are influenced both by land use changes and climatic changes, but there are few studies addressing both responses under both driving forces. We investigated the relative importance of climate change vs. land use change for four Alpine catchments using the LPJ-GUESS model. Two scenarios of grassland management were calibrated based on the more detailed model PROGRASS. The simulations until 2100 show that only reforestation could lead to an increase of carbon storage under climatic change, whereby a cessation of carbon accumulation occurred in all catchments after 2050. The initial increase in carbon storage was attributable mainly to forest re-growth on abandoned land, whereas the stagnation and decline in the second half of the century was mainly driven by climate change. If land was used more intensively, i.e. as grassland, litter input to the soil decreased due to harvesting, resulting in a decline of soil carbon storage (1.2−2.9 kg C m–2) that was larger than the climate-induced change (0.8–1.4 kg C m−2). Land use change influenced transpiration both directly and in interaction with climate change. The response of forested catchments diverged with climatic change (11–40 mm increase in AET), reflecting the differences in forest age, topography and water holding capacity within and between catchments. For grass-dominated catchments, however, transpiration responded in a similar manner to climate change (light management: 23–32 mm AET decrease, heavy management: 29–44 mm AET decrease), likely because grassroots are concentrated in the uppermost soil layers. Both the water and the carbon cycle were more strongly influenced by land use compared to climatic changes, as land use had not only a direct effect on carbon storage and transpiration, but also an indirect effect by modifying the climate change response of transpiration and carbon flux in the catchments. For the carbon cycle, climate change led to a cessation of the catchment response (sink/source strength is limited), whereas for the water cycle, the effect of land use change remains evident throughout the simulation period (changes in evapotranspiration do not attenuate). Thus we conclude that management will have a large potential to influence the carbon and water cycle, which needs to be considered in management planning as well as in climate and hydrological modelling.  相似文献   

6.
Herein, we calculate an aridity index, D, based on annual precipitation, P, and measured evaporation, PET, from φ20 evaporation pans: D = P/PET. The data were collected between 1951 and 1999 at 295 meteorological stations operated by the Chinese Meteorological Administration. On the basis of the index, three climatic regions are recognized in China: an arid zone in which D ≤ 0.20, a semi-arid zone with 0.20 < D ≤ 0.50, and a humid zone in which D > 0.50. Temporal fluctuations of the climate boundaries are substantial, and differ significantly regionally, and have the shifting features in the same direction in some areas and in opposite directions in others over the past 50 years. The semiarid zone lies along the border of the monsoon, and is thus highly susceptible to environmental change in China. In the period from the late 1960s to the early 1970s, the climate became drier in most parts of the regions of northern China. Moreover, the drought has an increasing trend. The fluctuations of climatic boundaries and the alternation from drier to wetter climate have substantial inter-decadal features. The main factors affecting the fluctuations in climate boundaries are the East Asian summer monsoon, the Indian Monsoon, the plateau monsoon in Tibetan Plateau, the westerly circulation, and the West Pacific Subtropical High. The different types of circulation and the strength of these circulations result in regional and temporal differences in aridity. Inter-decadal variations of the dry- and wet climate boundary fluctuations and of the arid and humid climate result from the inter-decadal changes of East Asian summer monsoon, Indian Monsoon, plateau monsoon, westerly circulation, and West Pacific Subtropical High. The anomalous general atmospheric circulation in the Northern Hemisphere during the late 1960s to the early 1970s is the cause of the remarkable change in arid and humid climate in China. Major natural disasters produced by arid and humid change are drought and flood disasters. They cause enormous economic losses to agriculture and industry. Furthermore, the loss has a substantial increasing trend. More than 110 cities are in severe water-deficiency conditions because of shortage of water resource in China. Drought has been a limiting factor of economic and social development in China.  相似文献   

7.
As a result of climate change and unsustainable land use management in the recent past, droughts have become one of the most devastating climatic hazards whose impacts may prolong from months to years. This study presents analysis of droughts for two major cropping seasons, i.e., Kharif (May–September) and Rabi (October–April), over the Potwar Plateau of Pakistan. The analysis is performed using various datasets viz. observational, reanalysis, and Regional Climate Models (RCMs), for the past (1981–2010) and future (2011–2100) time periods. The following two methods for the identification of dry and wet years, also referred to as drought and wetness, are applied: (1) the percentile rank approach and (2) the drought indices, Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI). Future projections of droughts are investigated using RCM (RegCM4.4 and RCA4) outputs from CORDEX South Asia domain under two Representative Concentration Pathway (RCP) scenarios, RCP4.5 and RCP8.5. Generally, the indices show non-significant decreasing trends of drought severity in the recent past for all cases; however, significant increasing trends are observed for annual (0.006) and Kharif (0.007) cases under RCP4.5 scenario. The analysis of large-scale atmospheric dynamics suggests the significant role of low-level geopotential height anomalies over Tibetan Plateau (northwest of Pakistan) during Kharif (Rabi) season in controlling drought occurrence by transporting moisture from the Bay of Bengal (Arabian Sea). Moreover, composites of vertically integrated moisture transport, moisture flux convergence/divergence, and precipitable water anomalies show their marked contribution in maintaining the drought/wetness conditions over the Potwar region.  相似文献   

8.
Summary The similarities in time series recorded at sites which are distant from each other are called teleconnections. In this paper, the loss of such correlations with inter-site distance was investigated for both climatic and dendrochronological data sets, with 70 tree-ring chronologies. A dense network of weather stations was studied in the southeastern French Alps, covering complex climatic gradients over three departments. 78 sites with precipitation data (with a total of 48 756 monthly values), and 48 stations that recorded temperature (with 20 722 monthly mean values) were analysed. In the same area, four coniferous species (mountain pine and stone pine, European larch and Norway spruce) provided 37 ring-width chronologies for high elevation sites near the timberline. Both silver fir and Norway spruce provided a second tree-ring chronology network for 33 different sites at lower elevations. The teleconnections between precipitation series were found to be higher than those observed for temperature over short distances, but the maximum threshold distance was lower (193 km) compared to a positive correlation distance that exceeds 500 km for temperature. The maximum temperatures had stronger teleconnections than minimum values (522 km versus 476 km), since the latter are linked more with other site factors, such as slope, exposure and local topography. As expected, the tree-ring chronologies showed weaker teleconnections than the climatic series, with a threshold distance of 374 km obtained for all high elevation forests. The coniferous species with high intra-specific teleconnections over large distances were, in decreasing importance, Pinus uncinata (> 500 km), Picea abies (477 km), Pinus cembra (over 254 km) and Larix decidua (over 189 km only). The two former species showed the highest intra-specific correlations (with mean correlation R=0.625 and 0.666). The dendrochronological teleconnections were found to have a extent lesser for trees species that depend on rainfall (such as larch, and stone pine). They are enhanced, however, for temperature sensitive species such as spruce and mountain pine (a drought resistant tree). Therefore, these two latter conifers appear to be especially suitable for climatic reconstruction over large distances in mountainous areas. However, teleconnections within silver fir (Abies alba) and spruce chronologies were sharply reduced (over 131 km and 135 km) in lower elevation forests, underlining the interest of timberline forests for dendroclimatology. A better knowledge of the spatial correlations in climatic series and ring-width data may enable the optimisation of weather station networks. It may also permit a better choice of weather stations used for dendroclimatology, either for tree-ring and climate relationship calibration or for climate reconstructions. In dendrochronology, wood dating also requires the knowledge of to what extent remote ring-width chronologies can be used. Received September 11, 2000 Revised March 26, 2001  相似文献   

9.
Most studies on the impact of climate change on regional water resources focus on long-term average flows or mean water availability, and they rarely take the effects of altered human water use into account. When analyzing extreme events such as floods and droughts, the assessments are typically confined to smaller areas and case studies. At the same time it is acknowledged that climate change may severely alter the risk of hydrological extremes over large regional scales, and that human water use will put additional pressure on future water resources. In an attempt to bridge these various aspects, this paper presents a first-time continental, integrated analysis of possible impacts of global change (here defined as climate and water use change) on future flood and drought frequencies for the selected study area of Europe. The global integrated water model WaterGAP is evaluated regarding its capability to simulate high and low-flow regimes and is then applied to calculate relative changes in flood and drought frequencies. The results indicate large ‘critical regions’ for which significant changes in flood or drought risks are expected under the proposed global change scenarios. The regions most prone to a rise in flood frequencies are northern to northeastern Europe, while southern and southeastern Europe show significant increases in drought frequencies. In the critical regions, events with an intensity of today's 100-year floods and droughts may recur every 10–50 years by the 2070s. Though interim and preliminary, and despite the inherent uncertainties in the presented approach, the results underpin the importance of developing mitigation and adaptation strategies for global change impacts on a continental scale.  相似文献   

10.
Recent changes in dry spell and extreme rainfall events in Ethiopia   总被引:2,自引:1,他引:2  
Summary This paper assesses recent changes in extremes of seasonal rainfall in Ethiopia based on daily rainfall data for 11 key stations over the period 1965–2002. The seasons considered are Kiremt (‘main rains’, June–September) and Belg (‘small rains’, February/March–May). The Mann-Kendall and linear regression trend tests show decreasing trends in the Kiremt and the Belg extreme intensity and maximum consecutive 5-day rains over eastern, southwestern and southern parts of Ethiopia whereas no trends are found in the remaining part of Ethiopia. In general, no trends are found in the yearly maximum length of Kiremt and Belg dry spells (days with rainfall below 1 mm) over Ethiopia.  相似文献   

11.
Jie Fei  Jie Zhou 《Climatic change》2006,76(3-4):443-457
Based on Chinese historical sources, the possible climatic impact in China of the prolonged Eldgjá eruption starting around 934 AD was investigated. An extremely hot summer was reported in 934 AD; hundreds of people died of the intense heat of this summer in Luoyang, the capital of the Later Tang Empire (923–936 AD). Snowless (and possibly also mild) winters probably occurred successively following the Eldgjá eruption until 938 AD. In 939 AD, cold weather set in abruptly and lasted for about 3 years; whereas peak cooling occurred in 939AD. In the summer of 939 AD, it snowed in the southeast of the Inner Mongolia Plateau (about 40–44N, 113–123E). From 939AD to 941 AD, hard winters occurred successively in China. Worse, unprecedented drought and plague of locusts broke out in 942 AD and persisted in 943 AD. More than several hundred thousand people were starved to death. This catastrophe was at least partly responsible for the collapse of the Later Jin Dynasty in China. By comparison with the tree-ring evidence and uncovered European historical evidence, the spatial response to the Eldgjá eruption appeared to be complex, whereas hemispheric or global cooling occurred in 939–942 AD.  相似文献   

12.
13.
Here we present a multi-proxy paleolimnological record from a closed-basin lake (Ebinur Lake) in northwestern China to investigate climate change in this arid region during the last 1,500 years. The 120-cm long sediment core was dated by AMS radiocarbon and 210Pb methods. The fine-grained clay sediments contain 3–17% organic matter (OM) and 9–31% carbonate, and are interrupted by multiple sand and silt layers. These sand/silt layers, having consistently low OM, were found at 700–800, 1000–1100, 1300–1400, and 1700–1750 a.d., with a time spacing of 300–400 years. We interpret that the low OM sand/silt layers were deposited during higher lake levels caused by increased river inflow from the surrounding mountains during wet climate intervals. This interpretation is supported by concurrent decreases in δ 18O and δ 13C of bulk carbonate and in carbonate content. Wet climate intervals at 700–800 a.d. and at 1700–1750 a.d. also correlate with elevated snow accumulation and low δ 18O from Guliya ice core on the NW Tibetan Plateau, both regions strongly influenced by the westerlies. This approximate 400-year periodicity of wet–dry climate oscillations appear to correlate with solar activity as shown by atmosphere 14C concentration and with paleo-moisture records in interior North America. Our results suggest that solar activities might have played a significant role in driving wet–dry climate oscillations at centennial scales in the interior of Eurasian continent.  相似文献   

14.
Eminent climate scientists have come to consensus that human influences are significant contributors to modern global climate change. This study examines coverage of anthropogenic climate change in United States (U.S.) network television news – ABC World News Tonight, CBS Evening News and NBC Nightly News – and focuses on the application of the journalistic norm of ‘balance’ in coverage from 1995 through 2004. This study also examines CNN WorldView, CNN Wolf Blitzer Reports and CNN NewsNight as illustrations of cable news coverage. Through quantitative content analysis, results show that 70% of U.S. television news segments have provided ‘balanced’ coverage regarding anthropogenic contributions to climate change vis-à-vis natural radiative forcing, and there has been a significant difference between this television coverage and scientific consensus regarding anthropogenic climate change from 1996 through 2004. Thus, by way of the institutionalized journalistic norm of balanced reporting, United States television news coverage has perpetrated an informational bias by significantly diverging from the consensus view in climate science that humans contribute to climate change. Troubles in translating this consensus in climate science have led to the appearance of amplified uncertainty and debate, also then permeating public and policy discourse.  相似文献   

15.
Climate change,the monsoon,and rice yield in India   总被引:4,自引:1,他引:3  
Recent research indicates that monsoon rainfall became less frequent but more intense in India during the latter half of the Twentieth Century, thus increasing the risk of drought and flood damage to the country’s wet-season (kharif) rice crop. Our statistical analysis of state-level Indian data confirms that drought and extreme rainfall negatively affected rice yield (harvest per hectare) in predominantly rainfed areas during 1966–2002, with drought having a much greater impact than extreme rainfall. Using Monte Carlo simulation, we find that yield would have been 1.7% higher on average if monsoon characteristics, especially drought frequency, had not changed since 1960. Yield would have received an additional boost of nearly 4% if two other meteorological changes (warmer nights and lower rainfall at the end of the growing season) had not occurred. In combination, these changes would have increased cumulative harvest during 1966–2002 by an amount equivalent to about a fifth of the increase caused by improvements in farming technology. Climate change has evidently already negatively affected India’s hundreds of millions of rice producers and consumers.  相似文献   

16.
Summary The crop growth model CERES-Maize is used to estimate the direct (through enhanced fertilisation effect of ambient CO2) and indirect (through changed climate conditions) effects of increased concentration of atmospheric CO2 on maize yields. The analysis is based on multi-year crop model simulations run with daily weather series obtained alternatively by a direct modification of observed weather series and by a stochastic weather generator. The crop model is run in two settings: stressed yields are simulated in water and nutrient limited conditions, potential yields in water and nutrient unlimited conditions. The climate change scenario was constructed using the output from the ECHAM3/T42 model (temperature), regression relationships between temperature and solar radiation, and an expert judgement (precipitation). Results: (i) After omitting the two most extreme misfits, the standard error between the observed and modelled yields is 11%. (ii) The direct effect of doubled CO2: The stressed yields would increase by 36–41% in the present climate and by 61–66% in the 2 × CO2 climate. The potential yields would increase only by 9–10% as the improved water use efficiency does not apply. (iii) The indirect effect of doubled CO2: The stressed yields would decrease by 27–29% (14–16%) at present (doubled) ambient CO2 concentration. The increased temperature shortens the phenological phases and does not allow for the optimal development of the crop. The simultaneous decrease of precipitation and increase of temperature and solar radiation deepen the water stress, thereby reducing the yields. The reduction of the potential yields is significantly smaller as the effect of the increased water stress does not apply. (iv) If both direct and indirect effects of doubled CO2 are considered, the stressed yields should increase by 17–18%, and the potential yields by 5–14%. (v) The decrease of the stressed yields due to the indirect effect may be reduced by applying earlier planting dates. Received March 9, 2001 Revised September 25, 2001  相似文献   

17.
Using unprecedented catalogues of past severe drought data for the Yucatan Peninsula between 1502 and 1900 coming from historical written documentation, we identified five conspicuous time lapses with no droughts between 1577–1647, 1662–1724, 1728–1764, 1774–1799 and 1855–1880, as well as time epochs with most frequent droughts between 1800 and 1850. Moreover, the most prominent periodicity of the historical drought time series was that of ∼40 years. Using the Palmer Drought Severity Index for the Yucatan Peninsula for the period 1921–1987 we found prominent negative phases between ∼1942–1946 and 1949–1952, 1923–1924, 1928–1929, 1935–1936, 1962–1963, 1971–1972 and 1986–1987. Two prominent periodicities clearly appear at ∼5 and 10 years. Most modern and historical severe droughts lasted 1 year, and share a quasi-decadal frequency. Also, in the first 66 years of the twentieth century the frequency of occurrence of severe drought has been lower compared with the nineteenth century. Some of the major effects and impacts of the most severe droughts in the Yucatan region are examined. We also studied the relation between historical and modern droughts and several large scale climate phenomena represented by the Atlantic Multidecadal Oscillation (AMO) and the Southern Oscillation Index (SOI). Our results indicate that historical droughts and the cold phase of the AMO coincide, while the influence of the SOI is less clear. The strongest coherence between historical droughts and AMO occurred at periodicities of ∼40 years. For modern droughts the coherence of a drought indicator (the Palmer Drought Severity Index) is similar with AMO and SOI, although it seems more sustained with the AMO. They are strongest at ∼10 years and very clearly with the AMO cold phase. Concerning the solar activity proxies and historical droughts, the coherence with a record of beryllium isotope Be10, which is a good proxy of cosmic rays, is higher than with Total Solar Irradiance. We notice that the strongest coherence between historical droughts and Be10 occurs at periods ∼60–64 years. When studying modern droughts and solar activity, frequencies of ∼8 years appear, and the coherences are similar for both sunspots and cosmic rays. Comparing natural terrestrial and solar phenomena, we found that the most sustained and strongest modulation of historical drought occurrence is at ∼60–64 years and is between the historical drought series and the solar proxy Be10. For modern droughts we notice that the coherence is similar among AMO, SOI and the solar indices. We can conclude that the sea surface temperatures (AMO) and solar activity leave their signal in terms of severe droughts in the Maya lands, however in the long term, the influence of the SOI on this type of phenomenon is less clear.  相似文献   

18.
Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) in the U.S. Central Great Plains (Akron, Colorado) were simulated using the CERES V4.0 crop modules in RZWQM2. The CC scenarios for CO2, temperature and precipitation were based on a synthesis of Intergovernmental Panel on Climate Change (IPCC 2007) projections for Colorado. The CC for years 2025, 2050, 2075, and 2100 (CC projection years) were super-imposed on measured baseline climate data for 15–17 years collected during the long-term WF and WCF (1992–2008), and WCM (1994–2008) experiments at the location to provide inter-annual variability. For all the CC projection years, a decline in simulated wheat yield and an increase in actual transpiration were observed, but compared to the baseline these changes were not significant (p > 0.05) in all cases but one. However, corn and proso millet yields in all rotations and projection years declined significantly (p < 0.05), which resulted in decreased transpiration. Overall, the projected negative effects of rising temperatures on crop production dominated over any positive impacts of atmospheric CO2 increases in these dryland cropping systems. Simulated adaptation via changes in planting dates did not mitigate the yield losses of the crops significantly. However, the no-tillage maintained higher wheat yields than the conventional tillage in the WF rotation to year 2075. Possible effects of historical CO2 increases during the past century (from 300 to 380 ppm) on crop yields were also simulated using 96 years of measured climate data (1912–2008) at the location. On average the CO2 increase enhanced wheat yields by about 30%, and millet yields by about 17%, with no significant changes in corn yields.  相似文献   

19.
We use diagnostic studies of off-line variable infiltration capacity (VIC) model simulations of terrestrial water budgets and 21st-century climate change simulations using the parallel climate model (PCM) to estimate the time required to detect predicted changes in annual precipitation (P), evapotranspiration (E), and discharge (Q) in three sub-basins of the Mississippi River Basin. Time series lengths on the order of 50–350 years are required to detect plausible P, E, and Q trends in the Missouri, Ohio, and Upper Mississippi River basins. Approximately 80–160, 50, and 140–350 years, respectively, are needed to detect the predicted P, E, and Q trends with a high degree of statistical confidence. These detection time estimates are based on conservative statistical criteria (α = 0.05 and β = 0.10) associated with low probability of both detecting a trend when it is not occurring (Type I error) and not detecting a trend when it is occurring (Type II error). The long detection times suggest that global-warming-induced changes in annual basin-wide hydro-climatic variables that may already be occurring in the three basins probably cannot yet be detected at this level of confidence. Furthermore, changes for some variables that may occur within the 21st century might not be detectable for many decades or until the following century – this may or may not be the case for individual recording station data. The long detection times for streamflow result from comparatively low signal-to-noise ratios in the annual time series. Finally, initial estimates suggest that faster detection of acceleration in the hydrological cycle may be possible using seasonal time series of appropriate hydro-climatic variables, rather than annual time series.  相似文献   

20.
In an attempt to contribute to studies on global climatic change, 110 years of temperature data for Firenze, Italy, were analysed. Means and trends of annual and monthly temperatures (minimum, maximum and average) were analysed at three different time scales: short (20 years), medium (36–38 years) and long (55 years). Comparative changes in extreme events viz. frosts in the first and second parts of the 20th century were also analysed. At short time scales, climatic change was found in minimum and average temperatures but not in maximum temperatures. At all three time scales, the annual means of minimum, maximum and average temperatures were significantly warmer in the last part than in the early part of the 20th century. The monthly mean temperatures showed significant warming of winter months. Over the last four decades, minimum, maximum and average temperatures had warmed by 0.4, 0.43 and 0.4 ∘C per decade, respectively, and if this trend continues, they will be warmer by 4 ∘C by the end of the 21st century. The significant decline in days with subzero temperatures and frosts in the last half of the 20th century, further substantiated the occurrence of climate change at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号