首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process.  相似文献   

2.
A sediment slide complex has been mapped on the West African continental margin north of Dakar, Senegal. Four major slides covering approximately 44,300 km2 were delineated by seismic reflection profiles, 3.5 and 12 kHz echograms and piston cores. Although the slide areas have been altered by later erosion and deposition by turbidity flows, the major components of the slides — slide scar, zones of hummocky and blocky slide material and zones of debris flow — are recognizable. Cores containing flow folds with horizontal axial surfaces substantiate the echogram interpretations of debris flow. Morphology and depositional areas of the slides indicate that several major slide movements have occurred in each of the various slide areas. The triggering mechanism for these slides is perhaps earthquakes associated with the Cape Verde Islands, Cape Verde Plateau, and adjacent fracture zones.  相似文献   

3.
This work reports on the application and experimental validation, for idealized geometries, of a multiple-fluid Navier–Stokes model of waves generated by rigid and deforming slides, with the purpose of improving predictive simulations of landslide tsunamis. In such simulations, the computational domain is divided into water, air, and slide regions, all treated as Newtonian fluids. For rigid slides, a penalty method allows for parts of the fluid domain to behave as a solid. With the latter method, the coupling between a rigid slide and water is implicitly computed (rather than specifying a known slide kinematics). Two different Volume of Fluid algorithms are tested for tracking interfaces between actual fluid regions. The simulated kinematics of a semi-elliptical block, moving down a water covered plane slope, is first compared to an earlier analytical solution. Results for the vertical fall of a rectangular block in water are then compared to earlier experimental results. Finally, more realistic simulations of two- and three-dimensional wedges sliding down an incline are compared to earlier experiments. Overall, in all cases, solid block velocities and free surface deformations are accurately reproduced in the model, provided that a sufficiently resolved discretization is used. The potential of the model is then illustrated on more complex scenarios involving waves caused by multi-block or deformable slides.  相似文献   

4.
The Baiyun submarine slide complex (BSSC) along the Pearl River Canyon of the northern South China Sea has been imaged by multibeam bathymetry and 2D/3D seismic data. By means of maximum likelihood classification with slope aspect and gradient as inputs, the BSSC is subdivided into four domains, denoted as slide area I, II, III and IV. Slide area I is surrounded by cliffs on three sides and has been intensely reshaped by turbidity currents generated by other kinds of mass movement outside the area; slide area II incorporates a shield volcano with a diameter of approximately 10 km and unconfined slides possibly resulting from the toe collapse of inter-canyon ridges; slide area III is dominated by repeated slides that mainly originated from cliffs constituting the eastern boundary of the BSSC; slide area IV is distinguished by a conical seamount with a diameter of 6.5 km and a height of 375 m, and two slides probably having a common source that are separated from each other by a suite of residual strata. The BSSC is interpreted to be composed of numerous slide events, which occurred in the period from 10.5 to 5.5 Ma BP. Six specific factors may have contributed to the development of the BSSC, i.e., gas hydrate dissociation, gas-bearing sediments, submarine volcanic activity, seismicity, sedimentation rate and seafloor geomorphology. A 2D conceptual geological model combining these factors is proposed as a plausible mechanism explaining the formation of the BSSC. However, the BSSC may also have been affected by the Dongsha event (10 Ma BP) as an overriding factor.  相似文献   

5.
The submarine Hinlopen Slide, located along the Arctic Ocean margin, is one of the largest known mass movements on Earth. The slide scar has several unusual morphometric characteristics, including headwalls up to 1,500 m high and spectacularly large, steep-sided rafted megablocks. The slide processes and continental margin properties that produced these features are not well known. A new high-resolution TOBI (towed ocean bottom instrument) side-scan sonar dataset reveals information about the detailed seafloor morphology and, therefore, slide dynamics during the final stages of sliding. First, the headwall area was efficiently and almost completely evacuated of slide debris, which is unusual for large submarine slides. Second, features relating to the propagation of extension to the shelf behind the headwall are absent, suggesting “strong” cohesive shelf material here or that a very stable shelf configuration was reached, possibly defined by NE-SW-trending faults. Third, there is little evidence for the translation of shelf material, again uncommon for submarine slides. Taken together with the occurrence of massive megablocks in the slide debris, Hinlopen Slide is distinct because of the juxtaposition of apparently “stronger” shelf material that has remained intact (headwalls, megablocks), and “weaker” shelf material that disaggregated fully during slope failure. Nevertheless, there is sonograph evidence of variable post-slide disintegration of the megablocks. Contrary to previous interpretations, this suggests that the blocks comprise sedimentary lithologies that are prone to failure, a key aspect awaiting confirmation.  相似文献   

6.
Abstract

Numerous large sediment slides and slumps have been discovered and surveyed on the continental margins of Northwest Africa, Southwest Africa, Brazil (Amazon Cone), the Mediterranean, the Gulf of Mexico, and North America over the past 10 years. The mass movements are of two primary types: (1) translational slides, and (2) rotational slumps. Translational slides are characterized by a slide scar and a downslope zone of debris flows, after traveling in some areas for several hundreds of kilometers on slopes of less than 0.5°. Rotational slumps are bounded by steep scarps, but they do not involve large‐scale translation of sediments, although seismic records indicate disturbance in the down‐dropped block. Many of the slides and slumps have occurred in water depths greater than 2000 m on initial slopes of less than 1.5°. The largest slide so far discovered is off Spanish Sahara; in this case, the slide scar is 18,000 km2 in area, at least 600 km3 in volume of translated sediments. No apparent consistent relationship has yet been observed between the presence of the slides and the sedimentary environment in which they occurred. The slides off Southwest Africa and Spanish Sahara occurred in pelagic sediments rich in planktonic organic matter. In contrast, the slides off North America, Senegal‐Mauritania, and Brazil (Amazon Cone) occurred in sediments containing a high percentage of terrigenous material from nearby landmasses. Large sediment slides have also occurred in pelagic sediments on isolated oceanic rises such as the Madeira Rise (East‐Central Atlantic) and the Ontong‐Java Plateau (Pacific), where sedimentation rates are less than 2 cm/1000 years. The failure mechanism of the slides initiated near the shelf edge can probably be explained by sediment overloading during low glacio‐eustatic sea level, which allowed rivers to debouch sediments directly onto the outer shelf or upper slope. Possible mechanisms of failure of the deepwater slides and slumps include earthquakes, undercutting of the slope by bottom currents, and changes in porewater pressures induced as a direct or indirect result of glacio‐eustatic changes in sea level.  相似文献   

7.
An unstable rock-slope is detected in Åkerneset, located in Storfjorden, Western Norway. In the future this rock-slope will produce a slide and a subsequent tsunami. In accordance to this future event, experiments in a 1:500 scale model of the inner part of Storfjorden are performed, where the model geometry is made after the real fjord bathymetry, while the slide is an idealized slide of block-type. The slide motion is monitored and the generated waves are measured at a number of wave gauges in the model. At selected locations local details of the flow, velocities and inundation are measured by digital image techniques and acoustic probes. Features of the wave system and the inundation are elaborately discussed with a view to the future event as well as to the application of models.  相似文献   

8.
Shallow-seismic surveys around the Storegga Slide off western Norway have allowed greater understanding of the development of this part of the European margin. The northern flank of the scarp is formed of seismically well-layered, hemipelagic and distal-glaciomarine deposits in which a variety of luid-escape structures, probably due to gas, are locally abundant. There is evidence of slides that substantially pre-date the earliest slide previously recognized. Surveying on the North Sea Fan to the southwest of the Storegga Slide shows the markedly different nature of the autochthonous sediments on the southern flank of the Storegga Slide; there is a predominance of glacigenic debris flows in the upper part of the sequence, lesser maximum slopes, and an apparent absence of interstitial gas and/or hydrates. This contrast has had considerable effect on slope stability and has influenced the position of the southwestern Storegga Slide boundary. The North Sea Fan succession includes at least three major buried slides, termed the Vigra, Møre and Tampen slides, all of which substantially pre-date the Storegga event and probably pre-date predominantly glacigenic margin sedimentation. Post-late Weichselian slope failure is locally significant. The region has a long, but as yet chronologically poorly defined history of instability in which seismic triggering is considered to have been important.  相似文献   

9.
Along the southeastern Tyrrhenian Sea margin, the Gioia Basin formed as a result of extensional tectonics at the rear of the Maghrebian thrust belt. In the central part of the basin, mass-transport deposits represent up to 80% of its recent infill. The basin-wide Nicotera slump is the deepest mass-transport deposit present in the basin and was followed by sheet turbidite deposition. Above the turbidite package, a mass-transport complex (MTC) formed through the stacking of different mass-transport deposits due to repeated failures of the continental slope and of a base of slope channel levee wedge, which is still preserved in the western side of the basin. The Villafranca frontally-confined slide, a body mainly consisting of coherent blocks, represents the bulk of the MTC. The failure of the Villafranca slide was due to asymmetric loading of a permeable condensed horizon in the thinnest, distal lateral part of the channel levee wedge. The relatively large thickness of the Villafranca slide caused it to remain confined at its toe region. Smaller scale mass-transport deposits, a debris-flow sheet and a debris-flow lobe, followed the Villafranca slide and were sourced from the same headwall area. Their different run out and internal character are possibly a function of the lithology of the material involved in the collapse. A slab slide, characterized by little internal deformation and frontal contractional ridges, originated when seafloor instability propagated towards the north, causing clockwise rotation of a sediment wedge. Along the linear headwall of the slab slide, a localized upslope failure propagation is shown by a small scale re-entrant. The Sicilian margin, along which the Gioia Basin develops, is characterized by strong differential vertical movements due to ongoing extensional tectonics. The effects of both local and regional strong earthquakes are frequently felt in the area. Thus, slope oversteepening and earthquakes are suggested as the more likely causes for the observed repeated events of seafloor failure. In addition, an evolution of the MTC through larger slides controlled by the migration of uplift of the basin bounding submarine ridge, followed by smaller scale failures due to the consequent slope profile modification, is here advanced.  相似文献   

10.
Laboratory investigations on impulsive waves caused by underwater landslide   总被引:4,自引:0,他引:4  
Laboratory investigations have been performed on the submarine landslide generated waves by performing 120 laboratory tests. Both rigid and deforming-slide masses are considered. The effects of bed slope angle, initial submergence, slide geometry, shape and deformation on impulse wave characteristics have been inspected. Impulse wave amplitude, period, energy and nonlinearity are studied in this work. The effects of bed slope angle on energy conversion from slide into wave are also investigated. Laboratory-based prediction equations are presented for impulse wave amplitude and period in near and far-field and are successfully verified using the available data in previous laboratory and numerical works.  相似文献   

11.
黄河口水下滑坡体系   总被引:38,自引:1,他引:38  
自1988年以来,通过多次野外考察和深入研究,在黄河口发现并确认存在大规模的水下滑坡体系。根据声纳图象和浅地层剖面记录,对滑坡进行分类命名和特征分析。研究表明,该滑坡体系中存在瓶颈状滑坡、平移板状滑坡和旋转滑坡3种类型;许多单个滑坡在下坡方向汇集成复合滑坡系统,有时数十条滑坡汇集成蜿蜒数公里的大规模复杂体系。滑坡冲沟分布广泛,将底坡表层切割得支离破碎,与密西西比河口比较,黄河口水下滑坡具有高含水、  相似文献   

12.
A Late Pleistocene submarine slide on the Bear Island Trough Mouth Fan   总被引:5,自引:2,他引:5  
A large submarine slide on the southern flank of the Bear Island Trough Mouth Fan, southwestern Barents Sea continental slope, has a run-out distance of about 400 km, a total volume of about 1100 km3, and is younger than 330 ka. Three seismic units, comprising mainly hemipelagic sediments has partly filled the slide scar. An increased sedimentation rate on the Bear Island Trough Mouth Fan from Late Pliocene time, probably in combination with abundant earthquakes, is the most likely cause of the slide. Based on these and previous studies, we suggest that large-scale slides were important sediment transport processes during Plio-Pleistocene.  相似文献   

13.
《Coastal Engineering》2001,44(2):101-115
The prediction of ripple geometry is a necessary precursor to the prediction of sand transport under waves for ripple regime conditions. The paper begins with a comparison of four existing methods for predicting the geometry of sand ripples generated by oscillatory flow. The comparison points to substantial differences between ripple dimensions predicted by the methods, especially for field-scale conditions. Ripple geometry experiments carried out in a large oscillatory flow tunnel are then described. The experiments involved a range of sand sizes and sinusoidal and asymmetric flows with periods and velocities typical of field conditions. Comparison of measured and predicted ripple geometries leads to the recommendation that the method of Mogridge, Davies and Willis be used to predict ripple geometry for field-scale oscillatory flows. The Nielsen method yields good predictions of ripple length, but the rapid fall-off in ripple steepness predicted by the Nielsen method at high mobility number is not supported by the measurements. The lengths and heights of symmetric ripples produced by sinusoidal flows are found to be similar to the lengths and heights of asymmetric ripples produced by “equivalent” asymmetric flows. Three-dimensional ripples occur with fine sand in long-period flows typical of field conditions. The dimensions of these ripples cannot be predicted using methods developed for two-dimensional ripples. Previously suggested criteria for predicting the occurrence of three-dimensional ripples fail when tested against a wide range of flow and sand conditions. The occurrence of three-dimensional ripples and the effects of ripple and flow history on ripple geometry require further research.  相似文献   

14.
Odanam Satoe, a subtidal, tide-dominated sand body in the Yellow Sea, Korea, is linear in plan and asymmetrical in cross-section. It consists of fine- to medium-grained, well-sorted subangular sand. Bedforms consist of high-amplitude (1–2 m) sandwaves on the lower flanks of the gentler-sloping bar surface, and medium-amplitude (0.5-1 m) sandwaves on the sand body trough adjoining the steeper face, the bar crest and shallower parts of the gently sloping bar surface. Bedforms are absent on the relatively steeper bar surface, which is characterized by 2° slopes. Bedform orientation on the gentler slope is oblique by 30° to the bar crest, parallel to the sand-body crest on the crest itself, and opposite to the steeper sand-body face in the trough below the steeper slope of the bar.Bottom current velocity data show that tidal currents are semi-rotary with a flood time—velocity asymmetry over the gentler slope, and ebb time—velocity asymmetry over the steeper slope during most of the tidal cycle. Tidal-current flow parallels bar elongation over the steeper slope, whereas over the gentler slope, tidal-current flow is directed at 30° to the bar crest and changes to normal to the crest one hour prior to low tide. Bedform orientation mapped with side-scan sonar shows agreement with these flow directions.Sand dispersal around the sand body is controlled by time—velocity asymmetry and partial rotary flow directions of tidal currents. This circulation causes not only a trapezoidal mode of grain dispersal, but also westerly migration of the sand body documented from comparative bathymetric surveys in 1964 and 1980.  相似文献   

15.
Abstract

Submarine faults and slides or slumps of Quaternary age are potential environmental hazards on the outer continental shelf (OCS) of the northern Gulf of Alaska. Most faults that approach or reach the seafloor cut strata that may be equivalent in age to the upper Yakataga Formation (Pliocene‐Pleistocene). Along several faults, the seafloor is vertically offset from 5 to 20 m. A few faults appear to cut Holocene sediments, but none of these shows displacement at the seafloor. Submarine slides or slumps have been found in two places in the OCS region: (1) seaward of the Malaspina Glacier and Icy Bay, an area of 1200 km2 with a slope of less than 0.5°, and (2) across the entire span of the Copper river prodelta, an area of 1730 km2, having a slope of about 0.5°. Seismic profiles across these areas show disrupted reflectors and irregular topography commonly associated with submarine slides or slumps. Potential slide or slump areas have been delineated in areas of thick sediment accumulation and relatively steep slopes. These areas include (1) Kayak Trough, (2) parts of Hinchinbrook Entrance and Sea Valley, (3) parts of the outer shelf and upper slope between Kayak Island and Yakutat Bay, and (4) Bering Trough.  相似文献   

16.
A giant three-stage submarine slide off Norway   总被引:8,自引:0,他引:8  
One of the largest submarine slides known, The Storegga Slide, is located on the Norwegian continental margin. The slide is up to 450 m thick and has a total volume of about 5,600 km3. The headwall of the slide scar is 290 km long and the total run-out distance is about 800 km. The slide involved sediments of Quaternary to Early Tertiary age and occurred in three stages. Earthquakes combined with decomposition of gas hydrates are believed to be the main triggering agents for the slides. The first slide event is tentatively dated to be about 30,000 to 50,000 years B.P. and the two last major events are dated to be at 6,000 to 8,000 years B.P.  相似文献   

17.
《Marine Geology》2006,225(1-4):279-309
Both local and regional controls on slope sedimentation west of Porcupine Bank are assessed using an array of 25 gravity cores, integrated with shallow seismic, TOBI side-scan and high-resolution bathymetry data. The cores were retrieved from an area of smooth, distally steepened slope (between 52° and 53°N) in water depths of 950 to 2750 m. The slope here is unmodified by gravity failures and is swept by bottom currents that flow from S to N along the margin. The cores reveal a coherent shallow stratigraphy that can be traced along and between transects at upper-, mid- and lower-slope levels. AMS 14C dating, oxygen-isotopes and carbonate profiles suggest the cored record could extend as far back as 500 ka in the longest cores, with most cores providing details of the slope response to the last interglacial, last glacial and Holocene forcing. The facies indicate deposition was dominated by a combination of bottom currents, ice-rafting and hemipelagic settling, with carbonate-prone deposits during interglacials, and siliciclastic deposits during glacials. Inferred contourites imply that strong currents operated during interglacials, with weaker current reworking during glacial conditions. A pair of erosion surfaces record significant mid- and upper-slope scouring during Marine Isotope Stage (MIS 3) and in the Early Holocene. The lateral facies distribution implies stronger currents at shallower levels on the slope, although there is evidence that the core of the current migrated up and down the slope, and that sand might locally have spilt down-slope. The bathymetry influenced both the wider geometry of the condensed contourite sheet and the local thickness and facies variation across the slope. A significant result of the study is the identification of a pair of thin sand–mud contourite couplets that record enhanced bottom-current reworking corresponding to periods of interstadial warming during MIS 3. The couplets can be correlated to the terrestrial records onshore Ireland and imply that the NE Atlantic margin oceanographic and onshore climate records are strongly coupled at interstadial level.  相似文献   

18.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   

19.
胶州湾口海底沙波的类型、特征及发育影响因素   总被引:3,自引:1,他引:3  
采用多波束资料对胶州湾口的海底沙波类型、特征进行了研究,发现研究区主要有线性沙波(二维)、沙丘(三维)2种沙波类型。结合水流流速、海底构造和表层沉积物综合分析发现:海底沙波缓坡朝向与优势流向不完全一致,为强流作用的产物,在涨、落潮作用下均可形成;沉积物的多寡是研究区海底沙波类型分布的决定因素,海底松散沉积物较为丰富的地区形成二维沙波。在水动力强大的胶州湾口,沉积物多分布在构造低洼地带,使二维线性沙波的分布与海底断裂延伸方向一致。  相似文献   

20.
珠江口黄茅海拦门沙演变及成因分析   总被引:1,自引:1,他引:0  
贾良文  罗军  任杰 《海洋学报》2012,34(5):120-127
采用1977,1994,2003,2010年4个年份的地形图,建立了DEM模型,结合二维水动力模型对近30多年来黄茅海拦门沙演变的特征及成因进行了分析。研究表明近30多年来黄茅海拦门沙平面上向海推移,范围缩小,在内坡和拦门沙顶冲刷,在外坡淤积;拦门沙的基本成因是其位于上溯流与下泄流控制区域之间的过渡带,该过渡带为明显的动力较弱的区域,泥沙较易在此处沉积;黄茅海大面积的围垦导致纳潮量减少、潮汐动力减弱、径流作用相对增强,使下泄流控制区扩大、上溯流控制区减小、过渡区下移,这是拦门沙冲刷外移和缩小的主要原因。上游来沙量减少加剧了拦门沙冲刷外移和缩小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号