首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
R. Hinsch  K. Decker 《地学学报》2003,15(5):343-349
Seismic slip rates of about 0.2 mm yr?1 calculated from cumulative seismic moments of earthquakes along the Vienna Basin Transfer Fault (VBTF) between the Alps and the Carpathians are very low compared to geologically and geodetically determined slip rates of 1–2 mm yr?1, proving a significant seismic slip deficit. Additional seismic slip calculations for arbitrarily selected fault sectors reveal large differences along strike ranging from c. 0.02 to 0.5 mm slip yr?1. As the earthquake frequency distribution suggests seismically coupled deformation, these variations might indicate locked fault segments. Results suggest that (1) the seismic cycle of the VBTF exceeds the length of available seismological observation, and (2) larger earthquakes than those recorded may occur along the fault. Thus, current local seismic hazard estimates, which are solely based on this historical database, probably underestimate the earthquake potential of the fault system.  相似文献   

2.
文章以地质地貌与地震遗迹野外调查获得的第一手资料为基础,重点介绍了实皆断裂的活动习性、2012年地震产生的建筑物破坏与地震地表破裂带特征.实皆断裂是一条规模宏大,以右旋走滑为主的全新世活动断裂,其水平滑动速率为18~20 mm/a.历史上沿实皆断裂曾发生10余次7级以上强震,迄今保留有1839年曼德勒因瓦M 8、193...  相似文献   

3.
During two distinct earthquakes occurred on March 7, 1867 and October 6, 1944, tsunami waves were also observed at some localities around the Gulf of Edremit, NE Aegean Sea. The first event (M w = 6.8) mostly affected the city of Mitilini of Lesvos Island while the Gulf of Edremit-Ayvacık earthquake (M S = 6.8) largely affected the northern and eastern coastal areas of the Gulf of Edremit. In 1944 earthquake, numerous surface cracks and water gushes were reported. The coastal neighborhoods of the town of Ayvalık in the east were flooded by tsunami waves. At the WSW extend of the main fault observed on land, which is parallel to the present-day slip vectors, some normal-oblique faults were observed close and subparallel to the northern coast. On the basis of historical documents, reports, interviews, geological setting, field observations and marine seismic reflection data, the 1944 earthquake was not triggered by one of the main fault segments but by a secondary fault or fault group which was described in this study. Depending on the distribution of tensional and compressional forces in the region, which rotates clockwise under the control of the middle strand of the North Anatolian fault, secondary fault groups become important. The moment tensor parameters of such small-size events have been determined and have obtained consistent results with the faults proposed in this study.  相似文献   

4.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

5.
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.  相似文献   

6.
The Philippine Fault results from the oblique convergence between the Philippine Sea Plate and the Sunda Block/Eurasian Plate. The fault exhibits left-lateral slip and transects the Philippine archipelago from the northwest corner of Luzon to the southeast end of Mindanao for about 1200 km. To better understand fault slip behavior along the Philippine Fault, eight GPS surveys were conducted from 1996 to 2008 in the Luzon region. We combine the 12-yr survey-mode GPS data in the Luzon region and continuous GPS data in Taiwan, along with additional 15 International GNSS Service sites in the Asia-Pacific region, and use the GAMIT/GLOBK software to calculate site coordinates. We then estimate the site velocity from position time series by linear regression. Our results show that the horizontal velocities with respect to the Sunda Block gradually decrease from north to south along the western Luzon at rates of 85–49 mm/yr in the west–northwest direction. This feature also implies a southward decrease of convergence rate along the Manila Trench. Significant internal deformation is observed near the Philippine Fault. Using a two dimensional elastic dislocation model and GPS velocities, we invert for fault geometries and back-slip rates of the Philippine Fault. The results indicate that the back-slip rates on the Philippine Fault increase from north to south, with the rates of 22, 37 and 40 mm/yr, respectively, on the northern, central, and southern segments. The inferred long-term fault slip rates of 24–40 mm/yr are very close to back-slip rates on locked fault segments, suggesting the Philippine Fault is fully locked. The stress tensor inversions from earthquake focal mechanisms indicate a transpressional regime in the Luzon area. Directions of σ1 axes and maximum horizontal compressive axes are between 90° and 110°, consistent with major tectonic features in the Philippines. The high angle between σ1 axes and the Philippine Fault in central Luzon suggests a weak fault zone possibly associated with fluid pressure.  相似文献   

7.
We present an overview of the seismogenic sources of northeastern Italy and western Slovenia, included in the last version of the Database of Individual Seismogenic Sources (DISS 3.0.2) and a new definition of the geometry of the Montello Source that will be included in the next release of the database. The seismogenic sources included in DISS are active faults capable of generating Mw > 5.5 earthquakes. We describe the method and the data used for their identification and characterization, discuss some implications for the seismic hazard and underline controversial points and open issues.In the Veneto–Friuli area (NE Italy), destructive earthquakes up to Mw 6.6 are generated by thrust faulting along N-dipping structures of the Eastern Southalpine Chain. Thrusting along the mountain front responds to about 2 mm/a of regional convergence, and it is associated with growing anticlines, tilted and uplifted Quaternary palaeolandsurfaces and forced drainage anomalies. In western Slovenia, dextral strike–slip faulting along the NW–SE trending structures of the Idrija Fault System dominates the seismic release. Activity and style of faulting are defined by recent earthquakes (e.g. the Ms 5.7, 1998 Bovec–Krn Mt. and the Mw 5.2, 2004 Kobarid earthquakes), while the related recent morphotectonic imprint is still a debated matter.We reinterpreted a large set of tectonic data and developed a segmentation model for the outermost Eastern Southalpine Chain thrust front. We also proposed the association of the four major shocks of the 1976 Friuli earthquake sequence with individual segments of three major thrust fronts. Although several sub-parallel active strike–slip strands exist in western Slovenia, we were able to positively identify only two segments of the Idrija Fault System. A comparison of the regional GPS velocity with long-term geological slip-rates of the seismogenic sources included in DISS shows that from a quarter to half of the deformation is absorbed along the external alignment of thrust faults in Veneto and western Friuli. The partitioning of the deformation in western Slovenia among the different strike–slip strands could not be quantified.  相似文献   

8.
2017年8月8日21时19分,四川阿坝州九寨沟县发生7.0级地震,震中位于巴颜喀拉块体东边界虎牙断裂和东昆仑断裂带东段塔藏断裂交汇区域,地震构造背景较为复杂。地震导致了房屋和道路破坏、滑坡崩塌。根据高分辨率卫星影像解译、阶地坎变形的测量和测年数据得到:塔藏断裂东段晚第四纪以来以左旋走滑为主,兼逆分量,水平滑动速率为2.7~4.1 mm/yr,垂直滑动速率为0.56~0.6 mm/yr。结合此次地震的主余震分布、主震震源机制解等综合结果,初步建立了三维发震构造模型,分析认为此次地震属于走滑型地震,主破裂倾角57°~77°,发震断层可能是塔藏断裂的一条分支,是青藏高原块体向东推挤的一次地震事件。基于历史地震、活动断裂和形变观测方面的研究,巴颜喀拉块体具备显著的强震构造背景,对于该块体边界带周缘的强震活动和变形需要继续关注。  相似文献   

9.
Turkey has been divided into eight different seismic regions taking into consideration the tectonic environments and epicenters of the earthquakes to examine relationships of the modal values (a/b), the expected maximum magnitudes (Mmax) and the maximum intensities (Imax). For this purpose, the earthquakes for the time period 1900–1992 from the Global Hypocenter Data Base CD-ROM prepared by USGS, and for the time period 1993–2001 from the PDE data and IRIS data are used. Concerning the relationships developed between different magnitude scales and between surface wave magnitudes (MS) and intensity for different source regions in Turkey, we have constructed a uniform catalog of MS. We have estimated the values of Mmax and Imax using the Gumbel III asymptotic distribution. Highest a-values are observed in the Aegean region and the lowest b-values are estimated for the North Anatolian Fault. Maximum values of a/b, Mmax and Imax are related to the eastern and western part of the North Anatolian Fault and the Aegean Arc. The lowest values of all parameters are observed near the Mid Anatolian Fault system. Linear relationships have been calculated between a/b, Mmax and Imax using orthogonal regression. If one of the three parameters is computed, two other parameters can be calculated empirically using these linear relationships. Hazard maps of Mmax and Imax values are produced using these relationships for a grid of equally spaced points at 1°. It is observed that the maps produced empirically may be used as a measure of seismic hazard in Turkey.  相似文献   

10.
On April 20 th, 2013, an earthquake of magnitude MW 6.6 occurred at Lushan of Sichuan on the southern segment of the Longmenshan fault zone, with no typical coseismic surface rupture. This work plotted an isoseismal map of the earthquake after repositioning over 400 post–earthquake macro–damage survey points from peak ground acceleration(PGA) data recorded by the Sichuan Digital Strong Earthquake Network. This map indicates that the Lushan earthquake has a damage intensity of IX on the Liedu scale, and that the meizoseismal area displays an oblate ellipsoid shape, with its longitudinal axis in the NE direction. No obvious directivity was detected. Furthermore, the repositioning results of 3323 early aftershocks, seismic reflection profiles and focal mechanism solutions suggests that the major seismogenic structure of the earthquake was the Dayi Fault, which partly defines the eastern Mengshan Mountain. This earthquake resulted from the thrusting of the Dayi Fault, and caused shortening of the southern segment of the Longmenshan in the NW–SE direction. Coseismal rupture was also produced in the deep of the Xinkaidian Fault. Based on the above seismogenic model and the presentation of coseismic surface deformation, it is speculated that there is a risk of more major earthquakes occurring in this region.  相似文献   

11.
The southernmost sector of the Italian peninsula is crossed by an almost continuous seismogenic belt capable of producing M ∼ 7 earthquakes and extending from the Calabrian Arc, through the Messina Straits, as far as Southeastern Sicily. Though large earthquakes occurring in this region during the last millennium are fairly well known from the historical point of view and seismic catalogues may be considered complete for destructive and badly damaging events (IX ≤ I o ≤ XI MCS), the knowledge and seismic completeness of moderate earthquakes can be improved by investigating other kinds of documentary sources not explored by the classical seismological tradition. In this paper, we present a case study explanatory of the problem, regarding the Ionian coast between the Messina Straits and Mount Etna volcano, an area of North-eastern Sicily lacking evidence of relevant seismic activity in historical times. Now, after a systematic analysis of the 18th century journalistic sources (gazettes), this gap can be partly filled by the rediscovery of a seismic sequence that took place in 1780. According to the available catalogues, the only event on record for this year is a minor shock (I = VI MCS, M w = 4.8) recorded in Messina on March 28, 1780. The newly discovered data allow to reinstate it as the mainshock (I = VII–VIII MCS, M w = 5.6) of a significant seismic period, which went on from March to June 1780, causing severe damage along the Ionian coast of North-eastern Sicily. The source responsible for this event appears located offshore, 40-km south of the previous determination, and is consistent with the Taormina Fault suggested by the geological literature, developing in the low seismic rate zone at the southernmost termination of the 1908 Messina earthquake fault.  相似文献   

12.
13.
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks (M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function (ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.  相似文献   

14.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

15.
Evidence of right‐lateral offsets associated with the 1912 earthquake (Mw 7.4) along the North Anatolian Fault (Gaziköy–Saros segment) allow us to survey (using DGPS) the co‐seismic and cumulative slip distribution. The damage distribution and surface breaks related with the earthquake show an elongated zone of maximum intensity (X MSK) parallel to the fault rupture on land but this may extend offshore to the north‐east and south‐west. Detailed mapping of the fault using topographic maps and aerial photographs indicates the existence of pull‐apart basins and pressure ridges. At several localities, the average 1912 offset along strike is 3.5–4 m and cumulative slip is 2–6 times that of individual movement. The fault rupture geometry and slip distribution suggest the existence of three subsegments with a combined total length of 110–120 km, a fault length and maximum slip similar to those of the 1999 Izmit earthquake. The amount of slip at the north‐easternmost section and in the coastal region of the Sea of Marmara reaches an average 4 m, thereby implying the offshore extension of the 1912 rupture. The results suggest that the 1912 event generated up to 150 km of surface faulting, which would imply a Mw 7.2–7.4 earthquake and which, added with rupture lengths of the 1999 earthquakes, help to constrain the remaining seismic gap in the Sea of Marmara.  相似文献   

16.
The Andaman-Sumatra subduction zone is seismically one of the most active and complex subduction zones that produced the 26 December 2004 mega thrust earthquake (Mw 9.3) and large number of aftershocks. About 8,000 earthquakes, including more than 3,000 aftershocks (M ≥ 4.5) of the 2004 earthquake, recorded during the period 1964–2007, are relocated by the EHB method. We have analysed this large data set to map fractal correlation dimension (Dc) and frequency-magnitude relation (b-value) characteristics of the seismogenic structures of this ~3,000-km-long mega thrust subduction zone in south-east Asia. The maps revealed the seismic characteristics of the Andaman-Sumatra-Java trenches, West Andaman fault (WAF), Andaman Sea Ridge (ASR), Sumatra and Java fault systems. Prominent N–S to NW–SE to E–W trending fractal dimension contours all along the subduction zone with Dc between 0.6 and 1.4 indicate that the epicentres mostly follow linear features of the major seismogenic structures. Within these major contours, several pockets of close contours with Dc ~ 0.2 to 0.6 are identified as zones of epicentre clusters and are inferred to the fault intersections as well as asperity zones along the fault systems in the fore arc. A spatial variation in the b-value (1.2–1.5) is also observed along the subduction zone with several pockets of lower b-values (1.2–1.3). The smaller b-value zones are corroborated with lower Dc (0.5–0.9), implying a positive correlation. These zones are identified to be the zones of more stress or asperity where rupture nucleation of intermediate to strong magnitude earthquakes occurred.  相似文献   

17.
Possible long-term seismic behaviour of the Northern strand of the North Anatolian Fault Zone, between western extreme of the 1999 İzmit rupture and the Aegean Sea, after 400 AD is studied by examining the historical seismicity, the submarine fault mapping and the paleoseismological studies of the recent scientific efforts. The long-term seismic behaviour is discussed through two possible seismicity models devised from M S ≥ 7.0 historical earthquakes. The estimated return period of years of the fault segments for M1 and M2 seismic models along with their standard deviations are as follows: F4 segment 255 ± 60 and 258 ± 12; F5 segment 258 ± 60 and 258 ± 53; F6 segment 258 ± 60 and 258 ± 53; F7 segment 286 ± 103 and 286 ± 90; F8 segment 286 ± 90 and 286 ± 36. As the latest ruptures on the submarine segments have been reported to be during the 1754–1766 earthquake sequence, and the 1912 mainshock rupture has been evidenced to extend almost all over the western part of the Sea of Marmara, our results imply imminent seismic hazard and, considering the mean recurrence time, a large earthquake to strike the eastern part of the Sea of Marmara in the next two decades.  相似文献   

18.
The Bayesian extreme-value distribution of earthquake occurrences has been used to estimate the seismic hazard in 12 seismogenic zones of the North-East Indian peninsula. The Bayesian approach has been used very efficiently to combine the prior information on seismicity obtained from geological data with historical observations in many seismogenic zones of the world. The basic parameters to obtain the prior estimate of seismicity are the seismic moment, slip rate, earthquake recurrence rate and magnitude. These estimates are then updated in terms of Bayes’ theorem and historical evaluations of seismicity associated with each zone. From the Bayesian analysis of extreme earthquake occurrences for North-East Indian peninsula, it is found that for T = 5 years, the probability of occurrences of magnitude (M w = 5.0–5.5) is greater than 0.9 for all zones. For M w = 6.0, four zones namely Z1 (Central Himalayas), Z5 (Indo-Burma border), Z7 (Burmese arc) and Z8 (Burma region) exhibit high probabilities. Lower probability is shown by some zones namely␣Z4, Z12, and rest of the zones Z2, Z3, Z6, Z9, Z10 and Z11 show moderate probabilities.  相似文献   

19.
The evolution of the seismogenic process associated with the Ms 5.8 Sangro Valley earthquake of May 1984 (Abruzzo, central Italy) is closely controlled by the Quaternary extensional tectonic pattern of the area. This pattern is characterised by normal faults mainly NNW striking, whose length is controlled by pre-existing Mio–Pliocene N100±10° left-lateral strike-slip fault zones. These are partly re-activated as right-lateral normal-oblique faults under the Quaternary extensional regime and behave as transfer faults.Integration of re-located aftershocks, focal mechanisms and structural features are used to explain the divergence between the alignment of aftershocks (WSW–ENE) and the direction of seismogenic fault planes defined by the focal mechanisms (NNW–SSE) of the main shock and of the largest aftershock (Ms=5.3).The faults that appear to be involved in the seismogenic process are the NNW–SSE Barrea fault and the E–W M. Greco fault. There is field evidence of finite Quaternary deformation indicating that the normal Barrea fault re-activates the M. Greco fault as right-lateral transfer fault. No surface faulting was observed during the seismic sequence. The apparently incongruent divergence between aftershocks and nodal planes may be explained by interpreting the M. Greco fault as a barrier to the propagation of earthquake rupturing. The rupture would have nucleated on the Barrea fault, migrating along-strike towards NNW. The sharp variation in direction from the Barrea to the M. Greco fault segments would have represented a structural complexity sufficient to halt the rupture and subsequent concentration of post-seismic deformation as aftershocks around the line of intersection between the two fault planes.Fault complexities, similar to those observed in the Sangro Valley, are common features of the seismic zone of the Apennines. We suggest that the zones of interaction between NW–SE and NNW–SSE Plio-Quaternary faults and nearly E–W transfer faults, extending for several kilometres in the same way as M. Greco does, might act as barriers to the along-strike propagation of rupture processes during normal faulting earthquakes. This might have strong implications on seismic hazard, especially for the extent of the maximum magnitude expected on active faults during single rupture episodes.  相似文献   

20.
Spatial and temporal analysis of global seismological data 1964–2005 reveals a distinct teleseismic earthquake activity producing a columnar-like formation in the continental wedge between the Krakatau volcano at the surface and the subducting slab of the Indo-Australian plate. These earthquakes occur continuously in time, are in the body-wave (m b) magnitude range 4.5–5.3 and in the depth range 1–100 km. The Krakatau earthquake cluster is vertical and elongated in the azimuth N30°E, suggesting existence of a deep-rooted fault zone cutting the Sunda Strait in the SSW-NNE direction. Possible continuation of the fault zone in the SW direction was activated by an intensive 2002/2003 aftershock sequence, elongated in the azimuth of N55°E. Beneath the Krakatau earthquake cluster, an aseismic gap exists in the Wadati-Benioff zone of the subducting plate at the depths 100–120 km. We interpret this aseismic gap as a consequence of partial melting inhibiting stress concentration necessary to generate stronger earthquakes, whereas the numerous earthquakes observed in the overlying lithospheric wedge beneath the volcano probably reflect magma ascent in the recent plumbing system of the Krakatau volcano. Focal depth of the deepest events (~100 km) of the Krakatau cluster constrains the location of the primary magma generation to greater depths. The ascending magmatic fluids stress fault segments within the Sunda Strait fault zone and change their friction parameters inducing the observed tectonic earthquakes beneath Krakatau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号