首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The features of the MJO during two types of El Ni no events are investigated in this paper using the daily NCEP-2reanalysis data, OLR data from NOAA, and Real-time Multivariate MJO index for the period 1979–2012. The results indicate that the MJO exhibits distinct features during eastern Pacific(EP) El Ni no events, as compared to central Pacific(CP) El Ni no events. First, the intensity of the MJO is weakened during EP El Ni no winters from the tropical eastern Indian Ocean to the western Pacific, but enhanced during CP El Ni no winters. Second, the range of the MJO eastward propagation is different during the two types of El Ni no events. During EP El Ni no winters, the MJO propagates eastwards to 120?W, but only to 180?during CP El Ni no winters. Finally, the frequency in eight phases of the MJO may be affected by the two types of El Ni no. Phases 2 and 3 display a stronger MJO frequency during EP El Ni no winters, but phases 4 and 5 during CP El Ni no winters.  相似文献   

2.
The interannual variability of the Madden– Julian Oscillation (MJO) is investigated in an ensemble of 15 experiments performed with the ECHAM4 T30 general circulation model (GCM). The model experiments have been performed with AMIP conditions from January 1979 to December 1993. The MJO signal has been identified applying a principal oscillation pattern (POP) analysis to the 200-mb tropical velocity potential. The results obtained from the model ensemble are compared with 15?y of ECMWF re-analysis and OLR observations. The results suggest that the warm and cold phases of El Niño have some influence on the spatial propagation of the oscillation. Both in the re-analysis and in the model ensemble, the results indicate that during La Niña conditions the MJO is mostly confined west of the date line, with the largest activity located over the Indian Ocean and the western Pacific. In warm El Niño conditions, the convective anomalies associated with the oscillation appear to penetrate farther into the central Pacific. These changes in the MJO convective forcing seem to affect the zonal mean of the rotational component of the flow anomaly, which tends to weaken during warm El Niño periods. Some weak reproducibility of the interannual variability of the MJO activity is found. The results obtained from four-member and eight-member subsamples of the ensemble indicate that the reproducibility of the interannual behaviour of the MJO can be detected by choosing an ensemble of a larger size. Corresponding to the emergence of reproducibility with the increasing size of the sample, the correlation between the MJO activity and the Niño-3 SST anomaly appears to in-tensify.  相似文献   

3.
Strong cases of the tropical temperate troughs (TTT) that are responsible for the most of the summer rainfall over subtropical southern Africa are analyzed. An index for identifying the TTT is introduced for the first time using anomalies of outgoing longwave radiation (OLR) and the wind. The TTT is associated with a ridge-trough-ridge wave-like structure in the lower troposphere over southern Africa and the adjoining Indian Ocean. Therefore, the index considers physical processes that occur over southern Africa, adjoining the Atlantic and Indian Oceans to depict the variability of the TTT events. Unusually strong TTT events are identified when the standard deviations of the TTT indices defined by the OLR and wind anomalies in the selected regions are above 1.5 and 0.5 respectively. After applying this criterion and filtering out consecutive events, 55 TTT events are identified during the study period of December–January–February seasons from 1980–1981 to 2009–2010. From the composite analyses of those 55 events, it is found that the TTTs evolve with suppressed (enhanced) convection over the southwest Indian Ocean adjacent to Madagascar (southern Africa). The suppressed convection is, in turn, found to be associated with the enhanced convection around Sumatra in the southeast tropical Indian Ocean. This may explain why more TTT events occur in La Niña years as compared to El Niño years. Time evolution of the canonical TTT event shows that it starts 3 days prior to the mature phase of the event, suggesting possible predictability. After reaching a matured state, the system moves east toward the Indian Ocean and decays within the subsequent couple of days. In addition, the intertropical convergence zone (ITCZ) structure changes over Southern Africa/Madagascar during the TTT event and remains similar to climatology over other regions. The results indicate that the continental part of the ITCZ intensifies prior to the TTT event and then spreads southward following the mid-latitude influence during and after the event.  相似文献   

4.
The sea surface temperature (SST) or sea level pressure (SLP) has usually been used to measure the strength of El Niño–Southern Oscillation (ENSO) events. In this study, two new indices, based on the upper-ocean heat content (HC), are proposed to quantify the two “flavours” of El Niño (i.e., the Cold Tongue El Niño (CTE) and Warm Pool El Niño (WPE)). Compared with traditional SST or SLP indices, the new HC-based indices can distinguish CTE and WPE events much better and also represent the two leading modes of the interannual variability of the atmosphere–ocean coupled system in the tropical Indo-Pacific region. The two leading modes are obtained by performing multivariate Empirical Orthogonal Function analysis on two oceanic variables (SST and HC) over the tropical Pacific (30°S–30°N, 120°E–80°W) and six atmospheric variables (outgoing longwave radiation, SLP, streamfunction, and velocity potential at 850?hPa and 200?hPa) over the tropical Indo-Pacific region (30°S–30°N, 60°E–80°W) for the period 1980–2010. Because the two new HC-based indices are capable of better depicting coherent variations between the ocean and atmosphere, they can provide a supplementary tool for ENSO monitoring of and climate research into the two flavours of El Niño.  相似文献   

5.
The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.  相似文献   

6.
This study examines southern African summer rainfall and tropical temperate troughs (TTTs) simulated with three versions of an atmospheric general circulation model differing only in the convection scheme. All three versions provide realistic simulations of key aspects of the summer (November–February) rainfall, such as the spatial distribution of total rainfall and the percentage of rainfall associated with TTTs. However, one version has a large bias in the onset of the rainy season. Results from self-organizing map (SOM) analysis on simulated daily precipitation data reveals that this is because the occurrence of TTTs is underestimated in November. This model bias is not related to westerly wind shear that provides favorable conditions for the development of TTTs. Rather, it is related to excessive upper level convergence and associated subsidence over southern Africa. Furthermore, the model versions are shown to be successful in capturing the observed drier (wetter) conditions over the southern African region during El Niño (La Niña) years. The SOM analysis reveals that nodes associated with TTTs in the southern (northern) part of the domain are observed less (more) often during El Niño years, while nodes associated with TTTs occur more frequently during La Niña years. Also, nodes associated with dry conditions over southern Africa are more (less) frequently observed during El Niño (La Niña) years. The models tend to perform better for La Niña events, because they are more successful in representing the observed frequency of different synoptic patterns.  相似文献   

7.
ABSTRACT

South Indian Ocean Rossby waves (SIO-RW) are identified in the Global Ocean Data Assimilation System (GODAS) 1.5–7?yr filtered sea surface height (SSH) time series. There is a persistent three-year oscillation in the 5°–15°S latitude band from 55° to 85°E. Field correlations show little coupling at 90°E, but as the SIO-RW undulates westward at approximately 0.19?m?s?1 across the mid-basin, a northwest–southeast axis of warm sea surface temperatures (SSTs) and deep convection forms. Many teleconnections in earlier work are confirmed: interannual pulses of zonal wind in the eastern basin trigger the SIO-RW via anticyclonic wind stress curl. New insights derive from an understanding of links with the upper troposphere. As the SIO-RWs move westward with the onset of an El Niño in the Pacific, increased convection over the north Indian Ocean corresponds to reduced evaporation and SST warming. Mid-tropospheric heating T′?>?2°C over the northwest Indian Ocean accelerates the southern sub-tropical jet to greater than 10?m?s?1 over the southeast Indian Ocean, reinforcing the anticyclonic vorticity. The downstream acceleration of the jet generates upper-level divergence and moist convection over the western basin, anchoring an atmospheric Rossby wave in a northwest–southeast alignment underpinned by differential propagation of the SIO-RW. As the ocean Rossby wave reaches Africa, the coupling fades and transitions. What distinguishes Indian Ocean from Pacific Ocean Rossby waves are their southern latitude and higher frequency. The tropical mid-tropospheric heating that accelerates the southern sub-tropical jet shifts westward in tandem with the SIO-RW.  相似文献   

8.
The change in the teleconnections of both El Niño and La Niña over the North Pacific and American regions due to a future greenhouse warming has been analyzed herein by means of diagnostics of the Intergovernmental Panel on Climate Change-Fourth Assessment Report (IPCC-AR4) coupled general circulation models (CGCMs). Among the IPCC-AR4 CGCM simulations, the composites of the eight-member multimodel ensemble are analyzed. In most CGCMs, the tropical Pacific warming due to the increase of CO2 concentration in the atmosphere promotes the main convection centers in the equatorial Pacific associated with both El Niño and La Niña to the east. The eastward shift of the convection center causes a systematic eastward shift of not only El Niño but also La Niña teleconnection patterns over the North Pacific and America, which is demonstrated in the composite maps of 500 hPa circulation, surface temperature, and the precipitation against El Niño and La Niña, as observed in a comparison between the pre-industrial and CO2 doubling experiments. Thus, a systematic eastward migration of convection centers in the tropical Pacific associated with both El Niño and La Niña due to a future global warming commonly causes the eastward shift of the atmospheric teleconnection patterns over the Northern Hemisphere.  相似文献   

9.
孙丹  薛峰  周天军 《大气科学进展》2013,30(6):1732-1742
Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.  相似文献   

10.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

11.
Cluster analysis of tropical cyclone tracks in the Southern Hemisphere   总被引:1,自引:0,他引:1  
A probabilistic clustering method is used to describe various aspects of tropical cyclone (TC) tracks in the Southern Hemisphere, for the period 1969–2008. A total of 7 clusters are examined: three in the South Indian Ocean, three in the Australian Region, and one in the South Pacific Ocean. Large-scale environmental variables related to TC genesis in each cluster are explored, including sea surface temperature, low-level relative vorticity, deep-layer vertical wind shear, outgoing longwave radiation, El Niño-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO). Composite maps, constructed 2 days prior to genesis, show some of these to be significant precursors to TC formation—most prominently, westerly wind anomalies equatorward of the main development regions. Clusters are also evaluated with respect to their genesis location, seasonality, mean peak intensity, track duration, landfall location, and intensity at landfall. ENSO is found to play a significant role in modulating annual frequency and mean genesis location in three of the seven clusters (two in the South Indian Ocean and one in the Pacific). The ENSO-modulating effect on genesis frequency is caused primarily by changes in low-level zonal flow between the equator and 10°S, and associated relative vorticity changes in the main development regions. ENSO also has a significant effect on mean genesis location in three clusters, with TCs forming further equatorward (poleward) during El Niño (La Niña) in addition to large shifts in mean longitude. The MJO has a strong influence on TC genesis in all clusters, though the amount modulation is found to be sensitive to the definition of the MJO.  相似文献   

12.
The influence of El Nio-Southern Oscillation (ENSO) on the convectively coupled Kelvin waves over the tropical Pacific is investigated by comparing the Kelvin wave activity in the eastern Pacific (EP) El Nio, central Pacific (CP) El Nio, and La Nia years, respectively, to 30-yr (1982-2011) mean statistics. The convectively coupled Kelvin waves in this study are represented by the two leading modes of empirical orthogonal function (EOF) of 2-25-day band-pass filtered daily outgoing longwave radiation (OLR), with the estimated zonal wavenumber of 3 or 4, period of 8 days, and eastward propagating speed of 17 ms-1 . The most significant impact of ENSO on the Kelvin wave activity is the intensification of the Kelvin waves during the EP El Nios. The impact of La Nia on the reduction of the Kelvin wave intensity is relatively weaker, reflecting the nonlinearity of tropical deep convection and the associated Kelvin waves in response to ENSO sea surface temperature (SST) anomalies. The impact of the CP El Nio on the Kelvin waves is less significant due to relatively weaker SST anomalies and smaller spatial coverage. ENSO may also alter the frequency, wavelength, and phase speed of the Kelvin waves. This study demonstrates that low-frequency ENSO SST anomalies modulate high-frequency tropical disturbances, an example of weather-climate linkage.  相似文献   

13.
Many features of the El Niño-Southern Oscillation (ENSO) display significant interdecadal changes. These include general characteristics such as amplitude, period, and developing features, and also nonlinearities, especially the El Niño-La Niña asymmetry. A review of previous studies on the interdecadal changes in the ENSO nonlinearities is provided. In particular, the methods for measuring ENSO nonlinearities, their possible driving mechanisms, and their interdecadal changes are discussed. Two methods for measuring ENSO nonlinearities are introduced; the maximum potential intensity, which refers to the upper and lower bounds of the cold tongue temperature, and the skewness, which represents the asymmetry of a probability density function. For example, positive skewness (a strong El Niño vs. a weak La Niña) of the tropical Pacific sea surface temperature (SST) anomalies is dominant over the eastern tropical Pacific, with an increase seen during recent decades (e.g., 1980–2000). This positive skewness can be understood as a result of several nonlinear processes. These include the warming effect on both El Niño and La Niña by nonlinear dynamic heating (NDH), which intensifies El Niño and suppresses La Niña; the asymmetric negative feedback due to tropical oceanic instability waves, which has a relatively stronger influence on the La Niña event; the nonlinear physics of the ocean mixed layer; the Madden-Julian-Oscillation/Westerly-Wind-Burst and ENSO interaction; the biological-physical feedback process; and the nonlinear responses of the tropical atmospheric convection to El Niño and La Niña conditions. The skewness of the tropical eastern Pacific SST anomalies and the intensities of the above-mentioned mechanisms have both experienced clear decadal changes in a dynamically associated manner. In particular, there is a dynamic linkage between the decadal changes in the El Niño-La Niña asymmetry and those in NDH. This linkage is based on the recent decadal changes in mean climate states, which provided a favorable condition for thermocline feedback rather than for zonal advection feedback, and thus promoted the eastward propagation of the ENSO-related atmospheric and oceanic fields. The eastward propagating ENSO mode easily produces a positive NDH, resulting in asymmetric ENSO events in which El Niño conditions are stronger than La Niña conditions.  相似文献   

14.
Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.  相似文献   

15.
Based on reanalysis data from 1979 to 2016, this study focuses on the sea surface temperature (SST) anomaly of the tropical North Atlantic (TNA) in El Niño decaying years. The TNA SST exhibits a clear warm trend during this period. The composite result for 10 El Niño events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Niño event and persists until summer. In general, the anomaly is associated with three factors—namely, El Niño, the North Atlantic Oscillation (NAO), and a long-term trend, leading to an increase in local SST up to 0.4°C, 0.3°C, and 0.35°C, respectively. A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño, as well as the local SST in the preceding winter, which may involve a long-term trend signal. In addition, the lead–lag correlation shows that the NAO leads the TNA SST by 2–3 months. By comparing two years with an opposite phase of the NAO in winter (i.e., 1992 and 2010), the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly. A negative phase of the NAO in winter will reinforce the El Niño forcing substantially, and vise versa. In other words, the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Niño. Therefore, the combined effects of El Niño and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.摘要基于1979年到2016年多种再分析资料, 本文分析了El Niño衰减年热带北大西洋的海温异常. 结果表明, 热带北大西洋海温在此期间呈显著变暖趋势. 10次El Niño事件的合成结果表明热带北大西洋海温异常在El Niño事件峰值之后的春季达到最大值, 并持续到夏季. 一般而言, 这种异常与三个因子有关, 即El Niño, 北大西洋涛动和长期趋势, 能分别导致局地海温上升0.4°C, 0.3°C和0.35°C. 1983年和2005年的对比分析表明, 尽管El Niño强度对春季北大西洋海温起到决定性作用, 与长期趋势密切相关的前冬海温也很重要. 此外, 超前-滞后相关结果表明北大西洋涛动超前海温约2–3个月. 比较两个冬季相反位相北大西洋涛动的年份 (即1992年和2010年) , 表明北大西洋涛动也能调制北大西洋海温异常. 冬季负位相北大西洋涛动能显著增强El Niño的强迫影响, 反之亦然. 换言之, 如果北大西洋涛动与El Niño位相相合, 衰减年北大西洋海温异常才更为显著. 因此, 为全面理解热带北大西洋海温变化, 除长期趋势外, 还必须考虑El Niño和北大西洋涛动的综合影响.  相似文献   

16.
Prediction skill for southern African (16°–33°E, 22°–35°S) summer precipitation in the Scale Interaction Experiment-Frontier coupled model is assessed for the period of 1982–2008. Using three different observation datasets, deterministic forecasts are evaluated by anomaly correlation coefficients, whereas scores of relative operating characteristic and relative operating level are used to evaluate probabilistic forecasts. We have found that these scores for December–February precipitation forecasts initialized on October 1st are significant at 95 % confidence level. On a local scale, the level of prediction skill in the northwestern and central parts of southern Africa is higher than that in northeastern South Africa. El Niño/Southern Oscillation (ENSO) provides the major source of predictability, but the relationship with ENSO is too strong in the model. The Benguela Niño, the basin mode in the tropical Indian Ocean, the subtropical dipole modes in the South Atlantic and the southern Indian Oceans and ENSO Modoki may provide additional sources of predictability. Within the wet season from October to the following April, the precipitation anomalies in December-February are the most predictable. This study presents promising results for seasonal prediction of precipitation anomaly in the extratropics, where seasonal prediction has been considered a difficult task.  相似文献   

17.
Present work compares impacts of El Niño Modoki and El Niño on anomalous climate in the Pacific rim during boreal winters of 1979–2005. El Niño Modoki (El Niño) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple “boomerangs” of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those “boomerangs” reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Niño Modoki owing to displacement of the wet “boomerang” arms more poleward toward east. Discontinuities at outer “boomerang” arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Niño Modoki, while much of the western USA is wet during El Niño. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Niño Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Niño. The East Asian winter monsoon related anticyclone is over the South China Sea during El Niño Modoki as compared to its position over the Philippine Sea during El Niño, causing opposite precipitation anomalies in the southern East Asia between the two phenomena.  相似文献   

18.
The impacts and cooperative effects of volcanic eruptions and ENSO (El Niño/Southern Oscillation) are analyzed in a millennium simulation for 800–2005 AD using the earth system model (ESM) ECHAM5/MPIOM/JSBACH subject to anthropogenic and natural forcings. The simulation comprises two ensembles, a first with weak (E1, five members) and a second with strong (E2, three members) variability total solar irradiance. In the analysis, the 21 most intense eruptions are selected in each ensemble member. Volcanoes with neutral ENSO states during two preceding winters cause a global cooling in the year after eruptions up to ?2.5°C. The nonsignificant positive values in the tropical Pacific Ocean indicate an El Niño-like warming. In the winter after an eruption, warming is mainly found in the Arctic Ocean and the Bering Sea in E2 warming extends to Siberia and central Asia. The recovery times for the volcano-induced cooling (average for 31 eruptions) vary globally between 1 and 12 years. There is no significant increase of El Niño events after volcanic eruptions in both ensembles. The simulated temperature and the drought indices are compared with corresponding reconstructions in East Asia. Volcanoes cause a dramatic cooling in west China (?2°C) and a drought in East China during the year after the eruption. The reconstructions show similar cooling patterns with smaller magnitudes and confirm the dryness in East China. Without volcanoes, El Niño events reduce summer precipitation in the North, while South China becomes wetter; La Niña events cause opposite effects. El Niño events in the winters after eruptions compensate the cooling caused by volcanoes in most regions of China (consistent with reconstructions), while La Niña events intensify the cooling (up to ?2.5°C). The simulated and reconstructed drought indices show tripole patterns which are altered by El Niño events. The simulated impact of the Tambora eruption in 1815, which caused the “year without summer” of 1816 in Europe and North America and led to coldness and famines in the Chinese province Yunnan, depends crucially on the ENSO state of the coupled model. A comparison with reconstructed El Niño events shows a moderate cool climate with wet (in the south) and extreme dry anomalies (in the north) persisting for several years.  相似文献   

19.
Understanding the SAM influence on the South Pacific ENSO teleconnection   总被引:3,自引:1,他引:2  
The relationship between the El Niño Southern Oscillation (ENSO) and the Southern Hemisphere Annular Mode (SAM) is examined, with the goal of understanding how various strong SAM events modulate the ENSO teleconnection to the South Pacific (45°–70°S, 150°–70°W). The focus is on multi-month, multi-event variations during the last 50 years. A significant (p < 0.10) relationship is observed, most marked during the austral summer and in the 1970s and 1990s. In most cases, the significant relationship is brought about by La Niña (El Niño) events occurring with positive (negative) phases of the SAM more often than expected by chance. The South Pacific teleconnection magnitude is found to be strongly dependent on the SAM phase. Only when ENSO events occur with a weak SAM or when a La Niña (El Niño) occurs with a positive (negative) SAM phase are significant South Pacific teleconnections found. This modulation in the South Pacific ENSO teleconnection is directly tied to the interaction of the anomalous ENSO and SAM transient eddy momentum fluxes. During La Niña/SAM+ and El Niño/SAM? combinations, the anomalous transient momentum fluxes in the Pacific act to reinforce the circulation anomalies in the midlatitudes, altering the circulation in such a way to maintain the ENSO teleconnections. In La Niña/SAM? and El Niño/SAM+ cases, the anomalous transient eddies oppose each other in the midlatitudes, overall acting to reduce the magnitude of the high latitude ENSO teleconnection.  相似文献   

20.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号