首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper examines marine geophysical and geological data, and new multibeam bathymetry data to describe the Pleistocene sediment and landform record of a large ice‐stream system that drained ~3% of the entire British?Irish Ice Sheet at its maximum extent. Starting on the outer continental shelf NW of Scotland we describe: the ice‐stream terminus environment and depocentre on the outer shelf and continental slope; sediment architecture and subglacial landforms on the mid‐shelf and in a large marine embayment (the Minch); moraines and grounding line features on the inner shelf and in the fjordic zone. We identify new soft‐bed (sediment) and hard‐bed (bedrock) subglacial landform assemblages in the central and inner parts of the Minch that confirm the spatial distribution, coherence and trajectory of a grounded fast‐flowing ice‐sheet corridor. These include strongly streamlined bedrock forms and megagrooves indicating a high degree of ice‐bed coupling in a zone of flow convergence associated with ice‐stream onset; and a downstream bedform evolution (short drumlins to km‐scale glacial lineations) suggesting an ice‐flow velocity transition associated with a bed substrate and roughness change in the ice‐stream trunk. Chronology is still lacking for the timing of ice‐stream demise; however, the seismic stratigraphy, absence of moraines or grounding‐line features, and presence of well‐preserved subglacial bedforms and iceberg scours, combined with the landward deepening bathymetry, all suggest that frontal retreat in the Minch was probably rapid, via widespread calving, before stabilization in the nearshore zone. Large moraine complexes recording a coherent, apparently long‐lived, ice‐sheet margin position only 5–15 km offshore strongly support this model. Reconstructed ice‐discharge values for the Minch ice stream (12–20 Gt a?1) are comparable to high mass‐flux ice streams today, underlining it as an excellent palaeo‐analogue for recent rapid change at the margins of the Greenland and West Antarctic Ice Sheets.  相似文献   

3.
The Tyne Gap is a wide pass, situated between the Scottish Southern Uplands and the English Pennines that connects western and eastern England. It was a major ice flow drainage pathway of the last British–Irish Ice Sheet. This study presents new glacial geomorphological and sedimentological data from the Tyne Gap region that has allowed detailed reconstructions of palaeo‐ice flow dynamics during the Late Devensian (Marine Isotope Stage 2). Mapped lineations reveal a complex palimpsest pattern which shows that ice flow was subject to multiple switches in direction. These are summarised into three major ice flow phases. Stage I was characterised by convergent Lake District and Scottish ice that flowed east through the Tyne Gap, as a topographically controlled ice stream. This ice stream was identified from glacial geomorphological evidence in the form of convergent bedforms, streamlined subglacial bedforms and evidence for deformable bed conditions; stage II involved northerly migration of the Solway Firth ice divide back into the Southern Uplands, causing the easterly flow of ice to be weakened, and resulting in southeasterly flow of ice down the North Tyne Valley; and stage III was characterised by strong drawdown of ice into the Irish Sea Ice Basin, thus starving the Tyne Gap of ice and causing progressive ice sheet retreat westwards back across the watershed, prior to ice stagnation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Although drumlins and other subglacial bedforms are well-studied features, controls on their formation and morphometry have remained elusive. Of current interest is the hypothesis that elongate bedforms (length:width ratios ≥ 10) indicate fast ice flow, and perhaps the location of past ice streams. This hypothesis is explored by analysing drumlins from the New York State drumlin field. A subset of 548 drumlins between Oneida Lake and Lake Ontario was digitized using 10-m grid cell digital elevation data. Because bedform elongation is greatest along the axis of a reconstructed lobe and increases down flowline, elongate bedforms are best explained by fast ice flow. The swath of elongate bedforms between lakes Ontario and Oneida, the boundaries of which do not coincide with topography, may signify the location of an ice stream during deglaciation.  相似文献   

5.
Large‐scale streamlined glacial landforms are identified in 11 areas of northwest Scotland, from the Isle of Skye in the south to the Butt of Lewis in the north. These ice‐directional features occur in bedrock and superficial deposits, generally below 350 m above sea level, and where best developed have elongation ratios of >20:1. Sidescan sonar and multibeam echo‐sounding data from The Minch show elongate streamlined ridges and grooves on the seabed, with elongation ratios of up to 70:1. These bedforms are interpreted as mega‐scale glacial lineations. All the features identified formed beneath The Minch palaeo‐ice stream which was ca. 200 km long, up to 50 km wide and drained ca. 15 000 km2 of the northwest sector of the last British‐Irish Ice Sheet (Late Devensian Glaciation). Nine ice‐stream tributaries and palaeo‐onset zones are also identified, on the basis of geomorphological evidence. The spatial distribution and pattern of streamlined bedforms around The Minch has enabled the catchment, flow paths and basal shear stresses of the palaeo‐ice stream and its tributaries to be tentatively reconstructed. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Ascertaining the location of palaeo‐ice streams is crucial in order to produce accurate reconstructions of palaeo‐ice sheets and examine interactions with the ocean–climate system. This paper reports evidence for a major ice stream in Amundsen Gulf, Canadian Arctic Archipelago. Mapping from satellite imagery (Landsat ETM+) and digital elevation models, including bathymetric data, is used to reconstruct flow‐patterns on southwestern Victoria Island and the adjacent mainland (Nunavut and Northwest Territories). Several flow‐sets indicative of ice streaming are found feeding into the marine trough and cross‐cutting relationships between these flow‐sets (and utilising previously published radiocarbon dates) reveal several phases of ice stream activity centred in Amundsen Gulf and Dolphin and Union Strait. A large erosional footprint on the continental shelf indicates that the ice stream (ca. 1000 km long and ca. 150 km wide) filled Amundsen Gulf, probably at the Last Glacial Maximum. Subsequent to this, the ice stream reorganised as the margin retreated back along the marine trough, eventually splitting into two separate low‐gradient lobes in Prince Albert Sound and Dolphin and Union Strait. The location of this major ice stream holds important implications for ice sheet–ocean interactions and specifically, the development of Arctic Ocean ice shelves and the delivery of icebergs into the western Arctic Ocean during the late Pleistocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
It has been suggested that extremely long subglacial bedforms (e.g. attenuated drumlins and mega-scale glacial lineations) record former areas of fast-flowing ice and that bedform elongation ratio is a useful proxy for ice velocity. Despite the availability of much data pertaining to the measurement and analysis of subglacial bedforms, these assumptions have rarely been explicitly addressed in detail. In this paper, we demonstrate that long subglacial bedforms (length:width ratios ≥10:1) are indicative of fast ice flow. Using satellite imagery, we mapped over 8000 lineaments associated with a highly convergent flow pattern near Dubawnt Lake, District of Keewatin, Canada. This flow pattern is unusual in that it displays a large zone of convergence feeding into a main 'trunk' and then diverging towards the inferred ice margin. The 'bottleneck' pattern is taken to record an increase and subsequent decrease in ice velocity and we analysed transverse and longitudinal variations in bedform morphometry. The main trunk of the flow pattern (down-ice of the convergent zone) is characterized by mega-scale glacial lineations of great length (up to 13 km) and high elongation ratios (up to 43:1). The down-ice variations in elongation ratio reflect exactly what we would expect from a terrestrial ice stream whose velocity increases in the onset zone passes through a maximum in the main trunk and slows down as the ice diverges at the terminus. It is suggested that any unifying theory of drumlin formation must be able to account for the association between long subglacial bedforms and fast ice flow, although it is not assumed that fast ice flow always produces attenuated bedforms. A further implication of this work is that many more ice streams may be identified on the basis of attenuated subglacial bedforms, radically altering our views on the flow dynamics of former ice sheets.  相似文献   

8.
This study investigates the marginal subglacial bedrock bedforms of Jakobshavns Isbrae, West Greenland, in order to examine the processes governing bedform evolution in ice stream and ice sheet areas, and to reconstruct the interplay between ice stream and ice sheet dynamics. Differences in bedform morphology (roche moutonnee or whaleback) are used to explore contrasts in basal conditions between fast and slow ice flow. Bedform density is higher in ice stream areas and whalebacks are common. We interpret that this is related to higher ice velocities and thicker ice which suppress bed separation. However, modification of whalebacks by plucking occurs during deglaciation due to ice thinning, flow deceleration, crevassing and fluctuations in basal water pressure. The bedform evidence points to widespread basal sliding during past advances of Jakobshavns Isbrae. This was encouraged by increased basal temperatures and melting at depth, as well as the steep marginal gradients of Jakobshavns Isfjord which allowed rapid downslope evacuation of meltwater leading to strong ice/bedrock coupling and scouring. In contrast to soft-bedded ice stream bedforms, the occurrence of fixed basal perturbations and higher bed roughness in rigid bed settings prevents the basal ice subsole from maintaining a stable form which, coupled with secondary plucking, counteracts the development of bedforms with high elongation ratios. Cross-cutting striae and double-plucked, rectilinear bedforms suggest that Jakobshavns Isbrae became partially unconfined during growth phases, causing localised diffluent flow and changes in ice sheet dynamics around Disko Bugt. It is likely that Disko Bugt harboured a convergent ice flow system during repeated glacial cycles, resulting in the formation of a large coalesced ice stream which reached the continental shelf edge.  相似文献   

9.
The presence of a complex bedform arrangement on the sea floor of the continental shelf in the western Amundsen Sea Embayment, West Antarctica, indicates a multi-temporal record of flow related to the activity of one or more ice streams in the past. Mapping and division of the bedforms into distinct landform assemblages reveals their time-transgressive history, which implies that bedforms can neither be considered part of a single downflow continuum nor a direct proxy for palaeo-ice velocity, as suggested previously. A main control on the bedform imprint is the geology of the shelf, which is divided broadly between rough bedrock on the inner shelf, and smooth, dipping sedimentary strata on the middle to outer shelf. Inner shelf bedform variability is well preserved, revealing information about local, complex basal ice conditions, meltwater flow, and ice dynamics over time. These details, which are not apparent at the scale of regional morphological studies, indicate that past ice streams flowed across the entire shelf at times, and often had onset zones that lay within the interior of the Antarctic Ice Sheet today. In contrast, highly elongated subglacial bedforms on sedimentary strata of the middle to outer shelf represent a timeslice snapshot of the last activity of ice stream flow, and may be a truer representation of fast palaeo-ice flow in these locations. A revised model for ice streams on the shelf captures complicated multi-temporal bedform patterns associated with an Antarctic palaeo-ice stream for the first time, and confirms a strong substrate control on a major ice stream system that drained the West Antarctic Ice Sheet during the Late Quaternary.  相似文献   

10.
This paper investigates the processes governing bedrock bedform evolution in ice sheet and ice stream areas in central West Greenland, and explores the evidence for a cross‐shelf ice stream at the Last Glacial Maximum (LGM). To the east of Sisimiut the formation of streamlined bedforms with high elongation ratios and high bedform density has been controlled by geological structure and topography in slow‐flowing ice sheet areas. At the coast, the effects of regional flow convergence, caused by coastal fjord orientation, routed ice into the Sisimiut/Itilleq area where it formed an ice stream onset zone. This funnelled ice into an offshore trough (Holsteinsborg Dyb), resulting in a southwesterly regional ice flow direction and the formation of a topographically routed ice stream (Holsteinsborg Isbrae). To the south of this, striae and bedform evidence show that local valley glaciers initially flowed east to west across the coast, but were later redirected by the Itilleq Fjord ice which turned southwestward due to diffluent flow and deflection by Holsteinsborg Isbrae. Roches moutonnées in this area have low elongation ratios and high bedform density, but do not provide unequivocal support for ice streaming, as they are a product of both bedrock structure and changes in ice flow direction, rather than enhanced flow velocities. Cosmogenic surface exposure ages limit maximum ice sheet surface elevation to ca. 755–810 m above sea level in this region. Such ice thickness enabled Holsteinsborg Isbrae to reach the mid/outer continental shelf during the LGM, and to contribute to the formation of a trough mouth fan and the Outer Hellefisk moraines. Initial deglaciation across this region was driven by rising sea level and increasing air temperatures prior to the Bølling Interstadial at ca. 14.5 cal. ka BP. Between 12 and 10 cal. ka BP both increased air and ocean temperatures post the Younger Dryas, and peak sea‐level rise up to the marine limit, caused accelerated thinning and marginal retreat through calving, although dating evidence suggests ice streams remained along the inner shelf/coast boundary until at least ca. 10 cal. ka BP, their longevity maintained by increased ice thickness and ice discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

12.
High resolution swath bathymetry data reveal a previously glaciated submarine terrain 20 km offshore Anglesey, north Wales, UK. The detailed documentation of remarkably well-preserved subglacial and ice-marginal bedforms provides evidence for a grounded part of the Irish Sea Ice Stream in a phase of deglaciation. The observed ribbed moraines, drumlins, flutes and eskers indicate a converging ice flow to the west, which then turns south into the deeper central Irish Sea Basin. Using the relative position of the bedforms, their spatial distribution and the morphological resemblance with bedforms described in the literature, this subglacial terrain is interpreted as representing a transition zone of frozen to thawed bed conditions during deglaciation, with an eastwards migrating thawing front that partly altered the edge of the surveyed ribbed moraine field by drumlinization. The abundant De Geer moraines and iceberg scour marks superimposed on drumlins and flutes reveal that the final retreat of the grounded ice margin in the surveyed area terminated into a water-mass with extensive iceberg calving. As the glacial terrain is well preserved, no significant burial has taken place, either by glacially or terrestrially derived sediment. The strong tidal currents at present keep the submarine terrain swept clean of contemporary sediment cover.  相似文献   

13.
《Quaternary Science Reviews》2007,26(5-6):627-643
Buried submarine landforms mapped on 3D reflection seismic data sets provide the first glacial geomorphic evidence for glacial occupation of the central North Sea by two palaeo-ice-streams, between 58–59°N and 0–1°E. Streamlined subglacial bedforms (mega-scale glacial lineations) and iceberg plough marks, within the top 80 m of the Quaternary sequence, record the presence and subsequent break-up of fast-flowing grounded ice sheets in the region during the late Pleistocene. The lengths of individual mega-scale glacial lineations vary from ∼5 to ∼20 km and the distance between lineations typically ranges from 100 to 1000 m. The lineations incise to a depth of 10–12 m, with trough widths of ∼100 m. The most extensive and best-preserved set of lineations, is attributed to the action of a late Weichselian ice stream which either drained the NE sector of the British–Irish ice sheet or was sourced from the SW within the Fennoscandian ice sheet. The 30–50 km wide palaeo ice-stream is imaged along its flow direction for 90 km, trending NW–SE. An older set of less well-preserved lineations is interpreted as an earlier Weichselian or Saalian ice-stream, and records ice flow in an SW–NE orientation. Cored sedimentary records, tied to 3D seismic observations, support grounded ice sheet coverage in the central North Sea during the last glaciation and indicate that ice flowed over a muddy substrate that is interpreted as a deformation till. The identification of a late Weichselian ice stream in the Witch Ground area of the North Sea basin provides independent geomorphic evidence in support of ice-sheet reconstructions that favour complete ice coverage of the North Sea between Scotland and Norway during the Last Glacial Maximum.  相似文献   

14.
Buried palaeo‐valley systems have been identified widely beneath lowland parts of the UK including eastern England, central England, south Wales and the North Sea. In the Midland Valley of Scotland palaeo‐valleys have been identified yet the age and genesis of these enigmatic features remain poorly understood. This study utilizes a digital data set of over 100 000 boreholes that penetrate the full thickness of deposits in the Midland Valley of Scotland. It identified 18 buried palaeo‐valleys, which range from 4 to 36 km in length and 24 to 162 m in depth. Geometric analysis has revealed four distinct valley morphologies, which were formed by different subglacial and subaerial processes. Some palaeo‐valleys cross‐cut each other with the deepest features aligning east–west. These east–west features align with the reconstructed ice‐flow direction under maximum conditions of the Main Late Devensian glaciation. The shallower features appear more aligned to ice‐flow direction during ice‐sheet retreat, and were therefore probably incised under more restricted ice‐sheet configurations. The bedrock lithology influences and enhances the position and depth of palaeo‐valleys in this lowland glacial terrain. Faults have juxtaposed Palaeozoic sedimentary and igneous rocks and the deepest palaeo‐valleys occur immediately down‐ice of knick‐points in the more resistant igneous bedrock. The features are regularly reused and the fills are dominated by glacial fluvial and glacial marine deposits. This suggests that the majority of infilling of the features happened during deglaciation and may be unrelated to the processes that cut them.  相似文献   

15.
This paper presents a detailed palaeoglaciological reconstruction of ice sheet dynamics in the Seno Skyring, Seno Otway and Strait of Magellan region of the former Patagonian Ice Sheet, with a particular focus on previously hypothesised zones of rapid ice flow and the evolution of proglacial lakes. Geomorphological mapping from a combination of satellite imagery and oblique and vertical aerial photographs reveals a variety of glacial landforms that are grouped into several discrete flow‐sets and associated ice margin positions. The most distinct features are represented by flow‐sets of highly elongate streamlined glacial lineations on both sides of the Strait of Magellan. Based on the shape and dimensions of the flow‐sets and their abrupt lateral margins, a transverse and longitudinal variation in glacial lineation length and elongation ratio, and the reported presence of a potentially deformable bed and thrust moraines, the flow‐sets are interpreted as zones of rapid ice flow within the Otway and Magellan lobes. We hypothesise that this provides evidence for contemporaneous surge‐like advances within the lobes, which may explain the asymmetry in the lobate margin positions on either side of the strait. The mechanisms that initiated rapid flow are unclear, but are likely to have been influenced by internal factors such as a change in thermal/hydrological conditions at the bed. The topography of the region suggests ice‐dammed lakes would have formed as the ice lobes retreated. The westernmost of the former lakes, Lake Skyring, is delimited by a series of palaeo‐shorelines surrounding the present‐day lake Laguna Blanca and we reconstruct lake evolution based on manipulation of a digital elevation model. The size and orientation of meltwater channels and a large outwash plain indicate that Lake Skyring drained eastwards towards the Strait of Magellan, probably quite rapidly. We conclude that the potential for quasi‐independent surge‐like behaviour within adjacent lobes raises the possibility that, during climate‐driven ice expansion, some advances in this region may have been partly controlled by secondary internal feedback mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The properties of streamlined glacial landforms and palaeo‐flow indicators in the valleys of Viðidalur, Vatnsdalur and Svínadalur in northern Iceland were quantified using spatial analyses. Drumlins and mega‐scale glacial lineations (MSGL) were visually identified using satellite imagery from Google Earth, the National Land Survey of Iceland (NLSI) Map Viewer and Landsat satellites, and using aerial photographs from the NLSI. A semi‐automated technique was developed using ENVI to determine regions in northern Iceland likely to contain streamlined landforms. The outlines of the identified landforms were manually delineated in Google Earth, and all analyses were conducted in ArcGIS using a 20 m digital elevation model (DEM) of Iceland from the NLSI. Smaller features such as flutes, grooves and striations were measured in the field. At least 543 drumlins and 90 MSGL were identified in the three valleys. Average elongation ratios for Viðidalur, Vatnsdalur and Svínadalur are 4.3:1, 5.2:1 and 6.7:1, respectively. The average density of streamlined landforms is 2.34 landforms per 1 km2. Striations and orientation data of the drumlins and MSGL demonstrate ice flow to the northwest into Húnaflói. Parallel conformity is higher in the valley of Svínadalur (9° standard deviation) than in Viðidalur (12°) and Vatnsdalur (16°). Packing values are generally higher in the centre of each valley. The properties of streamlined landforms in the valleys of Viðidalur, Vatnsdalur and Svínadalur support the presence of palaeo‐ice stream activity on northern Iceland. Palaeo‐ice streams flowed from these regions into Húnaflói, supplying ice to the margin of the Iceland Ice Sheet during the Last Glacial Maximum. These palaeo‐ice streams provide a mechanism for ice centres from the mainland of Iceland to reach the shelf‐slope break.  相似文献   

17.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

18.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   

19.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

20.
Evidence for former fast glacier flow (ice streaming) in the southwest Laurentide Ice Sheet is identified on the basis of regional glacial geomorphology and sedimentology, highlighting the depositional processes associated with the margin of a terrestrial terminating ice stream. Preliminary mapping from a digital elevation model of Alberta identifies corridors of smoothed topography and corridor‐parallel streamlined landforms (megaflutes to mega‐lineations) that display high levels of spatial coherency. Ridges that lie transverse to the dominant streamlining patterns are interpreted as: (a) series of minor recessional push moraines; (b) thrust block moraines or composite ridges/hill–hole pairs constructed during readvances/surges; and (c) overridden moraines (cupola hills), apparently of thrust origin. Together these landforms demarcate the beds and margins of former fast ice flow trunks or ice streams that terminated as lobate forms. Localised cross‐cutting and/or misalignment of flow sets indicates temporal separation and the overprinting of ice streams/lobes. The fast‐flow tracks are separated by areas of interlobate or inter‐stream terrain in which moraines have been constructed at the margins of neighbouring (competing) ice streams/outlet glaciers; this inter‐stream terrain was covered by more sluggish, non‐streaming ice during full glacial conditions. Thin tills at the centres of the fast‐flow corridors, in many places unconformably overlying stratified sediments, suggest that widespread till deformation may have been subordinate to basal sliding in driving fast ice flow but the general thickening of tills towards the lobate terminal margins of ice streams/outlet glaciers is consistent with subglacial deformation theory. In this area of relatively low relief we speculate that fast glacier flow or streaming was highly dynamic and transitory, sometimes with fast‐flowing trunks topographically fixed in their onset zones and with the terminus migrating laterally. The occurrence of minor push moraines and flutings and associated landforms, because of their similarity to modern active temperate glacial landsystems, are interpreted as indicative of ice lobe marginal oscillations, possibly in response to seasonal climatic forcing, in locations where meltwater was more effectively drained from the glacier bed. Further north, the occurrence of surging glacier landsystems suggests that persistent fast glacier flow gave way to more transitory surging, possibly in response to the decreasing size of ice reservoir areas in dispersal centres and also locally facilitated by ice‐bed decoupling and drawdown initiated by the development of ice‐dammed lakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号