首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
Accurate simulation of tropical cyclone tracks is a prerequisite for tropical cyclone risk assessment. Against the spatial characteristics of tropical cyclone tracks in the Northwest Pacific region, stochastic simulation method based on classification model is used to simulate tropical cyclone tracks in this region. Such simulation includes the classification method, the genesis model, the traveling model, and the lysis model. Tropical cyclone tracks in the Northwest Pacific region are classified into five categories on the basis of its movement characteristics and steering positions. In the genesis model, Gaussian kernel probability density functions with the biased cross validation method are used to simulate the annual occurrence number and genesis positions. The traveling model is established on the basis of the mean and mean square error of the historical 6 h latitude and longitude displacements. The termination probability is used as the discrimination standard in the lysis model. Then, this stochastic simulation method of tropical cyclone tracks is applied and qualitatively evaluated with different diagnostics. Results show that the tropical cyclone tracks in Northwest Pacific can be satisfactorily simulated with this classification model.  相似文献   

2.
Interaction of typhoon and mesoscale vortex   总被引:15,自引:1,他引:14  
Under two types of initial tropical cyclone structures that are characterized by high and low vorticity zones, four sets of numerical experiments have been performed to investigate the interaction of a tropical cyclone with an adjacent mesoscale vortex (MSV) and its impact on the tropical cyclone intensity change,using a quasi-geostrophic barotropic vorticity equation model with a horizontal resolution of 0.5 km. The results suggest that the interaction of a tropical cyclone characterized by a high vorticity zonal structure and an MSV would result in an intensification of the cyclone. Its central pressure decreases by more than 14 hPa. In the process of tile interaction, the west and middle segments of the high vorticity zone evolve into two peripheral spiral bands of the tropical cyclone, and the merging of the east segment and the inward propagating MSV forms a new vorticity accumulation area, wherein the maximum vorticity is remarkably greater than that in the center of the initial tropical cyclone circulation. It is this process of merging and strengthening that causes a greater pressure decrease in the center of the tropical cyclone. This process is also more complicated than those that have been studied in the past, which indicated that only the inward transfer of vorticity of the MSV can result in the strengthening of the tropical cyclone.  相似文献   

3.
The effect of climate change on tropical cyclone intensity has been an important scientific issue for a few decades.Although theory and modeling suggest the intensification of tropical cyclones in a warming climate,there are uncertainties in the assessed and projected responses of tropical cyclone intensity to climate change.While a few comprehensive reviews have already provided an assessment of the effect of climate change on tropical cyclone activity including tropical cyclone intensity,this review focuses mainly on the understanding of the effect of climate change on basin-wide tropical cyclone intensity,including indices for basin-wide tropical cyclone intensity,historical datasets used for intensity trend detection,environmental control of tropical cyclone intensity,detection and simulation of tropical cyclone intensity change,and some issues on the assessment of the effect of climate change on tropical cyclone intensity.In addition to the uncertainty in the historical datasets,intertwined natural variabilities,the considerable model bias in the projected large-scale environment,and poorly simulated inner-core structures of tropical cyclones,it is suggested that factors controlling the basin-wide intensity can be different from individual tropical cyclones since the assessment of the effect of climate change treats tropical cyclones in a basin as a whole.  相似文献   

4.
The dynamics of tropical cyclone is investigated in a nondivergent,barotropic model with nobasic flow.The effect of linear beta term on the movement and development of tropical cyclone isemphatically demonstrated.The streamfunction tendency due to the symmetric component of linearbeta term appears in a dipole-like pattern with an east-west symmetry,which maintains andintensifies the large-scale beta gyres and causes the tropical cyclone to have a westerly movingcomponent.The streamfunction tendency due to the asymmetric component of linear beta termarises in an ellipse pattern with a north-south major axis,which weakens the tropical cyclone.Thestreamfunction tendency due to the asymmetric component of linear beta term and the intensity oflarge-scale cyclonic beta gyre synchronously vary in a fluctuating manner with time.  相似文献   

5.
The dynamics of tropical cyclone is investigated in a nondivergent barotropic model with nobasic flow. The effect of nonlinear term on the movement and development of tropical cyclone isemphatically demonstrated. The advection of asymmetric vorticity by the symmetric flow (AAVS)produces the small-scale gyres (SSGs). The SSGs counterclockwise rotate around the tropicalcyclone center. The interaction of SSGs with the large-scale beta gyres (LSBGs) leads to theoscillation in translation speed and vacillation in translation direction for tropical cyclone. Theadvection of symmetric vorticity by the asymmetric flow (ASVA) steers the symmetric circulationof tropical cyclone. The ventilation flow vector determined by the asymmetric flow is closecorrelated with the motion vector of tropical cyclone. The nonlinear advection of relative vorticityis an order of magnitude greater than the linear advection of planetary vorticity, However, theasymmetric circulation created by the planetary vorticity advection provides a background conditionfor anomalous motions of the tropical cyclone. The combination of the linear and nonlinear effectsresults in accelerated, decelerated, changing direction and/or counterclockwise looping motions ofthe tropical cyclone.  相似文献   

6.
The characteristics of 200 hPa divergent wind and velocity potential have been analysed for four kinds of tropical cyclone tracks having impact on the SOuth China Sea.It is found that the difference of monsoon circulation in 200 hPa divergence wind field may affect the medium-range movement characteristics of tropical cyclone tracks.Corresponding to the west Pacific subtropical high,the orientation of 200 hPa secondary convergence line and its extension to the west may indicate the variability of track types.The direction of tropical cyclone movement is 2 longitudes west of and parallel to the 200 hPa secondary divergence line.  相似文献   

7.
Typhoon Maggie (1999) interacted with another tropical depression system and moved along a west-southwest track that is somewhat abnormal during its pre-landing stage. Two numerical experiments are carried out in this paper to study the effect of the interaction on the track of typhoon Maggie using the mesoscale numerical weather prediction model system with a tropical cyclone bogusing scheme developed by Center for Coastal and Atmospheric Research, the Hong Kong University of Science and Technology. Results show that the cyclone system interacting with Maggie is the main factor for the abnormal track of Maggie.  相似文献   

8.
Based on the barotropic equations including large-scale topography, friction and heat factor, a barotropic quasi-geostrophic model with large-scale topography, friction and heating is obtained by means of scale analysis and small parameter method. It is shown that this equation is a basic one, which is used to study the influence of the Tibetan Plateau on the large-scale flow in the atmosphere. If the friction and heating effect of large-scale topography are neglected, this model will degenerate to the general barotropic quasi-geostrophic one.  相似文献   

9.
A tropical cyclone is a kind of violent weather system that takes place in warmer tropical oceans and spins rapidly around its center and at the same time moves along surrounding flows. It is generally recognized that the large-scale circulation plays a major role in determining the movement of tropical cyclones and the effects of steering flows are the highest priority in the forecasting of tropical cyclone motion and track. This article adopts a new method to derive the steering flow and select a typical swerving track case (typhoon Dan, coded 9914) to illustrate the validity of the method. The general approach is to modify the vorticity, geostropical vorticity and divergence, investigate the change in the non-divergent stream function, geoptential and velocity potential, respectively, and compute a modified velocity field to determine the steering flow. Unlike other methods in regular use such as weighted average of wind fields or geopoential height, this method has the least adverse effects on the environmental field and could derive a proper steering flow which fits well with storm motion. Combined with other internal and external forcings, this method could have wide application in the prediction of tropical cyclone track.  相似文献   

10.
The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.  相似文献   

11.
地形和边界层摩擦对登陆热带气旋路径和强度影响的研究   总被引:11,自引:4,他引:7  
采用准地转的正压模式, 研究了无非绝热加热时地形和边界层摩擦对登陆热带气旋路径和强度的影响.结果表明: 地形作用对登陆热带气旋西北移动路径的影响比较明显, 而对登陆热带气旋强度的影响不明显; 边界层摩擦可以通过改变热带气旋X方向上和Y方向上的移动速度以及改变热带气旋水平环流结构对登陆热带气旋西北移动路径产生一定的影响, 边界层摩擦对登陆热带气旋强度的影响非常明显, 其中摩擦是造成登陆热带气旋强度迅速减弱的一个重要因素.  相似文献   

12.
利用中尺度数值模式设计一组高分辨率理想试验,采用位涡趋势方法定量诊断分析热带气旋在登陆我国华东沿海地形时,其运动发生的精细化变化以及不同因子的贡献。结果表明,平地的存在使得登陆热带气旋移速相对更快,当华东沿海地形存在时,热带气旋移速显著增大,这种增速现象主要是由于平地和地形所引起的非对称气流以及相应的引导气流变化所致,这很可能是导致预报路径误差的一个重要原因。平地试验中,陆地在热带气旋低层激发出中小尺度的非对称气流,与之不同的是,实际地形的加入激发出更大尺度并且更强的非对称偏南气流。位涡趋势方法的诊断结果表明,非引导效应总体而言对热带气旋运动贡献较小,这是因为这些因子相互抵消,但在不同的垂直层次上,不同的非引导因子贡献存在明显的差异。  相似文献   

13.
对经过中国台湾岛和海南岛、吕宋岛、日本诸岛以及朝鲜半岛的热带气旋在过岛前后的运动、结构和强度的时空变化进行了统计诊断分析。研究结果表明,台湾岛附近热带气旋运动左偏(定义为偏于以前路径的左侧)机率最大,且台湾岛周围是产生诱生低压的高频区。采用理想东、西风环境场作为数值模拟背景场,数值研究了岛屿地形强迫与台湾附近的环境流场的相互作用及其对热带气旋运动偏转的影响,提出了岛屿地形强迫、背景场和热带气旋涡旋三者相互作用对热带气旋路径突然转折影响的观点,即台湾地形有利于环境场中诱生出一对偏差偶极涡,这对诱生偏差偶极涡将导致逼近岛屿的热带气旋产生运动方向的突然偏折,且在不同基本气流条件下,岛屿地形对热带气旋运动可能产生显著不同的影响。  相似文献   

14.
1965-2010年7-9月影响中国的热带气旋降水变化趋势分析   总被引:2,自引:2,他引:0  
利用中国气象局逐日台站降水和上海台风研究所最佳台风路径等资料,对1965—2010年夏季(7—9月)影响中国热带气旋降水的变化趋势及影响机制进行了分析。热带气旋降水主要影响中国东部和南部,夏季平均的热带气旋降水由沿海向内陆,由东南向西北递减。自1965年以来,夏季影响中国的热带气旋降水呈现华东及东南沿海增多,华南沿海、海南岛以及西南地区减少的变化趋势。分析发现,一方面夏季西北太平洋副热带高压加强西伸,导致同期中国东部地区上空水汽辐合增强;另一方面热带气旋的引导气流发生变化,使夏季热带气旋盛行路径由南海向东亚沿岸偏移,这两个因子的共同作用致使影响中国的热带气旋降水发生变化。  相似文献   

15.
Summary In this study an attempt is made to estimate theinherent limits to tropical cyclone mean absolute track position errors out to 72 hours ahead and to compare these estimates with the position errors currently being obtained inpractice at weather centres around the world. A knowledge of the magnitude of the difference between the lower limit to predictability and that being achieved with state-of-the-art numerical weather prediction (NWP) models is of vital importance. A small difference would indicate that there is little further need for continued initiatives in the prediction of tropical cyclone tracks. On the other hand, a large difference would imply either that the problem requires continued emphasis or if there has been no significant trend towards reducing the forecast track errors, that present research and development techniques need to be extended or new procedures developed.It was found that the difference between the inherent and practical limits of tropical cyclone track position errors is presently about 35 to 40 per cent for advanced baroclinic NWP systems, a moderate to large difference, and one that is almost invariant between tropical cyclone basins. For simpler models, such as barotropic models, the difference is closer to 45 per cent but is again almost invariant. As far as the authors are aware, these are the first estimates of the lower bounds of tropical cyclone track predictability. Finally, very recent research studies with emerging range of high quality data, high density data sources, improved models and new data assimilation techniques suggest that the difference possibly is now down to about 30 to 35 per cent. This value is encouragingly small but still large enough to continue active research programs in improving tropical cyclone motion prediction. Much of the forecast track errors now come from major forecast errors associated with tropical cyclones that follow erratic tracks.With 3 Figures  相似文献   

16.
给出了一个嵌套于欧洲中期天气预报中心全球谱模式中的套网格模式,用于预报热带气旋路径趋势,提出了一种以欧洲中期天气预报中心提供的时距为24小时的预报场为基础的“接力预报”方法;设计了五种不同的“接力预报”方案;并对8507号和8509号两个热带气旋就各种不同预报方案进行了数值预报试验。结果表明,本模式对热带气旋路径趋势具有较强的预报能力,对疑难路径也具有一定的预报能力,为开展热带气旋的路径趋势预报提供了一个新的途径。文中还对影响热带气旋路径趋势的一些主要因子结合各预报结果进行了分析,为模式尽早投入业务提供了一定的依据。  相似文献   

17.
The tropical cyclone motion is numerically simulated with a quasi-geostrophic baroclinic model.The flow field of a tropical cyclone is decomposed into its axisymmetric and asymmetric components.The relation between the ventilation flow vector and the motion vector of the tropical cyclone is investigated.The results of numerical experiments indicate:(1) There are both large-scale beta gyres and small-scale gyres in the asyrnmetric flow field.(2) The interaction between small-scale gyres and large-scale beta gyres leads to the oscillation of translation speed and translation direction for the tropical cyclone.(3) There are the large deviations between the ventilation flow vector calculated by means of Fiorino and Elsberry's method and the motion vector of tropical cyclone.(4) The ventilation flow vector computed using the improved method closely correlates with the motion vector of the tropical cyclone.  相似文献   

18.
广东近海台风路径异常的统计特征   总被引:5,自引:0,他引:5       下载免费PDF全文
对1949~2000年的52年间在广东沿海近岸转折或沿海岸移动的热带气旋异常路径进行了统计分析,同时还研究了广东沿海的地形特征。结果发现,转折点 (或靠岸点) 主要集中在有明显山脉地形的区域,同时靠岸前热带气旋有移速减慢的特征。另外还发现,转折前强度越强,则转折点离岸越近;靠岸前平均移速越小,则转折角度越大;靠岸前强度越强,则其沿海岸移动所需入射角越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号