首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
太湖草/藻型湖区沉积物-水界面环境特征差异   总被引:3,自引:0,他引:3  
在太湖草、藻型湖区进行冬、夏两季多点采样,分别对采样点的水环境特征、泥面以上5 cm上覆水中营养盐以及沉积物的含水量、中值粒径、有机碳、氮、磷、金属元素和溶解氧进行测定.结果表明:夏季藻型湖区表层水体pH高于中、底层,冬季草型湖区各层水体pH高于藻型;草型湖区水体浊度夏季低于藻型,冬季反之;藻型湖区上覆水中的硝态氮和磷酸根浓度显著高于草型;草型湖区沉积物中含水量冬季显著高于夏季;草型湖区沉积物中总有机碳显著高于藻型;Fe、Zn、Ca、Pb、Na和K等元素在草、藻型湖区间差异显著;沉积物中溶解氧表现为冬季深于夏季,藻型深于草型的规律.  相似文献   

2.
This 10-year field data study explores the relevance of water level fluctuations in driving the shift from a free-floating plant (FFP) to a phytoplankton dominated state in a shallow floodplain lake from the Lower Paraná River. The multi-year natural flood pulse pattern in the Lower Paraná River drove the ecosystem regime from a FFP-dominant state during very high waters (1998–1999) to absolute phytoplankton prevalence with blooms of nitrogen fixing Cyanobacteria during extreme low waters (2008–2009). Satellite images support the observed changes over the decade and show the decrease of the surface lake area covered by FFP as well as the modification of the spectral firm in open waters, which documents the significant increases in phytoplankton chlorophyll a concentrations. We discuss the possibility that, despite a slow eutrophication in these highly vegetated systems, water level changes and not nutrients account for the shift from a floating macrophyte community to phytoplankton dominance. Cyclic shifts may occur in response to the seasonal floodpulse, but more strongly, as indicated by our results, in association to the extreme drought and flood events related to the El Niño Southern Oscillation, which is linked to discharge anomalies in the Paraná River.  相似文献   

3.
富营养水体中沉水植物与浮游藻类相互竞争的研究   总被引:21,自引:6,他引:15  
杨清心 《湖泊科学》1996,8(Z1):17-24
本文就沉水植物与浮游藻类在富营养水体中的相互竞争现象及机制作了初步研究。室内外实验结果表明,二者之间存在着复杂的相互竞争关系。在光资源竞争上,浮游藻类占有相对优势;对水中营养盐的竞争是单向的,沉水植物因可以从底泥中得到营养盐而处于优势地位;当光照和营养盐充足时沉水植物对浮游藻类有明显的生化抑制效应,这种抑制可能通过促进藻类沉降而起作用。二者的互竞争受水深、水温及水中营养盐含量的强烈影响,高水温、高营养盐含量及深水均不利于沉水植物,而助长了浮游藻类的竞争优势。沉水植物群落一旦形成较大的密度,就能对浮游藻类产生强烈的抑制,保持自己的优势地位。因此,沉水植被恢复应从水温和水位均较底的冬季开始,严格控制营养盐输入量是非常重要的。  相似文献   

4.
浅水湖泊中的初级生产者主要由分布在底栖生境中的底栖植物和生活在敞水生境中的浮游植物组成.底栖植物主要包括维管束沉水植物和底栖藻类等,浮游植物则主要为浮游藻类.贫营养浅水湖泊湖水营养盐浓度低,透明度高,底栖植物因能直接从沉积物中获取营养盐,往往是浅水湖泊的优势初级生产者.随着外源营养盐负荷的增加,湖水中的营养盐浓度不断升高,浮游植物受到的营养盐限制作用减小,加上其在光照方面的竞争优势,逐步发展成为湖泊的优势初级生产者,湖泊逐步从底栖植物为优势的清水态转变为浮游植物为主的浑水态,即稳态转换.在稳态转换过程中,浅水湖泊生态系统结构与功能发生了一系列变化,本文综述了浅水湖泊沉积物性质和生物(浮游植物、底栖植物、底栖动物和鱼类等)群落结构的变化,分析了这些变化对底栖植物、浮游植物之间竞争优势和底栖敞水生境间磷交换的影响,探讨了富营养化驱动的底栖敞水生境耦合过程变化和稳态转换机理.了解浅水湖泊底栖敞水生境耦合过程与稳态转换机理对富营养化浅水湖泊修复有重要意义.富营养化浅水湖泊修复实际就是重建其清水态,在制定修复目标时应该关注评价清水态的指标,如透明度、浮游植物生物量、底栖植物的覆盖度或优势度等.在开展湖泊修复技术研发与工程应用时,应该重点关注对底栖敞水生境耦合有重要影响的关键技术,如沉积物磷释放和底栖生物食性鱼类控制以及底栖植物(尤其是沉水植物)恢复等有关技术.  相似文献   

5.
To test if phytobenthic algae provide additional important information to macrophytes and phytoplankton for lake monitoring, we sampled two large lakes in Norway. In each lake, we analyzed water chemistry and phytoplankton above the deepest site, recorded macrophytes and non-diatom phytobenthic algae at 20 sites around the shoreline and estimated site-specific nutrient input from land cover. Since no ready-to-use phytobenthos index exists for lakes in Norway, we tested the PIT index developed for rivers, commonly perceived signs of disturbance such as high algal cover, and taxon richness as well as similarity patterns. Both lakes were nutrient poor, but had potential local nutrient inputs (villages, agriculture). In neither of the lakes did phytobenthos indicate a worse overall ecological status than macrophytes and phytoplankton. Our data therefore, did not suggest that it would be useful to add phytobenthos into surveillance monitoring of lakes in Norway. There was a loose correlation between macrophyte and phytobenthic site-specific taxon richness and similarities. This means that macrophytes and phytobenthos do indeed give partly redundant information. High algal cover was found at sites with both high and low phosphorus input. Using algal cover as indicator of site-specific nutrient input is therefore overly simplistic. Urban and cultivated areas were associated with a more eutrophic PIT. This indicates that the PIT, despite being developed for lotic waters, may be used to detect site specific nutrient input in lakes.  相似文献   

6.
The influence of extreme floods from the River Danube in 2006 on the species composition and vertical distributions of phytoplankton was studied in a shallow floodplain lake, Lake Sakadaš (Kopa?ki Rit Nature Park, Croatia) which in the last few decades was in a turbid state characterised by high phytoplankton concentrations. As a consequence of extremely high floods, the whole floodplain area (approximately 16 km2) became one lentic habitat with well developed macrophyte vegetation. Seasonal dynamics of chlorophyll a (Chl a) concentration in the lake had a characteristic pattern for the shallow lakes with dense macrophyte vegetation. Extremely low mean phytoplankton abundance and biomass were found in the conditions of very high nutrient concentrations. Dominant phytoplankton species were diatoms and chlorococcal green algae from the functional groups characteristic for a mixed environment. The canonical correspondence analysis (CCA) demonstrated that nutrients and temperature were significant environmental variables for their development. The sequence of phytoplankton seasonality, vertical distribution of phytoplankton, as well as the domination of rapidly acclimating phytoplankton forms (R-strategists) indicated clear, well-mixed conditions and a highly disturbed environment. Our results suggest that the occurrence of extreme flooding can be a stressor high enough for the transition from a turbid to a clear state of the floodplain lake. Possibly, cyclic shifts between alternative stable states in floodplain ecosystems can be expected as a consequence of the impact of extreme hydrological events induced by a climate change.  相似文献   

7.
Inlay Lake is the second largest natural lake in Myanmar. Located in Shan State, in the eastern part of the country, it is a known biodiversity hotspot. The lake is negatively affected by an increasing local human population and rapid growth in both agriculture and tourism. In recent decades, several studies have listed faunistic and floristic groups in Inlay Lake, but there is still a general lack of knowledge about the aquatic macrophyte and phytoplankton community composition and abundance, and their interactions. To fill this knowledge gap, field surveys of biological and physical and chemical parameters were carried out in the period 2014–2017. They show that Inlay Lake is a shallow, clear water and calcareous lake, with nutrient concentrations indicating mesotrophic-eutrophic conditions. However, close to the shore, nutrient concentrations are generally higher, reflecting pollution from inflowing rivers, shoreline villages and floating gardens. Both the richness and abundance of aquatic macrophytes in Inlay Lake were high, with several species forming extensive stands in most of the lake over the whole survey period. Total phytoplankton and cyanobacterial biomass were low, but cyanobacteria included toxin-producing strains of Microcystis, suggesting that cyanobacterial and total phytoplankton biomass need to be kept low to avoid potentially harmful cyanobacterial blooms. Submerged macrophyte abundance and phytoplankton biomass were inversely correlated in the heavily vegetated northern lake area. Our survey suggests a great importance of the submerged macrophytes to the general water quality and the clear water state in Inlay Lake. Maintaining high macrophyte abundances should therefore be a goal in management strategies, both for Inlay Lake and other lakes in Myanmar. It is highly desirable to include macrophytes and phytoplankton in the lake monitoring in Myanmar.  相似文献   

8.
Excessive macrophyte biomass and cyanobacterial blooms associated with eutrophication and possibly exotic fish frequently compromise freshwater systems. In this study, 20 large (∼3.2 m3), replicated enclosures were used to investigate the effects of piscivorous Australian bass (Macquaria novemaculeata), planktivorous gambusia (Gambusia holbrooki (Girard)), benthivorous carp (Cyprinus carpio), and macrophyte removal on water quality, as well as trophic interactions within the enclosures. Fish effects on reservoir water quality were carp > gambusia > bass. Cryptomonads spp. (54,083 cells/mL) and Anabaena spp. (47,983 cells/mL) increased significantly (63 and 23 fold, respectively) in carp enclosures, possibly because of physiological adaptation to low light, high turbidity, total phosphorus concentrations (TP) and low TN: TP ratios (N-limitation); a consequence of carp benthic grazing. Carp and gambusia caused an unconventional shift from smaller to medium sized zooplankton (e.g. Boeckella sp., Bosmina meridionalis), possibly a result of copepod nauplius grazing. In the subtropical system studied, fish-induced nutrient recycling appears more important to the outcome of bio-manipulation than grazing impacts. Macrophyte harvesting unexpectedly decreased phytoplankton biomass linked to declines in Euglenophyta and diatoms (Asterionella spp.). Cyanophyta (Oscillatoriales spp./Anabaena spp.) increased in response to macrophyte harvesting and was consistent with findings on European lakes that Cyanophyta abundance tends to be higher in the absence of macrophytes. Results indicate exotic fish removal, nutrient loading control and macrophyte conservation is important in these aquatic systems to maintain high water quality.  相似文献   

9.
三峡水库蓄水以来,支流小江呈富营养化加重的趋势,且多次暴发春季水华.水库蓄水以后支流流速变缓,水体滞留时间增加,是引发支流水华的主要因素之一.基于MIKE软件,建立小江调节坝下游至河口的二维水动力-富营养化模型,考虑碳、氮、磷3种元素在浮游植物有机体、死亡腐屑和无机盐中的循环转化,模拟小江河段的春季水华过程.分析小江生态调节坝的水量调节抑藻作用,即人为制造"洪水脉冲",增加短时间内的水流流速,对下游流场进行扰动以控制水华.计算结果表明,增大泄水量对调节坝下游的小江河段的春季藻华总体上具有一定的抑制作用.小江上游河段调度作用效果明显,下游高阳至入汇口河段调节作用较小,上游调节坝水力调度可以作为三峡水库支流水华应急治理措施之一.营养盐控制应该是控制支流水华的根本措施.  相似文献   

10.
Sixteen years (1997–2013) of physicochemical, nutrient and phytoplankton biomass (Chlorophyll-a (Chl-a)) data and a decade (2003-2013) of phytoplankton composition and abundance data were analyzed to assess how the algal community in a temperate southeastern Australian estuary has responded to decreased chronic point source nitrogen loading following effluent treatment upgrade works in 2003. Nitrogen concentrations were significantly lower (P < 0.05) following enhanced effluent treatment and Chl-a levels decreased (P < 0.05) during the warmer months. Temperature and nutrient concentrations significantly influenced temporal changes of Chl-a (explaining 55% of variability), while salinity, temperature, pH and nutrient concentrations influenced phytoplankton abundance and composition (25% explained). Harmful Algal Bloom (HAB) dynamics differed between sites likely influenced by physical attributes of the estuary. This study demonstrates that enhanced effluent treatment can significantly decrease chronic point source nitrogen loading and that Chl-a concentrations can be lowered during the warmer months when the risk of blooms and HABs is greatest.  相似文献   

11.
The CE-Qual-ICM model computes phytoplankton biomass and production as a function of temperature, light, and nutrients. Biomass is computed as carbon while inorganic nitrogen, phosphorus, and silica are considered as nutrients. Model formulations for production, metabolism, predation, nutrient limitation, and light limitation are detailed. Methods of parameter determination and parameter values are presented. Results of model application to a ten-year period in Chesapeake Bay indicate the model provides reasonable representations of observed biomass, nutrient concentrations, and limiting factors. Computed primary production agrees with observed under light-limited conditions. Under strongly nutrient-limited conditions, computed product is less than observed. The production characteristics of the model are similar to behavior reported for several similar models. Process omitted from the model that may account for production shortfalls include variable algal stoichiometry, use of urea as nutrient, and vertical migration by phytoplankton.  相似文献   

12.
Temperate and tropical shallow lakes differ in several fundamental aspects with respect to management of eutrophication. High altitude tropical shallow lakes are a special case, showing similarities with temperate and tropical lakes. We studied the ecology of the eutrophic high-altitude tropical lake Yahuarcocha in the Ecuadorian Andes and evaluated the potential of biomanipulation to control eutrophication. With a toxin-producing Cylindrospermopsis bloom, low Secchi depth and low submerged macrophyte cover, Yahuarcocha is clearly in a turbid ecosystem state. Relatively low nutrient concentrations should theoretically allow for a shift to a clear water state through biomanipulation. Top-down control of phytoplankton by zooplankton, however, is complicated by the (1) absence of predatory fish, (2) fish community dominated by small poecelid species, (3) lack of a refuge for zooplankton from fish predation within the macrophytes, and (4) persistent, grazing resistant bloom of the cyanobacterium Cylindrospermopsis. In these aspects, lake Yahuarcocha is more similar to tropical shallow lakes, probably because water temperature is high relative to the mean air temperature and because of the absence of a cold season. The fish and macrophyte communities consisted almost entirely of exotic species. The exotic fish species probably stabilized the turbid state in the lake.  相似文献   

13.
浅水湖泊生态系统的多稳态理论及其应用   总被引:48,自引:11,他引:37  
李文朝 《湖泊科学》1997,9(2):97-104
在“八五”期间太湖研究工作的基础上,发展和充实了浅水湖泊多稳态理论,简要介绍了多稳态概念模型,并将这一理论和模型贯穿于太湖富营养化防治研究中;总结了太湖各湖区的状态演化过程,提出保护东太湖生态环境和治理五里湖的策略及技术路线,并付诸于实验;证明了利多稳态理论和多稳态模型指导湖泊富营养化防治的可行性。  相似文献   

14.
Like the rest of the Arabian Sea, the west coast of India is subject to semi-annual wind reversals associated with the monsoon cycle that result in two periods of elevated phytoplankton productivity, one during the northeast (NE) monsoon (November–February) and the other during the southwest (SW) monsoon (June–September). Although the seasonality of phytoplankton biomass in these coastal waters is well known, the abundance and composition of phytoplankton populations associated with this distinct and predictable seasonal cycle is poorly known. Here we present for the first time, the results of a study on the community structure of phytoplankton for this region, derived from HPLC pigment analysis and microscopic cell counts. Our sampling strategy allowed for large spatial and temporal coverage over regions representative of the coastal and offshore waters, and over seasons that included the NE and the SW monsoon. Monthly observations at a fixed coastal station in particular, allowed us to follow changes in phytoplankton community structure associated with the development of anoxia. Together these measurements helped establish a pattern of seasonal change of three major groups of phytoplankton: diatoms, dinoflagellates and cyanobacteria that appeared to be tightly coupled with hydrographic and chemical changes associated with the monsoonal cycle. During the SW monsoon when nitrate concentrations were high, diatoms were dominant but prymnesiophytes were present as well. By October, as nitrate fell to below detection levels and anoxic conditions began to develop on the shelf below the shallow pycnocline, both diatom and prymensiophytes declined sharply giving way to dinoflagellates. In the well oxygenated surface waters, where both nitrate and ammonium were below detection limits, pico-cyanobacterial populations became dominant.During the NE monsoon, a mixed diatom-dinoflagellate population was quickly replaced by blooms of Trichodesmium erythraeum and Noctiluca miliaris with higher amounts of zeaxanthin, β-carotene, Chl b and prasinoxanthin. Trichodesmium trichomes were noticed in the water column as early as December when nitrate concentrations became limiting. The low phytoplankton biomass and high ammonium concentrations argue that active grazing populations may be responsible for preventing diatom-dinoflagellate populations from establishing themselves to bloom proportions in the eastern Arabian Sea during the early NE monsoon. Trichodesmium continued its dominance well into May, when nutrient enrichment associated with its death and decay helped simulate the growth of both diatoms and dinoflagellates. Given that anoxic conditions are becoming more pervasive in the eastern Arabian Sea, our observations in particular, those of a shift towards dinoflagellate dominance during the development of anoxia assume particular importance.  相似文献   

15.
Mogan Lake is the largest recreational area near Ankara, which is the capital city of Turkey. Increased macrophyte growth in the water body and the present levels of urban development within the catchment are reflected in declining water quality and aesthetic deterioation. A study of the water quality of the lake was undertaken to quantify the variation of phosphorus, nitrogen, and chlorophyll-a concentrations during ice-free seasons from 1992 to 1994. Its total phosphorus and chlorophyll-a concentrations indicate a meso-eutrophic status. The total phosphorus budget of Mogan Lake was measured for a period of 22 months. The estimation of nutrient loading using Dillon-Rigler nutrient budget shows that an artificial load caused too high phosphorus inputs. The management implications of phosphorus loading and budget are discussed.  相似文献   

16.
17.
武汉月湖水生植被重建过程中浮游植物的动态变化   总被引:3,自引:0,他引:3  
2004年12月-2005年5月武汉市月湖水生植被重建过程中,对浮游植物进行逐月调查.结果表明,在营养盐浓度较高的条件下,浮游植物仍保持较低的生物量和密度,浮游植物的生长与温度保持一定的相关性,但与湖水营养盐浓度并不存在相关关系.菹草和伊乐藻能使水体的透明度保持较高的状态.浮游植物主要由隐藻和硅藻组成,能形成水华的一些常见种类并未随温度升高而出现,可能与这两种沉水植物的存在改变了浮游植物的群落结构有关.因此,在水温较低的冬季和春季进行水生植被重建是富营养化湖泊治理的有效途径.  相似文献   

18.
In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing the seagrass meadow properties over a gradient with varying river influence. Abiotic properties of water column, pore water and sediment were less suitable indicators for increased sediment and nutrient loading than seagrass properties. Seagrass meadows strongly responded to higher sediment and nutrient loads and proximity to the coast by decreasing seagrass cover, standing stock, number of seagrass species, changing species composition and shifts in tissue contents. Our study confirms that nutrient loads are more important than water nutrient concentrations. We identify seagrass system variables that are suitable indicators for sediment and nutrient loading, also in rapid survey scenarios with once-only measurements.  相似文献   

19.
Primary production in the Northern San Francisco Estuary (SFE) has been declining despite heavy loading of anthropogenic nutrients. The inorganic nitrogen (N) loading comes primarily from municipal wastewater treatment plant (WTP) discharge as ammonium (NH(4)). This study investigated the consequences for river and estuarine phytoplankton of the daily discharge of 15 metric tons NH(4)-N into the Sacramento River that feeds the SFE. Consistent patterns of nutrients and phytoplankton responses were observed during two 150-km transects made in spring 2009. Phytoplankton N productivity shifted from NO(3) use upstream of the WTP to productivity based entirely upon NH(4) downstream. Phytoplankton NH(4) uptake declined downstream of the WTP as NH(4) concentrations increased, suggesting NH(4) inhibition. The reduced total N uptake downstream of the WTP was accompanied by a 60% decline in primary production. These findings indicate that increased anthropogenic NH(4) may decrease estuarine primary production and increase export of NH(4) to the coastal ocean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号