首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

2.
The Eastern Iberian Central System has abundant ore showings hosted by a wide variety of hydrothermal rocks; they include Sn-W, Fe and Zn-(W) calcic and magnesian skarns, shear zone- and episyenite-hosted Cu-Zn-Sn-W orebodies, Cu-W-Sn greisens and W-(Sn), base metal and fluorite-barite veins. Systematic dating and fluid inclusion studies show that they can be grouped into several hydrothermal episodes related with the waning Variscan orogeny. The first event was at about 295 Ma followed by younger pulses associated with Early Alpine rifting and extension and dated near 277, 150 and 100 to 20 Ma, respectively (events II–IV). The δ18O-δD and δ34S studies of hydrothermal rocks have elucidated the hydrological evolution of these systems. The event I fluids are of mixed origin. They are metamorphic fluids (H2O-CO2-CH4-NaCl; δ18O=4.7 to 9.3‰; δD ab.−34‰) related to W-(Sn) veins and modified meteoric waters in the deep magnesian Sn-W skarns (H2O-NaCl, 4.5–6.4 wt% NaCl eq.; δ18O=7.3–7.8‰; δD=−77 to −74‰) and epizonal shallow calcic Zn-(W) and Fe skarns (H2O-NaCl, <8 wt% NaCl eq.; δ18O=−0.4 to 3.4‰; δD=−75 to −58‰). They were probably formed by local hydrothermal cells that were spatially and temporally related to the youngest Variscan granites, the metals precipitating by fluid unmixing and fluid-rock reactions. The minor influence of magmatic fluids confirms that the intrusion of these granites was essentially water-undersaturated, as most of the hydrothermal fluids were external to the igneous rocks. The fluids involved in the younger hydrothermal systems (events II–III) are very similar. The waters involved in the formation of episyenites, chlorite-rich greisens, retrograde skarns and phyllic and chlorite-rich alterations in the shear zones show no major chemical or isotopic differences. Interaction of the hydrothermal fluids with the host rocks was the main mechanism of ore formation. The composition (H2O-NaCl fluids with original salinities below 6.2 wt% NaCl eq.) and the δ18O (−4.6 to 6.3‰) and δD (−51 to −40‰) values are consistent with a meteoric origin, with a δ18O-shift caused by the interaction with the, mostly igneous, host rocks. These fluids circulated within regional-scale convective cells and were then channelled along major crustal discontinuities. In these shear zones the more easily altered minerals such as feldspars, actinolite and chlorite had their δ18O signatures overprinted by low temperature younger events while the quartz inherited the original signature. In the shallower portions of the hydrothermal systems, basement-cover fluorite-barite-base metal veins formed by mixing of these deep fluids with downwards percolating brines. These brines are also interpreted as of meteoric origin (δ18O< ≈ −4‰; δD=−65 to −36‰) that leached the solutes (salinity >14 wt% NaCl eq.) from evaporites hosted in the post-Variscan sequence. The δD values are very similar to most of those recorded by Kelly and Rye in Panasqueira and confirm that the Upper Paleozoic meteoric waters in central Iberia had very negative δD values (≤−52‰) whereas those of Early Mesozoic age ranged between −65 and −36‰. Received: 9 June 1999 / Accepted: 19 January 2000  相似文献   

3.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

4.
The Dongsheng sandstone-type uranium deposit is one of the large-sized sandstone-type uranium deposits discovered in the northern part of the Ordos Basin of China in recent years. Geochemical characteristics of the Dongsheng uranium deposit are significantly different from those of the typical interlayered oxidized sandstone-type uranium ore deposits in the region of Middle Asia. Fluid inclusion studies of the uranium deposit showed that the uranium ore-forming temperatures are within the range of 150–160℃. Their 3He/4He ratios are within the range of 0.02–1.00 R/Ra, about 5–40 times those of the crust. Their 40Ar/36Ar ratios vary from 584 to 1243, much higher than the values of atmospheric argon. The δ18OH2O and δD values of fluid inclusions from the uranium deposit are -3.0‰– -8.75‰ and -55.8‰– -71.3‰, respectively, reflecting the characteristics of mixed fluid of meteoric water and magmatic water. The δ18OH2O and δD values of kaolinite layer at the bottom of the uranium ore deposit are 6.1‰ and -77‰, respectively, showing the characteristics of magmatic water. The δ13CV-PDB and δ18OH2O values of calcite veins in uranium ores are -8.0‰ and 5.76‰, respectively, showing the characteristics of mantle source. Geochemical characteristics of fluid inclusions indicated that the ore-formation fluid for the Dongsheng uranium deposit was a mixed fluid of meteoric water and deep-source fluid from the crust. It was proposed that the Jurassic-Cretaceous U-rich metamorphic rocks and granites widespread in the northern uplift area of the Ordos Basin had been weathered and denudated and the ore-forming elements, mainly uranium, were transported by meteoric waters to the Dongsheng region, where uranium ores were formed. Tectonothermal events and magmatic activities in the Ordos Basin during the Mesozoic made fluids in the deep interior and oil/gas at shallow levels upwarp along the fault zone and activated fractures, filling into U-bearing clastic sandstones, thus providing necessary energy for the formation of uranium ores.  相似文献   

5.
The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (∼2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW–SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18–33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310–335°C) values of +6.2 to +8.4‰ and −19 to −80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from −14.2 to −15.7‰ in carbonates; it is −17.6‰ in fluid inclusion CO2 and −23.6‰ in graphite from the host rock. The δ34S values of pyrite are −2.6 to −7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site of deposition and sulfur isotopes indicate some oxidation of the originally reduced fluid. The deposition of gold is interpreted to have occurred mainly in response to phase separation and fluid-rock interactions such as CO2 removal and desulfidation reactions that provoked variations in the fluid pH and redox conditions.  相似文献   

6.
Summary The intrusion of the Lower Permian Los Santos-Valdelacasa granitoids in the Los Santos area caused contact metamorphism of Later Vendian-Lower Cambrian metasediments. High grade mineral assemblages are confined to a 7 km wide contact aureole. Contact metamorphism was accompanied by intense metasomatism and development of skarns, and it generated the following mineral assemblages: diopside, forsterite, phlogopite (±clintonite) and humites and spinel-bearing assemblages or diopside, grossular, vesuvianite ± wollastonite in the marbles, depending on the bulk rock composition. Cordierite, K-feldspar, andalusite and, locally, sillimanite appear in the metapelitic rocks. Mineral assemblages of marbles and hornfelses indicate pressure conditions ranging from 0.2 to 0.25 GPa and maximum temperatures between 630 and 640 °C. 13C and 18O depletions in calcite marbles are consistent with hydrothermal fluid–rock interaction during metamorphism. Calcites are depleted in both 18O (δ18O = 12.74‰) and 13C (δ13C = −5.47‰) relative to dolomite of unmetamorphosed dolostone (δ18O = 20.79‰ and δ13C = −1.52‰). The δ13C variation can be interpreted in terms of Rayleigh distillation during continuous CO2 fluid removal from the carbonates. The δ18O values reflect hydrothermal exchange with an externally derived fluid. Microthermometric analyses of fluid inclusions from vesuvianite indicate that the fluid was water dominated with minor contents of CO2 (±CH4 ± N2) suggesting a metamorphic origin. Fluorine-bearing minerals such as chondrodite, norbergite and F-rich phlogopite indicate that contact metamorphism was accompanied by fluorine metasomatism. Metasomatism was more intense in the inner-central portion of the contact aureole, where access to fluids was extensive. The irregular geometry of the contact with small aplitic intrusives between the metasediments and the Variscan granitoids probably served as pathways for fluid circulation.  相似文献   

7.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

8.
The Tuwaishan, Baoban, Erjia, Bumo and other gold deposits in western Hainan occur in Precambrian metamorphic clastic rocks and are structurally controlled by the Gezhen shear zone. Fluid inclusion studies have been carried out of the gold deposits mentioned above. The homogenization temperatures of the whole fluid inclusion population range from 140°C to 370°C, indicating that gold was precipitated mainly at 240–250°C. The salinities are within the range of 2.0–9.2 wt% NaCl equiv. and the pressure of formation of the deposits was estimated at about 270×105−500×105Pa, corresponding to a depth of about 1.1–2.0 km under lithostatic confinement. Chemical studies show that the ore fluid is of the Na+(K+)-Ca2+-Cl(F) type. Theδ 18O andδD values of the fluid vary from −2.7‰- +4.4‰ and −50‰–−87‰ Evidence developed from fluid inclusions and geological setting indicates that the ore fluid was a mixture of magmatic and meteoric-hydrothermal waters. Changes in chemical composition andδ 18O andδD of fluid inclusions from one ore field to another seem to be related with regional tectonism, metamorphism and magmatism.  相似文献   

9.
The strongly deformed Middle Devonian-Lower Carboniferous metasedimentary-volcanic successions of the Trevone Basin (SW England) contain stratiform and Pb-Sb vein deposits that reveal a wide variation in δ34S and δ13C, reflecting mineral deposition during diagenesis, regional metamorphism and basin inversion. Pre-Variscan metasedimentary sulphide (δ34S=−33.7 to −26.7‰) and metabasite sulphide (δ34S=+4.0 to +10.8‰) suggest two accessible source reservoirs for sulphur which were available for Sb-As-(Au) and Pb-Zn-(Ag) mineralisation (δ34S=−3.3 to −15.0‰) during late Variscan semiductile-brittle shear. On the basis of pressure-corrected fluid inclusion temperatures, the calculated composition of fluid sulphur reveals an enrichment in δ34SH2S in the individual vein parageneses and depletion of the fluid sulphur reservoir during evolution of the vein systems. Carbonates in the same veins are partly contemporaneous with Pb-Sb mineralisation and late tensional deformation; their isotopic composition (δ13C=−3.2 and −13.4‰) appears strongly influenced by the host formation. Fluid inclusions in post-tensional quartz show a marked reduction in CO2, suggesting that episodes of CO2 degassing in response to punctuated reductions in pressure during uplift and brittle deformation was an important mechanism for vein carbonation. An origin for the Pb-Sb mineralisation involving local remobilisation of sulphur from the mixed metasedimentary-volcanic succession is probably inseparable from processes connected with Variscan metamorphism and deformation. Although the N Cornish Variscan deformation is part of a spatially large-scale event, the isotopic evidence suggests compartmentalisation of sulphur and carbon isotope features and short distances between sources and sinks. Received: 15 August 1998 / Accepted: 8 October 1999  相似文献   

10.
Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the mylonite series rocks: plagioclases were sericitized and theAn values declined rapidly, finally all of them were transformed to albites; dark minerals were gradually replaced by chlorites (mostly ripidolite). Meanwhile, large-scale and extensive carbonation also took place, and the carbonatization minerals varied from calcite to dolomite and ankerite with the development of deformation. The δ13C values of the carbonates are −3.0‰ – −5.6‰ suggesting a deep source of carbon. The ductile deformation is nearly an iso-volume one (f v≈1). With the enhancement of shear deformation, SiO2 in the two mylonite series rocks was depleted, while volatile components suchs as CO2 and H2O, and some ore-forming elements such as Au and S were obviously enriched. But it is noted that the enrichment of Au in both the mylonite series rocks did not reach the paygrade of gold. The released SiO2 from water-rock interactions occurred in the form of colloids and absorbed gold in the fluid. When brittle structures were formed locally in the ductile shear zone, the ore-forming fluids migrated to the structures along microfractures, and preciptated auriferous quartz because of reduction of pressure and temperature. Fluid inclusion study shows that the temperature and pressure of the ore-forming fluids are 245–292°C and 95.4–131.7 MPa respectively; the salinity is 12.88–16.33wt% NaCl; the fluid-phase is rich in Ca2+, K+, Na+, Mg2+, F and Cl, while the gaseous phases are rich in CO2 and CH4. The δD and δ18O, values of the ore-forming fluid are −84.48‰ – −91.73‰ and −0.247‰ – +2.715‰ respectively, suggesting that the fluid is composed predominantly of meteoric water. This project is financially supported by the National Natural Science Foundation of China (No. 9488010).  相似文献   

11.
The Jinshan orogenic gold deposit is a world-class deposit hosted by a ductile shear zone caused by a transpressional terrane collision during Neoproterozoic time. Ore bodies at the deposit include laminated quartz veins and disseminated pyrite-bearing mylonite. Most quartz veins in the shear zone, with and without gold mineralization, were boudinaged during progressive shear deformation with three generations of boudinage structures produced at different stages of progressive deformation. Observations of ore-controlling structures at various scales indicate syn-deformational mineralization. Fluid inclusions from pyrite intergrown with auriferous quartz have 3He/4He ratios of 0.15–0.24 Ra and 40Ar/36Ar ratios 575–3,060. δ18Ofluid values calculated from quartz are 5.5–8.4‰, and δD values of fluid inclusions contained in quartz range between −61‰ and −75‰. The δ13C values of ankerite range from −5.0‰ to −4.2‰, and ankerite δ18O values from 4.4‰ to 8.0‰. The noble gas and stable isotope data suggest a predominant crustal source of ore fluids with less than 5% mantle component. Data also show that in situ fluids were generated locally by pervasive pressure solution, and that widespread dissolution seams acted as pathways of fluid flow, migration, and precipitation. The in situ fluids and fluids derived from deeper levels of the crust were focused by deformation and deformation structures at various scales through solution-dissolution creep, crack-seal slip, and cyclic fault-valve mechanisms during progressively localized deformation and gold mineralization.  相似文献   

12.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   

13.
The Rubian magnesite deposit (West Asturian—Leonese Zone, Iberian Variscan belt) is hosted by a 100-m-thick folded and metamorphosed Lower Cambrian carbonate/siliciclastic metasedimentary sequence—the Cándana Limestone Formation. It comprises upper (20-m thickness) and lower (17-m thickness) lens-shaped ore bodies separated by 55 m of slates and micaceous schists. The main (lower) magnesite ore body comprises a package of magnesite beds with dolomite-rich intercalations, sandwiched between slates and micaceous schists. In the upper ore body, the magnesite beds are thinner (centimetre scale mainly) and occur between slate beds. Mafic dolerite dykes intrude the mineralisation. The mineralisation passes eastwards into sequence of bedded dolostone (Buxan) and laminated to banded calcitic marble (Mao). These show significant Variscan extensional shearing or fold-related deformation, whereas neither Rubian dolomite nor magnesite show evidence of tectonic disturbance. This suggests that the dolomitisation and magnesite formation postdate the main Variscan deformation. In addition, the morphology of magnesite crystals and primary fluid inclusions indicate that magnesite is a neoformed hydrothermal mineral. Magnesite contains irregularly distributed dolomite inclusions (<50 μm) and these are interpreted as relics of a metasomatically replaced dolostone precursor. The total rare earth element (REE) contents of magnesite are very similar to those of Buxan dolostone but are depleted in light rare earth elements (LREE); heavy rare earth element concentrations are comparable. However, magnesite REE chondrite normalised profiles lack any characteristic anomaly indicative of marine environment. Compared with Mao calcite, magnesite is distinct in terms of both REE concentrations and patterns. Fluid inclusion studies show that the mineralising fluids were MgCl2–NaCl–CaCl2–H2O aqueous brines exhibiting highly variable salinities (3.3 to 29.5 wt.% salts). This may be the result of a combination of fluid mixing, migration of pulses of variable-salinity brines and/or local dissolution and replacement processes of the host dolostone. Fluid inclusion data and comparison with other N Iberian dolostone-hosted metasomatic deposits suggest that Rubian magnesite probably formed at temperatures between 160 and 200°C. This corresponds, at hydrostatic pressure (500 bar), to a depth of formation of ~~5 km. Mineralisation-related Rubian dolomite yields δ 18O values (δ 18O: 12.0–15.4‰, mean: 14.4±1.1‰) depleted by around 5‰ compared with barren Buxan dolomite (δ 18O: 17.1–20.2‰, mean: 19.4±1.0‰). This was interpreted to reflect an influx of 18O-depleted waters accompanied by a temperature increase in a fluid-dominated system. Overlapping calculated δ 18Ofluid values (~+5‰ at 200°C) for fluids in equilibrium with Rubian dolomite and magnesite show that they were formed by the same hydrothermal system at different temperatures. In terms of δ 13C values, Rubian dolomite (δ 13C: −1.4 to 1.9‰, mean: 0.4±1.3‰) and magnesite (δ 13C: −2.3 to 2.4‰, mean: 0.60±1.0‰) generally exhibit more negative δ 13C values compared with Buxan dolomite (δ 13C: −0.2 to 1.9‰, mean: 0.8±0.6‰) and Mao calcite (δ 13C: −0.3 to 1.5‰, mean: 0.6±0.6‰), indicating progressive modification to lower δ 13C values through interaction with hydrothermal fluids. 87Sr/86Sr ratios, calculated at 290 Ma, vary from 0.70849 to 0.70976 for the Mao calcite and from 0.70538 to 0.70880 for the Buxan dolostone. The 87Sr/86Sr ratios in Rubian magnesite are more radiogenic and range from 0.71123 to 0.71494. The combined δ 18O–δ 13C and 87Sr/86Sr data indicate that the magnesite-related fluids were modified basinal brines that have reacted and equilibrated with intercalated siliciclastic rocks. Magnesite formation is genetically linked to regional hydrothermal dolomitisation associated with lithospheric delamination, late-Variscan high heat flow and extensional tectonics in the NW Iberian Belt. A comparison with genetic models for the Puebla de Lillo talc deposits suggests that the formation of hydrothermal replacive magnesite at Rubian resulted from a metasomatic column with magnesite forming at higher fluid/rock ratios than dolomite. In this study, magnesite generation took place via the local reaction of hydrothermal dolostone with the same hydrothermal fluids in very high permeability zones at high fluid/rock ratios (e.g. faults). It was also possibly aided by additional heat from intrusive dykes or sub-cropping igneous bodies. This would locally raise isotherms enabling a transition from the dolomite stability field to that of magnesite.Editorial handling: F. Tornos  相似文献   

14.
The Assif El Mal Zn–Pb (Cu–Ag) vein system, located in the northern flank of the High Atlas of Marrakech (Morocco), is hosted in a Cambro-Ordovician volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of synorogenic to postorogenic Late Hercynian peraluminous granitoids has contact metamorphosed the host rocks giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, amphibole, chloritoid, and garnet. The Assif El Mal Zn–Pb (Cu–Ag) mineralization forms subvertical veins with ribbon, fault breccia, cockade, comb, and crack and seal textures. Two-phase liquid–vapor fluid inclusions that were trapped during several stages occur in quartz and sphalerite. Primary inclusion fluids exhibit T h mean values ranging from 104°C to 198°C. Final ice-melting temperatures range from −8.1°C to −12.8°C, corresponding to salinities of ∼15 wt.% NaCl equiv. Halogen data suggest that the salinity of the ore fluids was largely due to evaporation of seawater. Late secondary fluid inclusions have either Ca-rich, saline (26 wt.% NaCl equiv.), or very dilute (3.5 wt.% NaCl equiv.) compositions and homogenization temperatures ranging from 75°C to 150°C. The δ18O and δD fluid values suggest an isotopically heterogeneous fluid source involving mixing between connate seawater and black-shale-derived organic waters. Low δ13CVPDB values ranging from −7.5‰ to −7.7‰ indicate a homogeneous carbon source, possibly organic matter disseminated in black shale hosting the Zn–Pb (Cu–Ag) veins. The calculated δ34SH2S values for reduced sulfur (22.5‰ to 24.3‰) are most likely from reduction of SO4 2− in trapped seawater sulfate or evaporite in the host rocks. Reduction of sulfate probably occurred through thermochemical sulfate reduction in which organic matter was oxidized to produce CO2 which ultimately led to precipitation of saddle dolomite with isotopically light carbon. Lead isotope compositions are consistent with fluid–rock interaction that leached metals from the immediate Cambro-Ordovician volcaniclastic and metasedimentary sequence or from the underlying Paleo-Neoproterozoic crustal basement. Geological constraints suggest that the vein system of Assif El Mal formed during the Jurassic opening of the central Atlantic Ocean.  相似文献   

15.
Fluid inclusions in quartz veins of the High-Ardenne slate belt have preserved remnants of prograde and retrograde metamorphic fluids. These fluids were examined by petrography, microthermometry and Raman analysis to define the chemical and spatial evolution of the fluids that circulated through the metamorphic area of the High-Ardenne slate belt. The earliest fluid type was a mixed aqueous/gaseous fluid (H2O–NaCl–CO2–(CH4–N2)) occurring in growth zones and as isolated fluid inclusions in both the epizonal and anchizonal part of the metamorphic area. In the central part of the metamorphic area (epizone), in addition to this mixed aqueous/gaseous fluid, primary and isolated fluid inclusions are also filled with a purely gaseous fluid (CO2–N2–CH4). During the Variscan orogeny, the chemical composition of gaseous fluids circulating through the Lower Devonian rocks in the epizonal part of the slate belt, evolved from an earlier CO2–CH4–N2 composition to a later composition enriched in N2. Finally, a late, Variscan aqueous fluid system with a H2O–NaCl composition migrated through the Lower Devonian rocks. This latest type of fluid can be observed in and outside the epizonal metamorphic part of the High-Ardenne slate belt. The chemical composition of the fluids throughout the metamorphic area, shows a direct correlation with the metamorphic grade of the host rock. In general, the proportion of non-polar species (i.e. CO2, CH4, N2) with respect to water and the proportion of non-polar species other than CO2 increase with increasing metamorphic grade within the slate belt. In addition to this spatial evolution of the fluids, the temporal evolution of the gaseous fluids is indicative for a gradual maturation due to metamorphism in the central part of the basin. In addition to the maturity of the metamorphic fluids, the salinity of the aqueous fluids also shows a link with the metamorphic grade of the host-rock. For the earliest and latest fluid inclusions in the anchizonal part of the High-Ardenne slate belt the salinity varies respectively between 0 and 3.5 eq.wt% NaCl and between 0 and 2.7 eq.wt% NaCl, while in the epizonal part the salinity varies between 0.6 and 17 eq.wt% NaCl and between 3 and 10.6 eq.wt% for the earliest and latest aqueous fluid inclusions, respectively. Although high salinity fluids are often attributed to the original sedimentary setting, the increasing salinity of the fluids that circulated through the Lower Devonian rocks in the High-Ardenne slate belt can be directly attributed to regional metamorphism. More specifically the salinity of the primary fluid inclusions is related to hydrolysis reactions of Cl-bearing minerals during prograde metamorphism, while the salinity of the secondary fluid inclusions is rather related to hydration reactions during retrograde metamorphism. The temporal and spatial distribution of the fluids in the High-Ardenne slate belt are indicative for a closed fluid flow system present in the Lower Devonian rocks during burial and Variscan deformation, where fluids were in thermal and chemical equilibrium with the host rock. Such a closed fluid flow system is confirmed by stable isotope study of the veins and their adjacent host rock for which uniform δ180 values of both the veins and their host rock demonstrate a rock-buffered fluid flow system.  相似文献   

16.
More than 140 middle-small sized deposits or minerals are present in the Weishan-Yongping ore concentration area which is located in the southern part of a typical Lanping strike-slip and pull-apart basin. It has plenty of mineral resources derived from the collision between the Indian and Asian plates. The ore-forming fluid system in the Weishan-Yongping ore concentration area can be divided into two subsystems, namely, the Zijinshan subsystem and Gonglang arc subsystem. The ore-forming fluids of Cu, Co deposits in the Gonglang arc fluid subsystem have δD values between −83.8‰ and −69‰, δ18O values between 4.17‰ and 10.45‰, and δ13C values between −13.6‰ and 3.7‰, suggesting that the ore-forming fluids of Cu, Co deposits were derived mainly from magmatic water and partly from formation water. The ore-forming fluids of Au, Pb, Zn, Fe deposits in the Zijinshan subsystem have δD values between −117.4‰ and −76‰, δ18O values between 5.32‰ and 9.56‰, and Δ13C values between −10.07‰ and −1.5‰. The ore-forming fluids of Sb deposits have δD values between −95‰ and −78‰, δ18O values between 4.5‰ and 32.3‰, and Δ13C values between −26.4‰ and −1.9‰. Hence, the ore-forming fluids of the Zijinshan subsystem must have been derived mainly from formation water and partly from magmatic water. Affected by the collision between the Indian and Asian plates, ore-forming fluids in Weishan-Yongping basin migrated considerably from southwest to northeast. At first, the Gonglang arc subsystem with high temperature and high salinity was formed. With the development of the ore-forming fluids, the Zijinshan subsystem with lower temperature and lower salinity was subsequently formed. Translated from Mineral Deposits, 2006, 25(1): 60–70 [译自: 矿床地质]  相似文献   

17.
In the Mazowe area some 40 km NW of Harare in Zimbabwe, gold mineralization is hosted in a variety of lithologies of the Archean Harare-Bindura-Shamva greenstone belt, in structures related to the late Archean regional D2/3 event. Conspicuous mineralzogical differences exist between the mines; the mainly granodiorite-hosted workings at Mazowe mine are on pyrite-rich reefs, mines of the Bernheim group have metabasalt host rocks and are characterized by arsenopyrite-rich ores, and Stori's Golden Shaft and Alice mine, both in metabasalts, work sulfide-poor quartz veins. In contrast to the mineralogical diversity, near-identical fluid inventories were found at the different mines. Both H2O-CO2-CH4 fluids of low salinity, and highly saline fluids are present and are regarded to indicate fluid mixing during the formation of the deposits. Notably, these fluid compositions in the Mazowe gold field markedly contrast to ore fluids “typical” of Archean mesothermal gold deposits on other cratons. Stable isotope compositions of quartz from the various deposits (δ18O=10.8 to 13.2‰ SMOW), calcite (δ18O=9.5 to 11.9‰ SMOW and δ13C=−3.2 to −8.0‰ PDB), inclusion water (δD=−28 to −40‰ SMOW) and sulfides (δ34S=1.3 to 3.2‰ CDT) are uniform within the range typical for Archean lode gold deposits worldwide. The fluid and stable isotope compositions support the statement that the mineralization in the Mazowe gold field formed from relatively reduced fluids with a “metamorphic” signature during a single event of gold mineralization. Microthermometric data further indicate that the deposits formed in the PT range of 1.65–2.3 kbar and 250–380 °C. Ages obtained by using the Sm/Nd and Rb/Sr isotope systems on scheelites are 2604 ± 84 Ma for the mineralization at Stori's Golden Shaft mine, and 2.40 ± 0.20 Ga for Mazowe mine. The Archean age at Stori's is regarded as close to the true age of gold mineralization in the area, whereas the Proterozoic age at Mazowe mine probably reflects later resetting. Received: 30 September 1998 / Accepted: 17 August 1999  相似文献   

18.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.  相似文献   

20.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号