首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 944 毫秒
1.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   

2.
R. Krishnan  M. Sugi 《Climate Dynamics》2003,21(3-4):233-242
Recent studies have furnished evidence for interdecadal variability in the tropical Pacific Ocean. The importance of this phenomenon in causing persistent anomalies over different regions of the globe has drawn considerable attention in view of its relevance in climate assessment. Here, we examine multi-source climate records in order to identify possible signatures of this longer time scale variability on the Indian summer monsoon. The findings indicate a coherent inverse relationship between the inter-decadal fluctuations of Pacific Ocean sea surface temperature (SST) and the Indian monsoon rainfall during the last century. A warm (cold) phase of the Pacific interdecadal variability is characterized by a decrease (increase) in the monsoon rainfall and a corresponding increase (decrease) in the surface air temperature over the Indian subcontinent. This interdecadal relationship can also be confirmed from the teleconnection patterns evident from long-period sea level pressure (SLP) dataset. The SLP anomalies over South and Southeast Asia and the equatorial west Pacific are dynamically consistent in showing an out-of-phase pattern with the SLP anomalies over the tropical central-eastern Pacific. The remote influence of the Pacific interdecadal variability on the monsoon is shown to be associated with prominent signals in the tropical and southern Indian Ocean indicative of coherent inter-basin variability on decadal time scales. If indeed, the atmosphere–ocean coupling associated with the Pacific interdecadal variability is independent from that of the interannual El Niño-Southern Oscillation (ENSO), then the climate response should depend on the evolutionary characteristics of both the time scales. It is seen from our analysis that the Indian monsoon is more vulnerable to drought situations, when El Niño events occur during warm phases of the Pacific interdecadal variability. Conversely, wet monsoons are more likely to prevail, when La Niña events coincide during cold phases of the Pacific interdecadal variability.  相似文献   

3.
亚澳季风异常与ENSO准四年变化的联系分析   总被引:2,自引:0,他引:2  
分析了赤道地区纬向风的年际变化特征,以及亚澳季风与ENSO在各个位相的联系。结果表明:赤道纬向风变化与中东太平洋海温变化在准四年周期上是强烈耦合的;在El Eino期间东亚冬季风弱,夏季风强,而南亚夏季风弱,反之,在La Nina期间东亚冬季风强,夏季风弱,而南亚夏季风强;东亚地区的异常北风有利于西太平洋西风异常爆发,使得东太平洋海温升高,但只有随后在中东太平洋出现持续性西风异常,El Nino才能发展,其中来自太平洋中部的异常北风(并不是来自东亚大陆地区)和南太平洋中部的异常南风的辐合对中东太平洋出现持续性西风异常起重要的作用,尤其是澳大利亚东北部的季风异常的影响更为显。  相似文献   

4.
Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.  相似文献   

5.
The boreal summer intraseasonal oscillation (BSISO) has strong convective activity centers in Indian (I), Western North Pacific (WNP), and North American (NA) summer monsoon (SM) regions. The present study attempts to reveal BSISO teleconnection patterns associated with these dominant intraseasonal variability centers. During the active phase of ISM, a zonally elongated band of enhanced convection extends from India via the Bay of Bengal and Philippine Sea to tropical central Pacific with suppressed convection over the eastern Pacific near Mexico. The corresponding extratropical circulation anomalies occur along the waveguides generated by the North African-Asian jet and North Atlantic-North European jet. When the tropical convection strengthens over the WNPSM sector, a distinct great circle-like Rossby wave train emanates from the WNP to the western coast of United States (US) with an eastward shift of enhanced meridional circulation. In the active phase of NASM, large anticyclonic anomalies anchor over the western coast of US and eastern Canada and the global teleconnection pattern is similar to that during a break phase of the ISM. Examination of the evolution of the BSISO teleconnection reveals quasi-stationary patterns with preferred centers of teleconnection located at Europe, Russia, central Asia, East Asia, western US, and eastern US and Canada, respectively. Most centers are embedded in the waveguide along the westerly jet stream, but the centers at Europe and Russia occur to the north of the jet-induced waveguide. Eastward propagation of the ISO teleconnection is evident over the Pacific-North America sector. The rainfall anomalies over the elongated band near the monsoon domain over the Indo-western Pacific sector have an opposite tendency with that over the central and southern China, Mexico and southern US, providing a source of intraseasonal predictability to extratropical regions. The BSISO teleconnection along and to the north of the subtropical jet provides a good indication of the surface sir temperature anomalies in the NH extratropics.  相似文献   

6.
The performance of Version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2) in simulat ing global monsoon precipitation (GMP) was evaluated. Compared with FGOALS-sl, higher skill in simulating the annual modes of climatological tropical precipitation and interannual variations of GMP are seen in FGOALS-s2. The simulated domains of the northwestern Pacific monsoon (NWPM) and North American monsoon are smaller than in FGOALS-s 1. The main deficiency of FGOALS-s2 is that the NWPM has a weaker monsoon mode and stronger negatiw,' pattern in spring-fall asymmetric mode. The smaller NWPM domain in FGOALS-s2 is due to its simulated colder SST over the western Pacific warm pool. The relationship between ENSO and GMP is simulated reasonably by FGOALS-s2. However, the simulated precipitation anomaly over the South African monsoon region-South Indian Ocean during La Nina years is opposite to the observation. This results mainly from weaker warm SST anomaly over the maritime continent during La Nifia years, leading to stronger upper-troposphere (lower-troposphere) divergence (convergence) over the Indian Ocean, and artificial vertical as cent (descent) over the Southwest Indian Ocean (South African monsoon region), inducing local excessive (deficient) rainfall. Comparison between the historical and pre-industrial simulations indicated that global land monsoon precipitation changes from 1901 to the 1970s were caused by internal variation of climate system. External forcing may have contributed to the increasing trend of the Australian monsoon since the 1980s. Finally, it shows that global warming could enhance GMR especially over the northern hemispheric ocean monsoon and southern hemispheric land monsoon.  相似文献   

7.
利用1979—2019年Hadley中心的海表温度资料、GPCP的降水资料以及NCEP-DOE的再分析资料等,分析了北半球春季热带南大西洋海表温度异常与北半球夏季亚澳季风区降水异常的联系。研究表明,北半球春季热带南大西洋海表温度异常与随后夏季热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区的降水异常为显著负相关(正相关)关系。北半球春季热带南大西洋的海表温度正异常可以引起热带大西洋和热带太平洋间的异常垂直环流,其中异常上升支(下沉支)位于热带大西洋(热带中太平洋)。热带中太平洋的异常下沉气流和低层辐散气流引起热带中西太平洋低层的异常东风,后者有利于热带中东太平洋海表温度出现负异常。通过Bjerknes正反馈机制,热带中东太平洋海表温度异常从北半球春季到夏季得到发展。热带中东太平洋海表温度负异常激发的Rossby波使得北半球夏季热带西太平洋低层出现一对异常反气旋。此时,850 hPa上热带西太平洋到海洋性大陆地区为显著的异常东风,有利于热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区出现异常的水汽辐散(辐合),导致该地区降水减少(增加)。  相似文献   

8.
The East Asian summer monsoon: an overview   总被引:38,自引:1,他引:38  
Summary The present paper provides an overview of major problems of the East Asian summer monsoon. The summer monsoon system over East Asia (including the South China Sea (SCS)) cannot be just thought of as the eastward and northward extension of the Indian monsoon. Numerous studies have well documented that the huge Asian summer monsoon system can be divided into two subsystems: the Indian and the East Asian monsoon system which are to a greater extent independent of each other and, at the same time, interact with each other. In this context, the major findings made in recent two decades are summarized below: (1) The earliest onset of the Asian summer monsoon occurs in most of cases in the central and southern Indochina Peninsula. The onset is preceded by development of a BOB (Bay of Bengal) cyclone, the rapid acceleration of low-level westerlies and significant increase of convective activity in both areal extent and intensity in the tropical East Indian Ocean and the Bay of Bengal. (2) The seasonal march of the East Asian summer monsoon displays a distinct stepwise northward and northeastward advance, with two abrupt northward jumps and three stationary periods. The monsoon rain commences over the region from the Indochina Peninsula-the SCS-Philippines during the period from early May to mid-May, then it extends abruptly to the Yangtze River Basin, and western and southern Japan, and the southwestern Philippine Sea in early to mid-June and finally penetrates to North China, Korea and part of Japan, and the topical western West Pacific. (3) After the onset of the Asian summer monsoon, the moisture transport coming from Indochina Peninsula and the South China Sea plays a crucial “switch” role in moisture supply for precipitation in East Asia, thus leading to a dramatic change in climate regime in East Asia and even more remote areas through teleconnection. (4) The East Asian summer monsoon and related seasonal rain belts assumes significant variability at intraseasonal, interannual and interdecadal time scales. Their interaction, i.e., phase locking and in-phase or out-phase superimposing, can to a greater extent control the behaviors of the East Asian summer monsoon and produce unique rythem and singularities. (5) Two external forcing i.e., Pacific and Indian Ocean SSTs and the snow cover in the Eurasia and the Tibetan Plateau, are believed to be primary contributing factors to the activity of the East Asian summer monsoon. However, the internal variability of the atmospheric circulation is also very important. In particular, the blocking highs in mid-and high latitudes of Eurasian continents and the subtropical high over the western North Pacific play a more important role which is quite different from the condition for the South Asian monsoon. The later is of tropical monsoon nature while the former is of hybrid nature of tropical and subtropical monsoon with intense impact from mid-and high latitudes.  相似文献   

9.
亚洲夏季风的年际和年代际变化及其未来预测   总被引:31,自引:12,他引:19  
本文是对我们近五年在亚洲夏季风年代际与年际变率及其未来预测方面研究的一个综述.主要包括下列三个问题:(1)根据123年中国夏季降水资料和印度学者的分析,检测出亚洲夏季风具有明显的年代际尺度减弱,这种年代际变化使中国东部(包括东亚)和南亚夏季降水的格局在过去60年中发生了明显变化.在东亚,从1970年代后期开始,主要异常雨带有不断南移的趋势,结果造成了南涝北旱的降水分布,这主要受到60~80年年代际振荡的影响.青藏高原前冬和春季积雪的年代际减少与热带中东太平洋海表温度的年代际增加是东亚降水型改变的主要原因,这是通过减弱亚洲地区夏季海陆温差与夏季风强度而实现的.未来亚洲夏季风的预测表明,东亚夏季风和南亚夏季风对气候变暖有十分不同的响应.东亚夏季风在本世纪将增强,雨带北推,尤其在2040年代之后;而南亚夏季风环流将继续减弱.这种不同的变化是由于两者对高低层海陆热力差异的不同响应造成.(2)年际尺度的变率在亚洲夏季风区主要表现为2年与4~7年的振荡.本文着重分析了2年振荡(TBO)形成的过程、机理及其对东亚降水的影响.对TBO-海洋机理进行了具体的改进,说明了东亚夏季风降水深受TBO影响的原因,尤其是阐明了长江型(YRV) TBO和淮河型(HRV) TBO的特征及其形成的循环过程.(3)在总结亚洲夏季风时期遥相关型的基础上,本文提出了季节内和年际尺度的低空遥相关型:即西北太平洋季风的遥相关型与印度“南支”和“北支”遥相关型.它们基本上反映了沿低空夏季风强风速带Rossby波群速度传播的结果.据此可以根据西北太平洋和印度夏季风的变化分别预测中国梅雨和华北雨季来临和降水异常.最后研究还表明,在本世纪亚洲夏季风可能更显著地受到人类活动造成的全球变暖的影响,未来的亚洲夏季风活动是人类排放的CO2引起的全球变暖与自然变化(海洋和陆面过程(积雪))共同作用的结果.  相似文献   

10.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

11.
The interdecadal and the interannual variability of the global monsoon (GM) precipitation over the area which is chosen by the definition of Wang and Ding (Geophys Res Lett 33: L06711, 2006) are investigated. The recent increase of the GM precipitation shown in previous studies is in fact dominant during local summer. It is evident that the GM monsoon precipitation has been increasing associated with the positive phase of the interdecadal Pacific oscillation in recent decades. Against the increasing trend of the GM summer precipitation in the Northern Hemisphere, its interannual variability has been weakened. The significant change-point for the weakening is detected around 1993. The recent weakening of the interannual variability is related to the interdecadal changes in interrelationship among the GM subcomponents around 1993. During P1 (1979–1993) there is no significant interrelationship among GM subcomponents. On the other hand, there are significant interrelationships among the Asian, North American, and North African summer monsoon precipitations during P2 (1994–2009). It is noted that the action center of the interdecadal changes is the Asian summer (AS) monsoon system. It is found that during P2 the Western North Pacific summer monsoon (WNPSM)-related variability is dominant but during P1 the ENSO-related variability is dominant over the AS monsoon region. The WNPSM-related variability is rather related to central-Pacific (CP) type ENSO rather than the eastern-Pacific (EP) type ENSO. Model experiments confirm that the CP type ENSO forcing is related to the dominant WNPSM-related variability and can be responsible for the significant interrelationship among GM subcomponents.  相似文献   

12.
Demarcating the worldwide monsoon   总被引:10,自引:1,他引:10  
Summary The monsoon is a global climate phenomenon. This paper addresses the seasonal reversal of atmospheric circulation and the transition of dry/wet spells in the monsoon regions worldwide. The NCEP/NCAR 850 hPa wind reanalysis data for 1950–1999 and the upper-tropospheric water vapour (UTWV) band brightness temperature (BT) data observed by NOAA polar orbiting satellites for 1980–1995 are used. In the tropics, there are three large wet-UTWV centres. The summer monsoon in the subtropics can be defined as the expansion of these centres associated with the influence of cross-equatorial flows. Specifically, the dry/wet spell transition is determined by the BT values that are smaller than 244 K. The regions of the South and North African monsoons, the Asian-northwest Pacific and Australian-Southwest Pacific monsoons, and the North and South American monsoons are examined with a focus on the dry/wet spell transition and stream field features. Findings suggest that the summer monsoons over many subtropical regions can be defined by both cross-equatorial flows and dry/wet spell transitions. In the mid- and low-latitudes, there exist six major dry/wet spell transition regions with a dry or wet period lasting more than one month. The region of most significant change is located over the subtropical North Africa–Asia–northwest Pacific. The others appear over subtropical South Africa, Indonesia–Australia, southwest Pacific, the Mexico-Caribbean Sea, and subtropical South America. In addition, three regions exist where only one of the two indicators (cross-equatorial flow and dry/wet transition) is satisfied. The first is near the Equator where the directions of cross-equatorial flows alternate but a dry/wet spell transition is never experienced. The second is over North Africa where only the dry/wet spell transition can be found but not the cross-equatorial flows. The third is over the mid-latitude regions in North China, South Africa, and northern North America. These regions are influenced by cross-equatorial flows but the upper-tropospheric water vapour content is not as high as that in tropical regions. Received June 29, 2000 Revised May 15, 2001  相似文献   

13.
The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982–2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence.  相似文献   

14.
夏季亚洲—太平洋涛动与大气环流和季风降水   总被引:19,自引:4,他引:15  
利用ERA-40再分析资料和数值模拟,分析了在亚洲-太平洋区域的大气遥相关以及与亚洲季风降水和西北太平洋热带气旋活动气候特征的关系,探讨了青藏高原加热和太平洋海表温度(SST)对遥相关的影响,结果表明:亚洲-太平洋涛动(Asian-Pacific Oscillation,APO)是夏季对流层扰动温度在亚洲与太平洋中纬度之间的一种"跷跷板"现象,当亚洲大陆中纬度对流层偏冷时,中、东太平洋中纬度对流层偏暖,反之亦然;这种遥相关也出现在平流层中,只是其位相与对流层的相反.APO为研究亚洲与太平洋大气环流相互作用提供了一个途径.APO指数也是亚洲-太平洋对流层热力差异指数,它具有年际和年代际的多时间尺度变化特征,在1958-2001年亚洲与太平洋之间的对流层热力差异呈现出减弱趋势,同时也有显著的5.5 a周期.APO形成可能与太阳辐射在亚洲陆地和太平洋的加热差异所造成的纬向垂直环流有关,数值模拟进一步表明:夏季青藏高原加热可以造成高原附近对流层温度升高、上升运动加强,太平洋下沉运动加强、温度下降,从而形成APO现象;而太平洋年代际涛动和赤道东太平洋的厄尔尼若现象对APO的影响可能较小.当夏季APO异常时,南亚高压、欧亚中纬度西风急流、南亚热带东风急流以及太平洋上空的副热带高压都出现显著变化,并伴随着亚洲季风降水及西北太平洋热带气旋活动异常.过去40多年来的长江中上游地区夏季变冷与APO有关,可能是全球大气环流年代际变化在该区域的一种反映.APO异常信号可以传播到南、北两极.此外,亚洲-太平洋之间的这种遥相关型也出现在其他季节.  相似文献   

15.
This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC_CSM1.1(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Niño3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and El Niño-Southern Oscillation.  相似文献   

16.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

17.
Global monsoons in the mid-Holocene and oceanic feedback   总被引:10,自引:3,他引:10  
The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.  相似文献   

18.
Summary This study addresses the relationship between the Indian summer monsoon (ISM) and the coupled atmosphere/ocean system in the tropical Pacific on the interannual time scales. High positive correlations are found between ISM rainfall and both mixed layer sea water temperature (SWT) and sea surface temperature (SST) anomalies of the tropical western Pacific in the following winter. Negative correlations between ISM rainfall and SST in the central/eastern Pacific also appear to be most significant in the following winter. These parameters are correlated with each other mainly on a biennial time scale. Lag-correlations between the zonal wind and SST along the the equatorial Pacific show that the westerly (easterly) surface wind stress anomalies over the central/western Pacific are greatly responsible for the formation of negative (positive) SST/SWT anomalies in the western Pacific and positive (negative) SST/SWT anomalies in the central/eastern Pacific. Furthermore, it is evidenced that these lagcorrelations are physically based on the anomalies in the large-scale convection over the Asian monsoon region and the associated east-west circulation over the tropical Pacific, which first appear during the Indian summer monsoon season and evolve during the following autumn and winter. These results strongly suggest that the Asian summer monsoon may have an active, rather than a passive, role on the interannual variability, including the ENSO events, of the coupled atmosphere/ocean system over the tropical Pacific.With 9 Figures  相似文献   

19.
亚非夏季风系统包括非洲夏季风、南亚夏季风和东亚夏季风。它是全球季风系统中具有高度整体一致性变化的系统,其主要原因是亚非夏季风系统具有相同的主要驱动力:AMO(Atlantic Multidecadal Oscillation,大西洋多年代际振荡)和PDO(Pacific Decadal Oscillation,太平洋年代际振荡)海洋年代际变化模态。在此前提下,本文首先阐述了AMO对亚非夏季风的强迫作用与遥相关作用,特别强调了它在亚非夏季风及其降水年代际转型中的作用;其次讨论了PDO与冬春积雪的年代际变化对东亚夏季风雨带的协同作用;最后综合分析了AMO、PDO与IOBM(Indian Ocean Basin Mode,印度洋海盆一致模态)的协同作用,指出印度洋海洋模态在年代尺度上独立于AMO与PDO的相关组合,主要起着加强东亚夏季风活动的作用。  相似文献   

20.
The Indian summer monsoon is a highly energetic global atmospheric circulation system. Although the El Nino Southern Oscillation (ENSO) has been statistically effective in explaining several past droughts in India, in recent decades the ENSO-monsoon relationship has weakened over the Indian subcontinent. In this context, a teleconnection with other dominant modes is of interest. The present study focuses on the mutual impact of the North Atlantic Oscillation (NAO) and Southern Annular Mode (SAM) on the regional variability of the Indian summer monsoon. Strong El Nino and La Nina years are excluded to find the interaction between extratropics and Indian summer monsoon. During the synchronous effect of these extratropical modes, the intensity as well as the spatial distribution of rainfall anomalies varies significantly in the western coastal region, eastern part of central and northeast India. The decrease in rainfall along the southwest coastal regions is related to the reduced zonal moisture transport. Significant reduction in moisture transport occurs in the positive phase of SAM and the negative phase of the NAO. The thermal gradient developed between the Indian landmass and southern tropical ocean differs significantly during the simultaneous impact of these modes. Moreover, the spatial variation and change in intensity of summer monsoon (July–August) parameters associated with SAM depend on the respective phase of the NAO. These results will help to open new areas of research on the simultaneous teleconnection of the two hemispheric modes on circulation features and weather systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号