首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.  相似文献   

2.
The Mediterranean region has been identified as a global warming hotspot, where future climate impacts are expected to have significant consequences on societal and ecosystem well-being. To put ongoing trends of summer climate into the context of past natural variability, we reconstructed climate from maximum latewood density (MXD) measurements of Pinus heldreichii (1521–2010) and latewood width (LWW) of Pinus nigra (1617–2010) on Mt. Olympus, Greece. Previous research in the northeastern Mediterranean has primarily focused on inter-annual variability, omitting any low-frequency trends. The present study utilizes methods capable of retaining climatically driven long-term behavior of tree growth. The LWW chronology corresponds closely to early summer moisture variability (May–July, r = 0.65, p < 0.001, 1950–2010), whereas the MXD-chronology relates mainly to late summer warmth (July–September, r = 0.64, p < 0.001; 1899–2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = ?0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth—early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700–1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availability observed in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.  相似文献   

3.
Håkan Grudd 《Climate Dynamics》2008,31(7-8):843-857
This paper presents updated tree-ring width (TRW) and maximum density (MXD) from Torneträsk in northern Sweden, now covering the period ad 500–2004. By including data from relatively young trees for the most recent period, a previously noted decline in recent MXD is eliminated. Non-climatological growth trends in the data are removed using Regional Curve Standardization (RCS), thus producing TRW and MXD chronologies with preserved low-frequency variability. The chronologies are calibrated using local and regional instrumental climate records. A bootstrapped response function analysis using regional climate data shows that tree growth is forced by April–August temperatures and that the regression weights for MXD are much stronger than for TRW. The robustness of the reconstruction equation is verified by independent temperature data and shows that 63–64% of the instrumental inter-annual variation is captured by the tree-ring data. This is a significant improvement compared to previously published reconstructions based on tree-ring data from Torneträsk. A divergence phenomenon around ad 1800, expressed as an increase in TRW that is not paralleled by temperature and MXD, is most likely an effect of major changes in the density of the pine population at this northern tree-line site. The bias introduced by this TRW phenomenon is assessed by producing a summer temperature reconstruction based on MXD exclusively. The new data show generally higher temperature estimates than previous reconstructions based on Torneträsk tree-ring data. The late-twentieth century, however, is not exceptionally warm in the new record: On decadal-to-centennial timescales, periods around ad 750, 1000, 1400, and 1750 were equally warm, or warmer. The 200-year long warm period centered on ad 1000 was significantly warmer than the late-twentieth century (< 0.05) and is supported by other local and regional paleoclimate data. The new tree-ring evidence from Torneträsk suggests that this “Medieval Warm Period” in northern Fennoscandia was much warmer than previously recognized.  相似文献   

4.
Dendroclimatological sampling of Scots pine (Pinus sylvestris L.) has been made in the province of J?mtland, in the west-central Scandinavian mountains, since the 1970s. The tree-ring width (TRW) chronology spans several thousand years and has been used to reconstruct June?CAugust temperatures back to 1632 bc. A maximum latewood density (MXD) dataset, covering the period ad 1107?C1827 (with gap 1292?C1315) was presented in the 1980s by Fritz Schweingruber. Here we combine these historical MXD data with recently collected MXD data covering ad 1292?C2006 into a single reconstruction of April?CSeptember temperatures for the period ad 1107?C2006. Regional curve standardization (RCS) provides more low-frequency variability than ??non-RCS?? and stronger correlation with local seasonal temperatures (51% variance explained). The MXD chronology shows a stronger relationship with temperatures than the TRW data, but the two chronologies show similar multi-decadal variations back to ad 1500. According to the MXD chronology, the period since ad 1930 and around ad 1150?C1200 were the warmest during the last 900?years. Due to large uncertainties in the early part of the combined MXD chronology, it is not possible to conclude which period was the warmest. More sampling of trees growing near the tree-line is needed to further improve the MXD chronology.  相似文献   

5.
Seven different tree-ring parameters (tree-ring width, earlywood width, latewood width, maximum density, minimum density, mean earlywood density, and mean latewood density) were obtained from Qinghai spruce (Picea crassifolia) at one chronology site in the Hexi Corridor, China. The chronologies were analyzed individually and then compared with each other. Growth–climate response analyses showed that the tree-ring width and maximum latewood density (MXD) are mainly influenced by warm season temperature variability. Based on the relationships derived from the climate response analysis, the MXD chronology was used to reconstruct the May–August maximum temperature for the period 1775–2008 A.D., and it explained the 38.1% of the total temperature variance. It shows cooling in the late 1700s to early 1800s and warming in the twentieth century. Spatial climate correlation analyses with gridded land surface data revealed that our warm season temperature reconstruction contains a strong large-scale temperature signal for north China. Comparison with regional and Northern Hemisphere reconstructions revealed similar low-frequency change to longer-term variability. Several cold years coincide with major volcanic eruptions.  相似文献   

6.
Summary We analyse the spatial representation of five previously published multi-century to millennial length dendroclimatological reconstructions of Fennoscandian summer temperatures. The reconstructions, ranging from local to regional scale, were based on either tree-ring width (TRW) or maximum latewood density (MXD) data or on a combination of the two. TRW chronologies are shown to provide reasonably good spatial information mainly for July temperatures, but a combination of TRW and MXD yields a better spatial representation for the whole summer season (June–August). A multiple-site reconstruction does not necessarily provide better spatial representation than a single site reconstruction, depending on the criterion for selecting data and also on the strength of the climate signal in the tree-ring data. In a new approach to analyse the potential for further developing Fennoscandian temperature reconstructions, we selected from a network of TRW and MXD chronologies those having the strongest temperature information a priori, to obtain a strong common climate signal suitable for a regional-scale reconstruction. Seven separate, but not independent, reconstructions based on progressively decreasing numbers of chronologies were created. We show that it is possible to improve the spatial representation of available reconstructions back to around AD 1700, giving high correlations (>0.7) with observed summer temperatures for nearly the whole of Fennoscandia, and even higher correlations (>0.85) over much of central-northern Fennoscandia. Further sampling of older trees (e.g. dry-dead and subfossil wood) would be needed to achieve the same high correlations prior to AD 1700. Our analysis suggests that it should be possible to select a few key sites for improving the reconstructions before AD 1700. Since tree-ring data from northern Fennoscandia are used in all available hemispheric-scale temperature reconstructions for the last millennium, there is also a potential for slightly improving the quality of the hemispheric-scale reconstructions, by including an improved reconstruction for Fennoscandia. However, adding new chronologies from previously unsampled regions would potentially improve hemispheric-scale temperature reconstructions more substantially. Authors’ addresses: Isabelle Gouirand, Anders Moberg, Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden; Hans W. Linderholm, Regional Climate Group, Department of Earth Sciences, G?teborg University, SE-405 30 G?teborg, Sweden; Barbara Wohlfarth, Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden.  相似文献   

7.
The Puelo River is a watershed shared between Chile and Argentina with a mean annual streamflow of 644 m3 s?1. It has a high ecologic and economic importance, including introduced farmed salmon, tourism, sports fishing and projected hydroelectricity. Using Austrocedrus chilensis and Pilgerodendron uviferum tree-ring records we reconstructed summer–fall (December–May) Puelo River streamflow, which is the first of such reconstructions developed in the Pacific domain of South America. The reconstruction goes back to 1599 and has an adjusted r 2 of 0.42. Spectral analysis of the reconstructed streamflow shows a dominant 84-year cycle which explains 25.1% of the total temporal variability. The Puelo River summer–fall streamflow shows a significant correlation (P?>?0.95, 1943–2002) with hydrological records throughout a vast geographic range within the Valdivian eco-region (35 to 46°S). Seasonal Puelo River interannual streamflow variability is related to large-scale oceanic and atmospheric circulation features. Summer–fall streamflows showed a significant negative correlation with the Antarctic Oscillation (AAO), whereas winter–spring anomalies appear to be positively connected with sea surface temperature variations in the tropical Pacific. In general, above- and below-average discharges in winter–spring are related to El Niño and La Niña events, respectively. The temporal patterns of the observed and reconstructed records of the Puelo River streamflow show a general decreasing trend in the 1943–1999 period. Projected circulation changes for the next decades in the Southern Hemisphere would decrease summer–fall Puelo River streamflows with significant impacts on salmon production, tourism and hydropower generation.  相似文献   

8.
In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ13C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.  相似文献   

9.
The source region of the Yangtze River is experiencing ever-faster glacier retreat and land deterioration as a result of climate change; however, understanding the past climate variability in the region is still limited by lack of long-term climate records. Here, we report a temperature-sensitive annual stable carbon isotope (??13C) series of Tibetan juniper (Sabina tibetica) tree rings from 1850 to 2002 in natural forests in the source region of the Yangtze River on the northeastern Tibetan Plateau. The stable carbon discrimination (??13C) is significantly negatively correlated with the regional mean summer (May, June, and July) temperature, as well as with large-scale temperature variations. The reconstructed mean summer temperature explained about 44.3% of the total variance. It also agreed well with neighboring temperature proxies, including the ice-core ??18O series from the Guoqu glacier and from Dasuopu glacier and other tree-ring proxies. The cold and warm periods indicated by the climate reconstruction also coincide well with documented glacier advances and retreats in the eastern and southeastern Tibetan Plateau. The significant correlations among the reconstructed temperature, sea surface temperature (SSTNino3), and the Southern Oscillation index suggest the influences of synoptic atmospheric circulation on low-frequency variations in temperature on the region of the Yangtze River.  相似文献   

10.
We present new tree-ring width, δ13C, and δ18O chronologies from the Koksu site (49°N, 86° E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.  相似文献   

11.
We developed four Georgei fir (Abies georgei var. smithii) tree-ring width chronologies at the timberline in the Sygera Mts. in southeast Tibet, China. All individual standard chronologies and a regional well-replicated ring-width composite chronology (RC) show significantly positive correlations with mean summer (June-August) temperature. Herein mean summer temperature was reconstructed for southeast Tibet back to A.D. 1765 based on RC. This reconstruction successfully captures recent warming observed in the instrumental record since 1961 with the last decade being the warmest period in the past 242 years. It agrees in general with other temperature reconstructions of the Tibetan Plateau and extratropical northern hemisphere. This study allows seeing recent warming on a longer time scale in southeast Tibet.  相似文献   

12.
Recently a divergence between tree-ring parameters from temperature-limited environments and temperature records has been observed worldwide but comprehensive explanations are still lacking. From a dendroclimatic analysis performed on a high-altitude tree-ring network of Pinus cembra (L.) in the Central Italian Alps we found that site aspect influences non-stationary growth-climate relationships over time. A general increasing divergence between ring width and the summer temperature record (J–A) has been observed especially for chronologies from SW-facing slopes, whereas chronologies from N-facing sites showed stable relationships over time. The monthly analysis revealed that the decrease in sensitivity was mostly accounted for by the changes in the relationships with June temperature (decreasing correlations especially for S- and W-facing site chronologies), whereas trees from N-facing sites showed an increasing sensitivity to July temperatures. Our data suggest that at high altitudes, low temperatures at the beginning of the growing season no longer limit growth. We also found that our temperature-sensitive trees did not linearly respond in radial growth to the extreme heat event of summer 2003, and formed an annual ring of average width, resulting in a strong divergence from the temperature record. Our findings underline the importance of site ecology for tree-ring based climate reconstructions using temperature-sensitive ring-width chronologies, and may help in solving the ‘divergence problem’.  相似文献   

13.
The variation in the precipitation phase in polar regions represents an important indicator of climate change and variability.We studied the precipitation phase at the Great Wall Station and Antarctic Peninsula(AP)region,based on daily precipitation,synoptic records and ERA-Interim data during the austral summers of 1985?2014.Overall,there was no trend in the total precipitation amount or days,but the phase of summer precipitation(rainfall days versus snowfall days)showed opposite trends before and after 2001 at the AP.The total summer rain days/snow days increased/decreased during 1985?2001 and significantly decreased at a rate of?14.13 d(10 yr)?1/increased at a rate of 14.31 d(10 yr)?1 during 2001?2014,agreeing well with corresponding variations in the surface air temperature.Further,we found that the longitudinal location of the Amundsen Sea low(ASL)should account for the change in the precipitation phase since 2001,as it has shown a westward drift after 2001[?41.1°(10 yr)?1],leading to stronger cold southerly winds,colder water vapor flux,and more snow over the AP region during summertime.This study points out a supplementary factor for the climate variation on the AP.  相似文献   

14.
Abstract?This paper presents the results of measurements of the concentration of surface ozone and concurrent standard meteorological parameters: total solar radiation, temperature, relative humidity, pressure, wind speed, and vertical and horizontal components of the wind. The data were collected from 2005 to 2010 at stations located in central Poland (Mazowieckie voivodeship): Warszawa (urban), Legionowo (suburban), Granica and Belsk (rural). Furthermore, Granica is situated in the forested area of Kampinoski National Park. Continuously measured surface ozone concentrations demonstrated the well-known diurnal cycle of surface ozone concentration with a maximum in the afternoon and a minimum in the early morning hours. The averaged diurnal variations over six years reveal that the highest concentrations appear at rural stations (Belsk: 55?µg?m?3 and Granica: 50?µg?m?3) and the lowest at the urban station (Warszawa: 41?µg?m?3). The threshold for high levels of surface ozone (120?µg?m?3 per 8?h) was exceeded most often at Granica and Belsk. The occurrence of the ozone “weekend effect,” especially at urban stations, has been identified. The difference between weekend and weekday surface ozone concentrations at urban and rural stations was as high as 6.5?µg?m?3 and approximately 2?µg?m?3, respectively. Using appropriate statistical tools, it has been shown that meteorological conditions have a significant influence on ozone concentration. High correlation coefficients were found between ozone concentration and solar radiation, temperature, relative humidity, and wind speed. The forward stepwise regression model explains up to 75% of the variations in daily surface ozone concentration in terms of meteorological variability in summer and up to 70% in winter. At the same time, a multilayer perceptron neural network model was used to reconstruct the concentration of surface ozone. High correlation coefficients (up to 0.89) indicate that, on the basis of standard meteorological parameters and NO2 concentration, we can determine ozone concentration with high accuracy.  相似文献   

15.
 A tree-ring chronology network recently developed from the subantarctic forests provides an opportunity to study long-term climatic variability at higher latitudes in the Southern Hemisphere. Fifty long (1911–1985), homogeneous records of monthly mean sea-level pressure (MSLP) from the southern latitudes (15–65 °S) were intercorrelated on a seasonal basis to establish the most consistent, long-term Trans-Polar teleconnections during this century. Variations in summer MSLP between the South America-Antarctic Peninsula and the New Zealand sectors of the Southern Ocean are significantly correlated in a negative sense (r=−0.53, P<0.001). Climatically sensitive chronologies from Tierra del Fuego (54–55°) and New Zealand (39–47°) were used to develop verifiable reconstructions of summer (November to February) MSLP for both sectors of the Southern Ocean. These reconstructions, which explain between 37 and 43% of the instrumentally recorded pressure variance, indicate that inverse trends in MSLP from diametrically opposite sides of Antarctica have prevailed during the past two centuries. However, the strength of this relationship varies over time. Differences in normalized MSLP between the New Zealand and the South America-Antarctic Peninsula sectors were used to develop a Summer Trans-Polar Index (STPI), which represents an index of sea-level pressure wavenumber one in the Southern Hemisphere higher latitudes. Tree-ring based reconstructions of STPI show significant differences in large-scale atmospheric circulation between the nineteenth and the twentieth centuries. Predominantly-negative STPI values during the nineteenth century are consistent with more cyclonic activity and lower summer temperatures in the New Zealand sector during the 1800s. In contrast, cyclonic activity appears to have been stronger in the mid-twentieth than previously for the South American sector of the Southern Ocean. Recent variations in MSLP in both regions are seen as part of the long-term dynamics of the atmosphere connecting opposite sides of Antarctica. A detailed analysis of the MSLP and STPI reconstructions in the time and frequency domains indicates that much of the interannual variability is principally confined to frequency bands with a period around 3.3–3.6 y. Cross spectral analysis between the STPI reconstruction and the Southern Oscillation Index suggests that teleconnections between the tropical ocean and extra-tropical MSLP variations may be influencing climate fluctuations at southern latitudes. Received: 18 December 1996/Accepted: 10 January 1997  相似文献   

16.
Two millennia-length juniper ring width chronologies, processed to preserve multi-centennial growth trends, are presented for the Alai Range of the western Tien Shan in Kirghizia. The chronologies average the information from seven near-timberline sampling sites, and likely reflect summer temperature variation. For comparison, chronologies are also built using standard dendrochronological techniques. We briefly discuss some qualities of these inter-decadal records, and show the low frequency components removed by the standardization process include a long-term negative trend in the first half of the last millennium and a long-term positive trend since about AD 1800. The multi-centennial scale Alai Range chronologies, where these trends are retained, are both systematically biased (but in an opposite sense) in their low frequency domains. Nevertheless, they represent the best constraints and estimates of long-term summer temperature variation, and reflect the Medieval Warm Period, the Little Ice Age, and a period of warming since about the middle of the nineteenth century.  相似文献   

17.
Climatology, trends and variability of cloud fraction cover (CFC) data over the Arctic (north of 70°N), were analysed over the 1982–2009 period. Data, available from the Climate Monitoring Satellite Application Facility (CM SAF), are derived from satellite measurements by AVHRR. Climatological means confirm permanent high CFC values over the Atlantic sector during all the year and during summer over the eastern Arctic Ocean. Lower values are found in the rest of the analysed area especially over Greenland and the Canadian Archipelago, nearly continuously during all the months. These results are confirmed by CFC trends and variability. Statistically significant trends were found during all the months over the Greenland Sea, particularly during the winter season (negative, less than ?5?%?dec ?1) and over the Beaufort Sea in spring (positive, more than +5?%?dec ?1). CFC variability, investigated by the Empirical Orthogonal Functions, shows a substantial “non-variability” in the Northern Atlantic Ocean. Statistically significant correlations between CFC principal components elements and both the Pacific Decadal Oscillation index and Pacific North America patterns are found.  相似文献   

18.
We developed ring-width chronologies of Cedrus deodara [(Roxb.) G. Don] and Pinus gerardiana (Wall. Ex. Lamb) from a homogeneous moisture stressed area in Kinnaur, Himachal Pradesh. Running correlation using a 50-year window with overlap of 25 years showed strong correlations between these species chronologies during the entire common period (ad 1310–2005). Response function analysis indicated that except for January–February, precipitation has a direct relationship with growth of these species. We therefore combined both the species chronologies to develop a statistically calibrated reconstruction of March–July precipitation that spans from ad 1310–2004, and explains 46% of the variance contained in the instrumental data from the calibration period 1951–1994. In the past 694 years of the reconstruction, the wettest period was in the twentieth century (1963–1992) and the driest in the eighteenth century (1773–1802). The relationships observed between reconstructed precipitation and Indian summer monsoon on interdecadal scale, SOI, PDO and NAO indicate the potential utility of such long-term reconstructions in understanding the large-scale climate variability. Multi-taper method (MTM) spectral analysis indicated significant (p < 0.05) spectral peaks at 2–4, 6, 8, 10, 30, 33, 37 and 40–42 years in the reconstructed precipitation data.  相似文献   

19.
Qinghai Lake, China, is located near the northern limit of the East Asian summer monsoon (EASM) and thus is an ideal region for studies of past monsoonal changes. However, isotope records from this region reflect the combined effects of multiple climatic factors, and make climatic interpretations difficult. The authors use multi-proxy records, generated from the same sediment core from Qinghai Lake, to disentangle these multiple effects in isotope records and to infer EASM variability during the late Holocene. Records of leaf wax (C2s) δD, lake carbonate 5180 and the Dunde ice core δ18O all indicate a millennial-scale depletion of mean isotopic values at -1500-1250 years before present. Compared with independent lake temperature and salinity records, the authors suggest that this depletion of long-term mean isotopic values must have resulted from changes in moisture sources in this region. In contrast, the authors attribute high-frequency (centennial timescale) C2s δD and ice core δ18O variability dominantly to a temperature effect. The multiproxy records provide a coherent picture in that many aspects of this regional climate (temperature, dryness, and moisture source) are strongly linked to the EASM variability.  相似文献   

20.
Abstract

Based on 16 years of oceanographic and meteorological data the monthly variations of the net heat flux at the air‐sea interface in coastal waters near Jeddah show that the sea gains an average of about 14 ±2 W m?2 from April to October and loses about 79± 4W m?2from November to March. The loss of heat during the winter months is not compensated by the gain during the summer months and therefore leads to an annual average deficit of 25 ± 3 Wm?2. The gain during summer may not favour the formation of a strong seasonal thermocline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号