首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study explores potential impacts of the East Asian winter monsoon (EAWM) on summer climate variability and predictability in the Australia–Asian region through Australia–Asia (A-A) monsoon interactions. Observational analysis is conducted for the period of 1959 to 2001 using ERA-40 wind reanalysis and Climate Research Unit rainfall and surface temperature monthly datasets. Statistically significant correlations are established between the Australian summer monsoon and its rainfall variations with cross-equatorial flows penetrating from South China Sea region and northerly flow in the EAWM. The underlying mechanism for such connections is the response of the position and intensity of Hardley circulation to strong/weak EAWM. A strong EAWM is associated with an enhanced cross-equatorial flow crossing the maritime continent and a strengthened Australia summer monsoon westerlies which affect rainfall and temperature variations in northern and eastern part of the Australian continent. Furthermore, partial correlation analysis, which largely excludes El Niño-Southern Oscillation (ENSO) effects, suggests that these connections are the inherent features in the monsoon system. This is further supported by analyzing a global model experiment using persistent sea surface temperatures (SSTs) which, without any SST interannual variations, shows similar patterns as in the observational analysis. Furthermore, such interaction could potentially affect climate predictability in the region, as shown by some statistically significant lag correlations at monthly time scale. Such results are attributed to the impacts of EAWM on regional SST variations and its linkage to surface conditions in the Eurasian continent. Finally, such impacts under global warmed climate are discussed by analyzing ten IPCC AR4 models and results suggest they still exist in the warmed climate even though the EAWM tends to be weaker.  相似文献   

3.
本文分析了中国科学院大气物理研究所年代际气候预测系统IAP DecPreS的海洋同化试验(简称EnOI-IAU试验)在西北太平洋地区的海表面温度(SST)年循环的模拟技巧,并通过对比IAP DecPreS系统自由耦合历史气候模拟试验结果,在包含海气耦合过程的框架下讨论了耦合模式中西北太平洋夏季SST模拟差异,及其对亚洲季风区夏季季风降水模拟的影响。结果表明,EnOI-IAU试验较好地模拟出了西北太平洋各个季节的SST空间分布,并显著减小了原存在于历史气候模拟试验中持续全年的SST冷偏差。混合层热收支诊断分析表明,包含同化过程在内的海洋过程的模拟差异对西北太平洋海温的模拟提升有重要贡献。夏季,EnOI-IAU试验模拟的印度季风伴随的低层西风较观测偏东、偏强,且高估了赤道西太平洋区域的降水量值、低估了印度洋区域的降水量值。水汽收支分析显示,气旋式环流异常造成的水汽辐合异常是造成亚洲季风区降水模拟差异的主要原因。研究表明,较之历史模拟试验,EnOI-IAU试验中夏季西北太平洋地区SST增暖造成局地对流增强,进而使得局地产生异常上升运动,水汽辐合增强,造成西北太平洋地区降水模拟偏多,激发出低层西风异常及赤道外气旋式环流异常。该低层西风异常导致了北印度洋地区低层辐散异常,减小了原存在于历史试验中印度洋地区的正降水偏差。西北太平洋气旋式环流异常一方面增强了印度夏季风伴随的低层西风,使得更多的水汽从阿拉伯海输送到西太平洋暖池区域,增强了该区域的降水量;另一方面,该气旋式环流异常减小了历史模拟试验中中国南部区域偏强的低层风速,进而提升了模式对东亚低层西南风的模拟能力。  相似文献   

4.
In this study the potential impact of the anticipated increase in the greenhouse gas concentrations on different aspects of the Indian summer monsoon is investigated, focusing on the role of the mechanisms leading to these changes. Both changes in the mean aspects of the Indian summer monsoon and changes in its interannual variability are considered. This is done on the basis of a global time-slice experiment being performed with the ECHAM4 AGCM at a high horizontal resolution of T106. The experiment consists of two 30-year simulations, one representing the present-day climate (period: 1970–1999) and one representing the future climate (period: 2060–2089). The time-slice experiment predicts an intensification of the mean rainfall associated with the Indian summer monsoon due to the general warming, while the future changes in the large-scale flow indicate a weakening of the monsoon circulation in the upper troposphere and only little change in the lower troposphere. The intensification of the monsoon rainfall in the Indian region is related to an intensification of the atmospheric moisture transport into this region. The weakening of the monsoon flow is caused by a pronounced warming of the sea surface temperatures in the central and eastern tropical Pacific and the associated alterations of the Walker circulation. A future increase of the temperature difference between the Indian Ocean and central India as well as a future reduction of the Eurasian snow cover in spring would, by themselves, lead to a strengthening of the monsoon flow in the future. These two mechanisms compensate for the weakening of the low-level monsoon flow induced by the warming of the tropical Pacific. The time-slice experiment also predicts a future increase of the interannual variability of both the rainfall associated with the Indian summer monsoon and of the large-scale flow. A major part of this increase is accounted for by enhanced interannual variability of the sea surface temperatures in the central and eastern tropical Pacific.  相似文献   

5.
运用区域气候模式RegCM3耦合入一个化学过程,对东亚地区三类人为排放气溶胶(硫酸盐、黑碳和有机碳)的时空分布特征及其对夏季风环流的影响进行了数值模拟研究.模拟结果显示,气溶胶的引入会引起东亚地区夏季850 hPa风场发生改变,我国江淮以东洋面上空出现了一个气旋式距平环流中心,中心以西的偏北风气流将削弱东亚地区夏季西南季风.通过讨论春季中国地区气溶胶浓度与夏季东亚地区850 hPa经向风的时滞关系,以及夏季中国地区气溶胶浓度与同期东亚地区850 hPa经向风的关系,可以发现,春、夏季中国地区气溶胶浓度均与夏季东亚地区850hPa经向风有很好的负相关关系,当春季中国北方和夏季中国南方地区气溶胶浓度增加时,中国东部地区夏季偏南季风减弱.这可能与气溶胶改变了大气层顶和地表的辐射强迫,进而引起了海陆气压差异和位势高度场的变化有关.  相似文献   

6.
运用区域气候模式RegCM3耦合入一个化学过程,对东亚地区三类人为排放气溶胶(硫酸盐、黑碳和有机碳)的时空分布特征及其对夏季风环流的影响进行了数值模拟研究。模拟结果显示,气溶胶的引入会引起东亚地区夏季850 hPa风场发生改变,我国江淮以东洋面上空出现了一个气旋式距平环流中心,中心以西的偏北风气流将削弱东亚地区夏季西南季风。通过讨论春季中国地区气溶胶浓度与夏季东亚地区850 hPa经向风的时滞关系,以及夏季中国地区气溶胶浓度与同期东亚地区850 hPa经向风的关系,可以发现,春、夏季中国地区气溶胶浓度均与夏季东亚地区850 hPa经向风有很好的负相关关系,当春季中国北方和夏季中国南方地区气溶胶浓度增加时,中国东部地区夏季偏南季风减弱。这可能与气溶胶改变了大气层顶和地表的辐射强迫,进而引起了海陆气压差异和位势高度场的变化有关。  相似文献   

7.
This study aims at exploring potential impacts of land-use vegetation change (LUC) on regional climate variability and extremes. Results from a pair of Australian Bureau of Meteorology Research Centre (BMRC) climate model 54-yr (1949-2002) integrations have been analysed. In the model experiments, two vegetation datasets are used, with one representing current vegetation coverage in China and the other approximating its potential coverage without human intervention. The model results show potential impacts ...  相似文献   

8.
利用NCAR大气环流模式CAM4.0,针对潜在植被和当代植被的分布情形进行了两组25 a的积分试验,探讨了土地利用变化对东亚地区地表能量平衡、水分循环和气候的可能影响.结果表明:以森林退化、农田迅速增加为主的当代土地利用变化,显著改变地表属性,使得东亚地区不同季节的地表反照率均明显增加,并显著改变东亚地区的冬、春季节的地表能量和水分循环.此外,当代大尺度土地利用变化对东亚地区大气环流也有一定影响,可引起东亚冬季风环流显著加强和东亚夏季较弱的偏南风异常.当代土地利用变化未能引起东亚地区近地面气温的显著变化,但可引起东亚北(南)部地区春季降水的显著增加(减小).  相似文献   

9.
RegCM4.3, a high-resolution regional climate model, which includes five kinds of aerosols(dust, sea salt,sulfate, black carbon and organic carbon), is employed to simulate the East Asian summer monsoon(EASM) from 1995 to 2010 and the simulation data are used to study the possible impact of natural and anthropogenic aerosols on EASM.The results show that the regional climate model can well simulate the EASM and the spatial and temporal distribution of aerosols. The EASM index is reduced by about 5% by the natural and anthropogenic aerosols and the monsoon onset time is also delayed by about a pentad except for Southeast China. The aerosols heat the middle atmosphere through absorbing solar radiation and the air column expands in Southeast China and its offshore areas. As a result, the geopotential height decreases and a cyclonic circulation anomaly is generated in the lower atmosphere. Northerly wind located in the west of cyclonic circulation weakens the low-level southerly wind in the EASM region. Negative surface radiative forcing due to aerosols causes downward motion and an indirect meridional circulation is formed with the low-level northerly wind and high-level southerly wind anomaly in the north of 25° N in the monsoon area, which weakens the vertical circulation of EASM. The summer precipitation of the monsoon region is significantly reduced,especially in North and Southwest China where the value of moisture flux divergence increases.  相似文献   

10.
Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultra-high resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.  相似文献   

11.
This study evaluates the simulation of the coherent circulation structure correspond to the changes of mid-summer (July–August) rainfall over eastern China (30°–40° N, 110°–120° E) in high-resolution NCAR CAM5. Forced by historical sea surface temperatures (SSTs), the NCAR CAM5 reasonably reproduces coherent changes of temperature and large-scale circulations, corresponding to the changes in rainfall. Results show that when the rainfall decreases over eastern China, the model reproduces a remarkable warm center in the upper troposphere with an anomalous anticyclone appears above and an increase in anomalous westerlies to its north. An anomalous anticyclone also occurs in the lower troposphere, along with anomalous southerlies to its east which indicates strengthening of the East Asian summer monsoon. Both the circulation changes in the upper and lower troposphere favor a decrease in precipitation over central eastern China. There were also good correlations between the simulated upper-tropospheric temperature and other large-scale circulation changes. There are some deficiencies in the NCAR CAM5 simulations in terms of the changes in magnitude and location of the rainfall centers. However, in general, the model reasonably reproduced the coherent configuration of the large-scale circulation patterns and surface rainfall. This study further confirms that the climate variations across East Asia most likely arise from a regional response to global climate change. The well-simulated configuration by NCAR CAM5 also indicates the reliability of the model and its potential to reveal the mechanisms driving the coherent changes of the East Asian summer monsoon system.  相似文献   

12.
A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST warming patterns over both the tropical Pacific and Indian Oceans in affecting the modelling results. The increased atmospheric moisture content offsets some effects of the delayed onset and results in increased rainfall intensity during the active monsoon period. The deficiencies of using rainfall alone in assessing the potential changes of the monsoon system are also shown in this study.  相似文献   

13.
In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16°N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to ??upper tropospheric warming effect?? predominates over the ??moisture build-up effect?? in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.  相似文献   

14.
The austral summer monsoon onset and post-onset rainfall and their associated low-level winds are analyzed during the August–February season over Indonesia from 1979 to 2006 using surface and satellite products as well as reanalyses and regional climate model simulations. Onset date is defined using a local agronomic definition. Its leading empirical orthogonal function is found to exhibit a regional-scale spatially-coherent signal across “monsoonal” Indonesia, i.e. mostly south of the equator, with an asymmetric temporal behavior, such that delayed onsets are more intense than early ones. Associated anomalies in rainfall tend to weaken quickly after mid-to-late November or early December, especially over islands, while they tend to persist over ocean. This weakening is shown to be associated with the evolution of distinct weather types revealed by a k-means cluster analysis. In particular, late onsets—usually related to warm El Niño Southern oscillation events—are found to be accompanied by an increased prevalence of a weather type characterized by weak low-level daily-averaged winds across monsoonal Indonesia and increased (decreased) rainfall over most of the island orography and southern and western coasts (seas). The regional model simulations provide evidence that this land–sea rainfall contrast could be associated with an enhanced diurnal sea-land breeze circulation.  相似文献   

15.
Using large-scale variables, in this study we have developed a method for defining monsoon onset/retreat in the Australia-Asian region and used this method to study monsoon activities simulated by global climate models. For this purpose, the method needs to capture fundamental characteristics of monsoon rainfall and circulation seasonal variations and at the same time it can be reasonably simulated by current climate models. We develop the method by using both atmospheric precipitable water and wind conditions in our definition and compared our results using 44-year ERA-40 reanalysis data with some published results in the region. Our results offer similar features to several observational studies, including features in Australia-Asian summer monsoon temporal and spatial evolutions and their interannual variations. Results further show that the observed significant increase in summer rainfall in northwest Australia corresponds to earlier onset and much longer duration of its summer monsoon, with its duration significantly increased. Prolonged summer monsoon duration is also seen in central-east China where upward rainfall trend is observed. Furthermore, the Australian summer monsoon appears to be more affected by ENSO than the Asian monsoon, with delayed onsets and shortened durations during El Nino years. Finally, by analyzing results from an IPCC AR4 model, we have shown that using the two large-scale variables simulated by climate models, it is possible to conduct some detailed studies on monsoon activities in current and future climate. Results from this particular model suggest that global warming could potentially modify some of the monsoon characteristics, including earlier onset in most of the region but different features for changes in duration. In the Australian region, it also displays further southward penetration of its summer monsoon.  相似文献   

16.
Detailed spatiotemporal structures for the submonthly-scale (7–25 days) intraseasonal oscillation (ISO) in summer monsoon rainfall and atmospheric circulation were investigated in South Asia using high-quality rainfall and reanalysis datasets. The Meghalaya–Bangladesh–coast of the western Myanmar (MBWM) region is the predominant area of submonthly-scale ISO in the Asian monsoon regions. The distinct rainfall ISO is caused by a remarkable alternation of low-level zonal wind between westerly and easterly flows around the Gangetic Plain on the same timescales. In the active ISO phase of the MBWM, a strong low-level westerly/southwesterly flows around the plain and a center of cyclonic vorticity appears over Bangladesh. Hence, a local southerly flows toward the Meghalaya Plateau and there is strong southwesterly flow towards the coast along southeastern Bangladesh and western Myanmar, resulting in an increase in orographic rainfall. Rainfall also increases over the lowland area of the MBWM due to the low-level convergence in the boundary layer under the strong cyclonic circulation. The submonthly-scale low-level wind fluctuation around the MBWM is caused by a westward moving n = 1 equatorial Rossby (ER) wave. When the anticyclonic (cyclonic) anomaly related to the ER wave approaches the Bay of Bengal from the western Pacific, humid westerly/southwesterly (easterly/southeasterly) flows enhance around the Gangetic Plain on the northern fringe of the anticyclone (cyclone) and in turn promote (reduce) rainfall in the MBWM. Simultaneously, robust circulation signals are observed over the mid-latitudes. In the active phase, cyclonic anomalies appear over and around the TP, having barotropic vertical structure and also contributing to the enhancement of low-level westerly flow around the Gangetic Plain. In the upper troposphere, an anticyclonic anomaly is also observed upstream of the cyclonic anomaly over the TP, having wavetrain structure. The mid-latitude circulation around the TP likely helps to induce the distinct ISO there in conjunction with the equatorial waves. Thus, the distinct ISO in the MBWM is strongly enhanced locally (~500 km) by the terrain features, although the atmospheric circulation causing the ISO has a horizontal scale of ~6,000 km or more, extending across the whole Asian monsoon system from the tropics to mid-latitudes.  相似文献   

17.
柳艳菊  丁一汇 《气象学报》2005,63(4):443-454
通过对1998年南海季风爆发过程中大尺度风场、温度场、厚度场、地面气压场以及视热源与视水汽汇的演变分析研究了对流活动对大尺度场的作用,结果表明:大尺度环流与中尺度对流活动之间可能存在着一种正反馈机制。在季风爆发早期,大尺度背景与中尺度对流活动的关系主要表现为前者为季风爆发以及中尺度对流活动的发生提供有利的天气和动力条件;季风爆发后期持续的大范围中尺度对流活动反过来会对大尺度环流存在明显的反馈作用。由对流活动强烈发展产生的凝结潜热释放在南海北部造成了显著的大气加热,使对流层中上层出现一明显的加热中心,这导致:(1)南海上空经向温度梯度由高层向低层发生反向,形成北高南低的温度梯度,从而使大尺度环流发生季节性改变;(2)相应南海北部地面气压不断加深,形成宽广的季风槽和明显的减压区,促使副热带高压从南海地区最后撤离;(3)随着中低层低压环流的不断发展,对流系统和降水区进一步加强并向南扩展,有利于南海季风在南海中、南部地区爆发和维持;(4)季风槽的加深使其南侧的季风气流与水汽输送进一步加强,促使季风爆发过程达到盛期。  相似文献   

18.
赵宗慈  罗勇 《大气科学》1999,23(5):522-532
将美国国家大气研究中心(NCAR)的区域气候模式(RegCM2-1996)设置在东亚-西太平洋区域(简称东亚区域气候模式RegCM2/EA)。利用该模式研究东亚区域气候模式的几个重要问题,即:垂直分辨率的影响,侧边界条件(如嵌套技术、缓冲区宽度、不同资料)的重要性等。数值试验结果表明:细垂直分辨率模拟的降水分布优于粗分辨率模式,但容易引起“数值点暴雨”;RegCM2/EA与不同来源的大尺度侧边界嵌套,模拟的降水会有明显的不同;当用RegCM2/EA模拟较大区域时,应该取较宽的缓冲区;在各种嵌套方案中,指数松弛嵌套方法最好。这些结果为进一步探讨东亚区域气候模式的特点以及发展与改造区域气候模式提供一定的依据。研究结果还需要用更多的数值试验来验证。  相似文献   

19.
1. Introduction The strong convective weather is developed under the favorable large-scale circulations, which demon- strated the large-scale weather system's controlling ef- fect on strong convections. Once the convection is formed, it will produce the feedback effect on the large-scale environmental conditions by transporting momentum, heat and moisture upward, and influence or change the environmental wind, humidity, tem- perature, atmospheric stratification fields and so on, thus forming t…  相似文献   

20.
Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean–atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959–1979) are closer to the ‘perfect model’ (attainable) score but, large differences are observed between ‘actual’ skill and ‘perfect model’ skill in the recent period (1980–2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so perfect monsoon tele-connection with global SSTs points towards the importance of improving individual models for better simulation of the Indian monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号