首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use daily satellite estimates of sea surface temperature (SST) and rainfall during 1998–2005 to show that onset of convection over the central Bay of Bengal (88–92°E, 14–18°N) during the core summer monsoon (mid-May to September) is linked to the meridional gradient of SST in the bay. The SST gradient was computed between two boxes in the northern (88–92°E, 18–22°N) and southern (82–88°E, 4–8°N) bay; the latter is the area of the cold tongue in the bay linked to the Summer Monsoon Current. Convection over central bay followed the SST difference between the northern and southern bay (ΔT) exceeding 0.75°C in 28 cases. There was no instance of ΔT exceeding this threshold without a burst in convection. There were, however, five instances of convection occurring without this SST gradient. Long rainfall events (events lasting more than a week) were associated with an SST event (ΔT ≥ 0.75°C); rainfall events tended to be short when not associated with an SST event. The SST gradient was important for the onset of convection, but not for its persistence: convection often persisted for several days even after the SST gradient weakened. The lag between ΔT exceeding 0.75°C and the onset of convection was 0–18 days, but the lag histogram peaked at one week. In 75% of the 28 cases, convection occurred within a week of ΔT exceeding the threshold of 0.75°C. The northern bay SST, T N , contributed more to ΔT, but it was a weaker criterion for convection than the SST gradient. A sensitivity analysis showed that the corresponding threshold for T N was 29°C. We hypothesise that the excess heating (∼1°C above the threshold for deep convection) required in the northern bay to trigger convection is because this excess in SST is what is required to establish the critical SST gradient.  相似文献   

2.
Relationship of outgoing long-wave radiation (OLR) with convective available potential energy (CAPE) and temperature at the 100-hPa pressure level is examined using daily radiosonde data for a period 1980–2006 over Delhi (28.3°N, 77.1°E) and Kolkata (22.3°N, 88.2°E), and during 1989–2005 over Cochin (10°N, 77°E) and Trivandrum (8.5°N, 77.0°E), India. Correlation coefficient (R xy) between monthly OLR and CAPE shows a significant (~???0.45) anti-correlation at Delhi and Kolkata suggesting low OLR associated with high convective activity during summer (seasonal variation). Though, no significant correlation was found between OLR and CAPE at Cochin and Trivandrum (low latitude region); analysis of OLR and temperature (at 100-hPa) association suggests that low OLR peaks appear corresponding to low temperature at Delhi (R xy~ 0.30) and Kolkata (R xy ~ 0.25) during summer. However, R xy between OLR and temperature becomes opposite as we move towards low latitudes (~8°–10°N) due to strong solar cycle influence. Large scale components mainly ENSO and quasi-biennial oscillaton (QBO) that contributed to the 100-hPa temperature variability were also analyzed, which showed that ENSO variance is larger by a factor of two in comparison to QBO over Indian region. ENSO warm conditions cause warming at 100-hPa over Delhi and Darwin. However, due to strong QBO and solar signals in the equatorial region, ENSO signal seems less effective. QBO, ENSO, and solar cycle contribution in temperature are found location-dependent (latitudinal variability) responding in consonance with shifting in convective activity regime during El Niño, seasonal variability in the tropical easterly jet, and the solar irradiance.  相似文献   

3.
《地学前缘(英文版)》2019,10(6):2313-2327
As one of the pivotal Gondwana–derived blocks, the kinematic history of the northern Qiangtang Block (in the Tibetan Plateau) remains unclear, mainly because quantitative paleomagnetic data to determine the paleoposition are sparse. Thus, for this study, we collected 226 samples (17 sites) from Triassic sedimentary rocks in the Raggyorcaka and Tuotuohe areas of the northern Qiangtang Block (NQB). Stepwise demagnetization isolated high temperature/field components from the samples. Both Early and Late Triassic datasets passed field tests at a 99% confidence level and were proved to be primary origins. Paleopoles were calculated to be at 24.9°N and 216.5°E with A95 = 8.2°(N = 8) for the Early Triassic dataset, and at 68.1°N, 179.9°E with A95 = 5.6° (N = 37) for the Late Triassic, the latter being combined with a coeval volcanic dataset published previously. These paleopoles correspond to paleolatitudes of 14.3°S±8.2° and 29.9°N±5.6°, respectively. Combining previously published results, we reconstructed a three-stage northward drift process for the NQB. (1) The northern Qiangtang Block was located in the subtropical part of the southern hemisphere until the Early Triassic; (2) thereafter, the block rapidly drifted northward from southern to northern hemispheres during the Triassic; and (3) the block converged with the Eurasian continent in the Late Triassic. The ∼4800 km northward movement from the Early to Late Triassic corresponded to an average motion rate of ∼11.85 cm/yr. The rapid drift of the NQB after the Early Triassic led to a rapid transformation of the Tethys Ocean.  相似文献   

4.
Geochemical data on widely distributed igneous rocks of southern Tibet are used to reconstruct paleo-crustal thickness during the 50+ million years that have elapsed since the onset of the India-Asia collision. We use two approaches, one based on Nd isotopes and an assimilation-recharge model for granitic magma genesis and another empirical method based on trace element geochemistry (La/Yb). The focus is on granitic rocks of two age ranges in a segment of the southern Lhasa Block between approximately 89.5° and 92.5°E longitude. One age range, 45 to 62 Ma, spans the time of the onset of collision and for which we infer the geochemistry of granitic rocks reflects mainly pre-collision structure. The other age range is 21 to 9 Ma for the Nd isotopic approach, and 32 to 9 Ma for La/Yb, where the geochemistry must reflect post-collision structure. Our results suggest that the pre- and syn-collision southern margin of the Lhasa block, that portion now located within 50–60 km of the Indus-Yarlung suture (IYS) and south of 29.8°N latitude was relatively thin, about 25–35 km thick until 45 Ma. At approximately 29.8°-29.9°N latitude there was a pronounced crustal discontinuity, and north of that latitude (for a distance that we cannot constrain), the inferred crustal thickness was greater, at least 50–55 km, as indicated by latest Cretaceous and Early Tertiary granitoids and ignimbrites that have large fractions of assimilated continental crust and high La/Yb ratios. Post-collision Nd isotopic and La/Yb data from granitoids younger than 32 Ma suggest that the southern margin south of 29.8°N was thickened substantially to at least 55–60 km (based on Nd isotopes) and possibly as much as 70–75 km (based on La/Yb) by Early to mid-Miocene time. These observations require that thickening of the southern Lhasa Block margin in the period 45–32 Ma was non-uniform; the crust now within 60 km of the suture was thickened by approximately 40 km whereas the crust north of 29.9°N latitude was thickened much less, or not at all. The region currently between 29.8°N and the YTS may have been the highest elevation mountain terrane in the period from roughly 30 to 20 Ma. The amount of Miocene denudation reflects this difference, as there is evidence of substantially more denudation near the IYS than in the region north of 29.9°N. Some of the difference in thickening could be due to magmatic additions from the mantle in the region south of 29.8°N, but there is need for at least 30 km of tectonic thickening between 45 and 32 Ma. The non-uniform thickening suggests that the high elevations at the southern margin of the Himalaya-Tibet orogen propagated southward by about 200 km, from north of Lhasa to their present position, during the period from 50 to 20 Ma. Present crustal thickness requires an additional 10–15 km of more uniform post-Miocene thickening.  相似文献   

5.
The study area is a one of the sub-basin of Vaigai River basin in the Theni and Madurai districts, Western Ghats of Tamil Nadu. The Vaigai sub-basin extends approximately over 849 km2 and it has been sub-divided into 48 watersheds. It lies between 09°30′00″ and 10°00′00″N latitudes and 77°15′10″ and 77°45′00″ E longitudes in the western part of Tamil Nadu, India. It originates at an altitude of 1661m in the Western Ghats of Tamil Nadu in Theni district. The drainage pattern of these watersheds are delineated using geo-coded Indian remote sensing satellite (IRS) ID, linear image self-scanning (LISS) III of geo-coded false colour composites (FCC), generated from the bands 2, 3 and 4 on 1:50,000 scale in the present study. The Survey of India (SOI) toposheets 58G/5, 58 G/6, 58G/9 and 58G/10 on a scale of 1:50,000 scale was used as a base for the delineation of watershed. In the present study, the satellite remote sensing data has been used for updation of drainages and the updated drainages have been used for morphometric analysis. The morphometric parameters were divided in three categories: basic parameters, derived parameters and shape parameters. The data in the first category includes area, perimeter, basin length, stream order, stream length, maximum and minimum heights and slope. Those of the second category are bifurcation ratio, stream length ratio, RHO coefficient, stream frequency, drainage density, and drainage texture, constant of channel maintenance, basin relief and relief ratio. The shape parameters are elongation ratio, circularity index and form factor. The morphometric parameters are computed using ESRI’s ArcGIS package. Drainage density ranges from 1.10 to 4.88 km/km2 suggesting very coarse to fine drainage texture. Drainage frequency varies from 1.45 to 14.70 which is low to very high. The bifurcation ratio ranges from 0.55 to 4.37. The low values of bifurcation ratios and very low values of drainage densities indicate that the drainage has not been affected by structural disturbances and also that the area is covered under dense vegetation cover. Elongation ratio ranges from 0.11 to 0.57. Drainage texture has the minimum of 1.63 and maximum of 11.44 suggesting that the drainage texture is coarse to fine. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

6.
 This paper examines the results of R-mode factor analysis performed on major ion data from a hydrogeochemical survey over the coastal Quaternary deltaic aquifer of the Cauvery Basin, Tamil Nadu, India. Seven major ions (Ca, Mg, Na, K, HCO3, Cl, and NO3) were analyzed from each of the 126 water samples collected in two seasons (pre- and post-monsoon 63 each). A set of factors was found both in pre-monsoon and post-monsoon data which explained the source of the dissolved ions and the chemical processes which accompany the intrusion of seawater. Received: 4 March 1996 · Accepted: 28 August 1996  相似文献   

7.
《Chemical Geology》1992,94(4):281-291
Sm-Nd (tDM) model ages for gneisses from the coastal region between 66° and 68°N in southern East Greenland range from 3.02 to 2.79 Ga and indicate that these basement rocks were formed in a major late Archaean episode of sialic crust formation between 3.0 and 2.8 Ga ago. Very low concentrations of U have resulted in unradiogenic Pb-isotopic compositions, so that most samples do not yield chronologically useful Pb/Pb isochrons. The data have been used to calculate Pb/Pb model ages, and in the northern and southern parts of the study area these are in good agreement with the Sm-Nd model ages. In the central part of the area, however, Pb/Pb model ages are much lower than Sm-Nd ages, locally as low a.80 Ga. This discrepancy is attributed to loss of U long after the crust formation event, and probably related to a phase of Proterozoic granulite-facies metamorphism that has not previously been recognised. Rb-Sr isotope data support this interpretation.  相似文献   

8.
Objective analysis of daily rainfall at the resolution of 1° grid for the Indian monsoon region has been carried out merging dense land rainfall observations and INSAT derived precipitation estimates. This daily analysis, being based on high dense rain gauge observations was found to be very realistic and able to reproduce detailed features of Indian summer monsoon. The inter-comparison with the observations suggests that the new analysis could distinctly capture characteristic features of the summer monsoon such as north-south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough/low, over the east central parts of the country, over north-east India, along the foothills of Himalayas and over the north Bay of Bengal. When this product was used to assess the quality of other available standard climate products (CMAP and ECMWF reanalysis) at the gird resolution of 2.5°, it was found that the orographic heavy rainfall along Western Ghats of India was poorly identified by them. However, the GPCC analysis (gauge only) at the resolution of 1° grid closely discerns the new analysis. This suggests that there is a need for a higher resolution analysis with adequate rain gauge observations to retain important aspects of the summer monsoon over India. The case studies illustrated show that the daily analysis is able to capture large-scale as well as mesoscale features of monsoon precipitation systems. This study with data of two seasons (2001 and 2003) has shown sufficiently promising results for operational application, particularly for the validation of NWP models.  相似文献   

9.
During 23–30 September 1997, a rare cyclonic storm has developed close to the Andhra coast, and it has later travelled parallel to coastline northward and finally crossed the land at Chittagong (22°N, 91°E) on 27 September. While translating along the east coast of India, it has produced heavy to very heavy rainfall on the coastal stations causing devastating floods. In this study, we made an attempt to understand the salient causes of this unique cyclone movement. We have analyzed daily fields of wind and relative humidity for 850, 700, 500 hPa and mean daily OLR data to understand the plausible reasons for its movement. The buoy data deployed by National Institute of Ocean Technology, Chennai, Viz. DS5 (15°N, 81°E), DS4 (19°N, 88°E) and SW7 (20°N, 86°E) were analyzed to understand the ocean–atmosphere interaction processes in the west Bay of Bengal during formation of the system. Analysis of OLR over the cyclonic storm region has revealed that the heavy rainfall areas coincide with low OLR (120–180 W m?2). The persistent southward movement of 500 hPa ridge on the eastern wedge of the system along with the steering current at 200 hPa has helped in maintaining the movement of the system parallel to the east coast of India during its life cycle.  相似文献   

10.

Remote sensing images of AD 1991–2011 and field observations help evaluate shoreline changes (erosion and accretion) in Puducherry and Tamil Nadu states of southeastern India. A minor harbor was constructed during AD 1986–1989 in the coast of Puducherry, and it initiated the gradual process of shoreline modification. In the subsequent years, beaches located toward the north of the harbor suffered erosion (?0.12–?4.19 m/year) and there was accretion (0.27–7.25 m/year) in the southern beaches. However, the man-made structures (seawall and groin) have reduced the shoreline changes after AD 2004. In the last two decades, the rate of erosion area-wise gradually decreased (0.24–0.013 km2/year) and accretion remained constant (0.019 km2/year). Our results suggest that accretion happened in the southern side of the breakwaters and erosion occurred in the northern part. Presence of groins structures in the region in the northern part has also provoked accretion in the south and erosion in the northern side close to the State of Tamil Nadu.

  相似文献   

11.
Based on the MAGSAT magnetic anomaly fields over Europe and the adjacent areas spherical cap models have been derived. The method of spherical cap harmonic analysis, due to Haines (1985), has been applied for the modelling of the MAGSAT magnetic anomalies. The data set used in the analysis included the 1 ° × 1 ° gridded values of the MAGSAT anomaly fields between latitudes ϑ = 6 ° to 60 °N and longitudes λ = 19 °W to 70 °E. The pole of the cap is at ϑ = 33 °N and λ = 26 °E and its half-angle is 40 ° . The maximum index (Km) of the model is 18 and the total number of model coefficients is 361. A minimum wavelength corresponding to this index at the Earth's surface is ~ 1000 km. The RMS deviations between the calculated and observed values are ~ 4 nT for δX, ~ 3 nT for ΔY and 3,5 nT for ΔZ respectively. The spherical cap harmonic model was used for the construction of magnetic anomaly maps for all components and at different altitudes.  相似文献   

12.
Abstract The enthalpy of reaction of plagioclase and pyroxene to produce garnet and quartz has been a major source of error in granulite geobarometry because of relatively uncertain enthalpy values available from high-temperature solution calorimetry and compiled indirectly from experimental phase equilibria. Recent, improved calorimetric measurements of ΔHR are shown to yield palaeopressures which are internally consistent between orthopyroxene and clinopyroxene calibrations for many South Indian granulites from the Archaean high-grade terranes of southern Karnataka and northern Tamil Nadu. This represents a considerable improvement over previous calibrations, which gave disparate results for the two independent barometers involving orthopyroxene and clinopyroxene, requiring a 2-kbar ‘empirical adjustment’to force agreement. Palaeopressures thus calculated for 30 well-documented two-pyroxene garnet granulites from South India give internally consistent pressures with a mean of 8.1°1.1 kbar at 750°C, consistent with the presence of both kyanite and sillimanite in many areas. Those samples for which garnet–pyroxene exchange thermometers give plausible granulite-range temperatures and whose minerals are minimally zoned give the best agreement of the two barometers. Samples which yield low palaeotemperatures and different rim and core compositions of minerals yield pressures for the orthopyroxene assemblage as much as 2 kbar lower than for the assemblage with clinopyroxene. This disparity probably represents post-metamorphic-peak re-equilibration. We conclude that considerable confidence may be placed in geobarometry of two-pyroxene granulites where apparent palaeotemperatures are in the granulite facies range (>700°C) and where mineral zonation is minimal. Of the several possible sets of activity–composition relations in use, those constructed from analysis of phase equilibria give slightly higher palaeopressures and appear more consistent with analytical data from the Nilgiri Hills uplift, where kyanite is the only aluminium silicate reported to be stable in peak-metamorphic assemblages. The present results support a palaeopressure gradient, increasing generally from south to north, across the Nilgiri Hills as inferred by previous geobarometry.  相似文献   

13.
Time variation of surface fluxes of heat, moisture and momentum over a sea station (20°N 89°E) in the north Bay of Bengal has been computed by profile method for the period 18th–25th August 1990 using meteorological data of MONTBLEX-90 from ORVSagarkanya. The fluxes showed synoptic and diurnal variations which are marked during depression (20th–21st August) compared to their variation prior to and after this period. Variations of heat and water vapour fluxes were in phase. Night time fluxes are relatively high compared to day time. Average momentum transfer during depression was two to three times large. Variations in Bowen ratio were relatively large during day time. During depression, it varied between 0·2 in day time and about 0·3 at night and in the undisturbed period between ?0·1 and 0·2 during day time and 0·2 and 0·25 at night. The study shows that the assumptionC D=CH=CE of the exchange coefficients normally used in estimating the fluxes by the bulk aerodynamic method is not appropriate becauseC H/CD≈2,C E/CD≈1·5 andC H/CE≈1·4.  相似文献   

14.
District-wide drought climatology over India for the southwest monsoon season (June–September) has been examined using two simple drought indices; Percent of Normal Precipitation (PNP) and Standardized Precipitation Index (SPI). The season drought indices were computed using long times series (1901–2003) of southwest monsoon season rainfall data of 458 districts over the country. Identification of all India (nation-wide) drought incidences using both PNP and SPI yielded nearly similar results. However, the district-wide climatology based on PNP was biased by the aridity of the region. Whereas district-wide drought climatology based on SPI was not biased by aridity. This study shows that SPI is a better drought index than PNP for the district-wide drought monitoring over the country. SPI is also suitable for examining break and active events in the southwest monsoon rainfall over the country. The trend analysis of district-wide season (June–September) SPI series showed significant negative trends over several districts from Chattisgarh, Bihar, Kerala, Jharkhand, Assam and Meghalaya, Uttaranchal, east Madhya Pradesh, Vidarbha etc., Whereas significant positive trends in the SPI series were observed over several districts from west Uttar Pradesh, west Madhya Pradesh, South & north Interior Karnataka, Konkan and Goa, Madhya Maharashtra, Tamil Nadu, East Uttar Pradesh, Punjab, Gujarat etc.  相似文献   

15.
This paper focuses on artificial groundwater recharge study in Ayyar basin, Tamil Nadu, India. The basin is covered by hard crystalline rock and overall has poor groundwater conditions. Hence, an artificial recharge study was carried out in this region through a project sponsored by Tamil Nadu State Council for Science and Technology. The Indian Remote Sensing satellite 1A Linear Imaging Self Scanning Sensor II (IRS 1A LISS II) satellite imagery, aerial photographs and geophysical resistivity data were used to prioritize suitable sites for artificial recharge and to estimate the volume of aquifer dimension available to recharge. The runoff water available for artificial recharge in the basin is estimated through Soil Conservation Service curve number method. The land use/land cover, hydrological soil group and storm rainfall data in different watershed areas were used to calculate the runoff in the watersheds. The weighted curve number for each watershed is obtained through spatial intersection of land use/land cover and hydrological soil group through GeoMedia 3.0 Professional GIS software. Artificial recharge planning was derived on the basis of availability of runoff, aquifer dimension, priority areas and water table conditions in different watersheds in the basin.  相似文献   

16.
New pole positions for Triassic and Cretaceous times have been obtained from volcanic and sedimentary sequences in Central Iran. These new results confirm the general trend of the Apparent Polar Wander Path (APWP) of the Central-East-Iran microplate (CEIM) from the Triassic through the Tertiary as published by Soffel and Förster (1983, 1984). Two new palaeopoles for the Triassic of the CEIM have been obtained; limestones and tuffs from the Nakhlak region yield a mean direction of 094.0°/25.0°, N=12, k=4.1,α 95=24.7°, after bedding correction, corresponding to a palaeopole position of 310.8°E; 3.9°S, and volcanic rocks from the Sirjan regions yield a mean direction of 114.5°/35.1°, N=44, k=45.9,α 95=3.2° after bedding correction and a palaeopole position of 295.8°E; 10.3°N. Combining these with the two previously published results yields a new palaeopole position of 317.5°E; 12.7°N, for the Triassic of the CEIM, thus confirming that large counterclockwise rotations of the CEIM have occurred since the Triassic time. New results have also been obtained from Cretaceous limestones from the Saghand region of the CEIM. The mean direction of 340.7°/26.3°, N=33, k=44.3,α 95=3.8°, and the corresponding palaeopole position of 283.1°E; 64.4°N, is in agreement with previously determined Cretaceous palaeopole positions of the CEIM. Furthermore, results have also been obtained from Triassic dolomite, limestone, sandstone and siltstone from the Natanz region, which is located to the west of the CEIM. A total of 161 specimens from 44 cores taken at five sites gave a mean direction of the five sites at 033.3°/25.1°, N=5, k=69.0,α 95=9.3° and a palaeopole position of 167.2°E; 53.7°N. They pass the positive fold test of McElhinny (1964) on the level of 99% confidence. This pole position is in fairly good agreement with the mean Triassic pole position of the Turan Plate (149°E; 49°N). It indicates that the area of Natanz has not undergone the large counterclockwise rotation relative to the Turan plate since the Triassic, which has been shown for the CEIM. A Triassic palaeogeographic reconstruction of Iran, Arabia (Gondwana) and the Turan Plate (Eurasia) is also presented.  相似文献   

17.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

18.
A probabilistic seismic hazard assessment is developed here using maximum credible earthquake magnitude statistics and earthquake perceptibility hazard. Earthquake perceptibility hazard is defined as the probability a site perceives ground shaking equal to or greater than a selected ground motion level X, resulting from an earthquake of magnitude M, and develops estimates for the most perceptible earthquake magnitude, M P(max). Realistic and usable maximum magnitude statistics are obtained from both whole process and part process statistical recurrence models. These approaches are extended to develop relationships between perceptible earthquake magnitude hazard and maximum magnitude recurrence models that are governed by asymptotic and finite return period properties, respectively. Integrated perceptibility curves illustrating the probability of a specific level of perceptible ground motion due to all earthquakes over the magnitude range extending from ?∞ to a magnitude M i are then developed from reviewing site-specific magnitude perceptibility. These lead on to achieving site-specific annual probability of exceedance hazard curves for the example cities of Sofia and Thessaloniki for both horizontal ground acceleration and ground velocity. Both the maximum credible earthquake magnitude M 3 and the most perceptible earthquake magnitude M P(max) are of importance to the earthquake engineer when approaching anti-seismic building design. Both forms of hazard are illustrated using contoured hazard maps for the region bounded by 39°–45°N, 19°–29°E. Patterns are observed for these magnitude hazard estimates—especially M P(max) specific to horizontal ground acceleration and horizontal ground velocity—and compared to inferred patterns of crustal deformation across the region. The full geographic region considered is estimated to be subject to a maximum credible earthquake magnitude M 3—estimated using cumulative seismic moment release statistics—of 7.53 M w, calculated from the full content of the adopted earthquake catalogue, while Bulgaria’s capital, Sofia, is estimated a comparable value of 7.36 M w. Sofia is also forecast most perceptible earthquake magnitudes for the lowest levels considered for horizontal ground acceleration of M PA(50) = 7.20 M w and horizontal ground velocity of M PV(5) = 7.23 M w for a specimen focal depth of 15 km.  相似文献   

19.
In this paper we present new paleomagnetic and paleontological data from the Ordovician and Silurian carbonate rocks of Kotelny Island (the Anjou Archipelago), and from the Ordovician turbidities of Bennett Island (the De Long Archipelago). It is assumed that both archipelagos belong to the NSI (New Siberian Islands) terrane — a key tectonic element in the Arctic region. Ages of the studied rocks have been established by paleontological data and lithological correlations. Our new data on conodonts combined with those from previous studies of Ordovician and Silurian fauna indicate a biogeographic similarity between the shelves of the Siberian paleocontinent and the NSI in the Early Paleozoic. Three new paleomagnetic poles for the NSI (48.9°N, 13.8°E, A95 = 18.1° for 475 Ma; 45.5°N, 31.9°E, A95 = 11.0° for 465 Ma, and 33.7°N, 55.7°E, A95 = 11.0° for 435 Ma) fall between the south-eastern part of Central Europe and the Zagros Mountains. The similarity of paleomagnetic directions from Kotelny and Bennet islands confirms that both the Anjou and De Long archipelagos belong to the same terrane. Calculated paleolatitudes indicate that in Ordovician–Silurian times this terrane has been located between 30° and 45°, possibly in the northern hemisphere. Based on this observation, we suggest a linkage between the NSI and the Kolyma–Omolon superterrane. Comparison of apparent polar wander paths (APWPs) of the NSI, Siberia and other cratons/terranes suggests that the NSI drifted independently. We demonstrate that the structural line between Svyatoy Nos Peninsula and Great Lyakhovsky Island is the continuation of the Kolyma Loop suture on the Arctic shelf, and expect that the continuation of the South Anyui suture is to be found east of the NSI.  相似文献   

20.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号