首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1989年8月16日,太阳AR5629活动区(S16W96)上空发生一X20的X—射线耀斑。我们取得该耀斑色球Hα单色光照相序列观测资料,该光学耀斑(S16W90)是,1.寿命:约13个小时.到0732—0734UT达极大;2.结构,成环状系、分主环与次  相似文献   

2.
这群黑子于1988年4月13日出现在日面的东边缘。怀柔编号:88037; Boulder编号4990。日面位置N22,L314。其磁场极性较为复杂,17日在后随主黑子的右上方爆发一次较大的耀斑,尔后在18日、20日和21日在前导与后随之间又不断有些小的耀斑爆发.在此期间,怀柔太阳磁场望远镜取得了光球纵向磁场、光球5324A的单色象、H_β的耀斑单色像和H_β视向磁场的大量资料。 16日后随主黑子右上方有一分立的小黑子(S极),17日,耀斑就产生在它们之间(图1中的圆圈表示耀斑发生的位置)。从图2a、b可以看到,这里的极性复杂,异极性磁区互相挤压。耀斑发生在B_(11)=0的磁场中性线一侧,同样是避开了黑子的本影。这与已有的结论是相一致的。对比16日(图2a)和17日(图2b)的纵场磁图,可以看到在标有1和2的地方分别有一N极在向S极挤压。17日N极把S极分割开来。在2处,N极本来是互相连接的,但其临近的S极亦不断向其挤压渗透,耀斑前,S极把N极给断开了。在这些地方,17日UT0423时,爆发了耀斑,UT0430时,耀斑达到极大,可以看出,耀斑的亮核位于异极区挤压的前峰。耀斑发生的位置的纵场梯度为0.18G/Km。后随黑子的右上方,耀斑爆发前(图2a)其最大磁场强度为640G,爆发后(图2c)最大磁场强度为160G。这表明爆发的过程也是能量释放的过程。 虽然耀斑的单  相似文献   

3.
本文提出了1981年4月27日日面西边缘耀斑以后的爆发环珥的H_a观测资料和分析.在这事件中,我们可以清楚地看到环的缠绕过程.从这些资料可看出环的运动与缠绕有紧密的联系.我们还观测到一些有趣的现象:在08~(h)29~(m)30~(s)和08~(h)33~(m)UT时在环顶(其高度约为2.6×10~4公里)分别出现持续时间约为1分钟的奇特的“吸收结构”,同时观测到3厘米波段的射电辐射强度相应有例外的下降,而8毫米和10厘米波段的射电辐射强度无此变化.  相似文献   

4.
AR5047活动区是第3次联测期(1988年6月24日-7月7日)的第1个目标。该活动区在22日前只发生过一些级别很低的小耀斑,但是在23日和24日接连爆发4个X级的X射线耀斑,其中23日0923UT的1B/X1.6耀斑和24日0422UT的2B/X1.3耀斑均被云南天文台26CM太阳望远镜观测到。特别是24日的2B/X1.3耀斑除用Hα线心之外。还用±0.5A;±0.75A;±1.0A的偏带作高时间分辨(~5秒拍摄1画幅)的观测。 本文刊载该耀斑的Hα和偏带时间发展系列照片和耀斑开始时的白光黑子群精细结构照片。 从系列的耀斑像上清楚看出该耀斑有好几个初始亮点在不同时间发亮并到达其亮度和面积极大。比对Hα和偏带单色像以及白光黑子群的精细结构指出,耀斑主要亮块发生在黑子群的破裂处,并遮盖主要黑子的大部分。  相似文献   

5.
根据Hα色球和光球磁场资料对AR5395中观测到的耀斑进行分析,致密(Ⅰ型)耀斑的特点是整个磁力线管发亮,横跨在磁性反转线上。双带(Ⅱ型)耀斑的亮块分布在磁性反转线两侧,通常不易看到发亮的磁力线管或环弧系。发生在0244UT,3月9  相似文献   

6.
地磁脉动作为在地面或磁层内记录到的磁流体波覆盖了很宽的频率范围(10~(-3)~10Hz),称为超低频波(ULF)。目前国际上粗略地将地磁脉动分为连续脉动(Pc)和无规脉动(Pi)两大类。Pc主要在磁平静条件下观测到的长时间连续的准正弦形的脉动。而Pi则与磁层扰动即与太阳活动有较密切的联系。 太阳耀斑效应的地磁脉动Psfe: 图1给出1988年12月16日0836UT的Psfe,由0833UT的3B级耀斑爆发引起。这类脉动过去讨论的并不多,基本特性如下: (1)只有较强的耀斑(通常二级以上)才激发这类脉动。(2) 脉动的开始通常落后于耀斑爆发时间数分钟。(3) 这类脉动必然伴随电离层D层的突然骚扰(SID)。(4)其东西分量常比南北分量强得多。(5)幅度通常较小(1nT左右)。 目前认为:Psfe脉动是耀斑引起电离层电导率局部的突然增强,因而产生电离层电流体系的扰动,它的直接激发源在电离层内,这与其它主要类型脉动源于磁层有本质不同。 与磁爆急始相关的地磁脉动Psc:图2给出1988年12月18日0225UT的伴随磁爆急始的Psc脉动。通常认为是高速太阳风对向阳面磁层的突然压缩而形成激波,这已为空间观测证实。当激波扫过地球时即观测到Psc,它是全球性的现象。Psc通常是脉冲式的,也可能含有衰减振荡。幅度很大,可达十几个nT。 Pi2脉动一磁层亚暴开始的指  相似文献   

7.
利用国家天文台(北京和昆明)的射电频谱仪(频段为0.65~7.6 GHz)和相关的NoRH/17GHz射电以及TRACE/171 EUV和Yohkoh/SXT的观测资料,分析了2001/04/10和10/19的2个共生精细时间结构的稀有事件,这2个事件的射电爆发时间轮廓和观测特征相似,通过这2个事件的微波(17GHz)偏振观测资料的比较,发现这2个射电爆发均由包含多重(4极)磁结构的复杂活动区引起,特别指出这2个耀斑最后都导致了耀斑后相的分米波射电爆发(第二次触发耀斑),这可能是后环引起的射电爆发。它们都分别对应于双极磁位形,表明这两次触发耀斑是由相似的耀斑模型产生。2个分米波爆发可能是相似(homologous)耀斑的射电表现,可以推测这两次耀斑的驱动器可能皆是磁流浮现或对消(因为源区有新的单或双极出现或消失),而它们的触发器皆是由双极反向Y型位形(具有一个双极拱的单磁流系统)的磁重联,耀斑后环的演化是导致耀斑后相分米波射电爆发的必要条件。我们认为,这双带耀斑对应的宽带射电爆发辐射机制是回旋同步加速辐射过程,而耀斑后相的窄带分米波爆发的辐射机制是等离子体辐射过程。  相似文献   

8.
利用色球Hα线心像、TRACEUV和SOHO/EITEUV单色像、SOHO/LASCO白光日冕观测、SOHO/MDI光球磁图以及Nobeyama射电观测,对2004年1月8日日面边缘δ位形黑子群AR10537内发生的一个M1.3耀斑及相关的CME进行了初步的分析。该耀斑除了位于反极性磁场区域、覆盖部分黑子半影的两个主耀斑带外,还伴随有一个明显的远距离耀斑带,这表明有扰动能量沿大尺度日冕结构从耀斑源区向外传播。这一远区增亮处随后有EITdimming出现,表明色球蒸发导致的物质损失可能是产生日冕dimming的重要因素。另外,位于远距离耀斑带南面的一个大宁静暗条在耀斑发生后有部分消失,这可能与该耀斑导致的大尺度日冕磁场重构有关。该耀斑爆发与LASCO观测到的一个快速partialhaloCME在空间和时间上具有密切的关系,它们极可能是相同磁场过程在日冕的不同表现,故我们将此耀斑及与之伴随的日冕dimming认证为这一CME的日面源区。  相似文献   

9.
AR5629的太阳活动区于8月17日转到日背面(S16W109),约于0104UT在其上空出现了一大环状耀斑,同时伴随有X2.9级的X—射线爆和射电10厘米流量达到5600流量单位的射电爆。我们取得该耀斑的几个时段的二维光谱Hα和Hβ两波段  相似文献   

10.
AR5060是No.Ⅳ联测期中的第二个目标活动区。它从1988年6月25日东边缘初现到7月8日转出西边缘消失的14天中,黑子群一直保持最复杂的FKC、EKC型和最复杂的BGD磁型。6月29日黑子群面积发展到3000面积单位,是第22周以来第一群最大的黑子(更大的是1989年3月的AR5395,面积达3600单位)。该活动区的黑子群发生过强烈的运动和磁性重联。似乎具备发生强烈大耀斑的位形特征和动力学条件,可是在这期间,全球耀斑监测所观测到的120多个耀斑(据SGD)中,亚耀斑占81%,1级耀斑占15%,2级耀斑只有3个占4%,而且这3个2级耀斑的X射线级别只达到M6.5,M9.2,M3.9,没有一个达到X级。 在AR5060活动区耀斑活动高峰期的6月28日,29日,30日和7月1日这四天中,云南天文台26CM太阳望远镜观测到其中一个2B/M6.5耀斑(1988年6月29日0737UT)、几个1级耀斑和其它许多亚耀斑。从黑子群和色球单色照片上作耀斑发生点同黑子相对位置的比较,结果是出乎意料的,在结构复杂、运动剧烈的黑子群内部发生的都是小耀斑,而3个2B/M级耀斑都发生在黑子群以外只有卫星黑子浮现和消失的时期和地点。  相似文献   

11.
本文研究了活动区5229中的H_β耀斑和磁场的关系。所用资料为北京天文台怀柔太阳观测站1988年11月13—18日期间获得的(时值活动区5229位于E40°W40°)。按活动区磁场演化情况,考察了新浮现磁流、磁剪切和磁对消与耀斑形成的关系。 图1a-1f给出了怀柔站观测到的11个H_β耀斑及87个耀斑核在纵向磁图上的情况。磁图以等高斯线形式给出,图中虚线表示负极,实线表示正极,等高斯线由外向内分别为20,40,80,160,320,640,960,1280,1600,1920,2240,2580,2800高斯。黑色小块表示Hβ耀斑核。其中有四分之三的Hβ耀斑核离开极性反变线的距离在10弧秒之内。发生在该活动区的耀斑超过80个,而怀柔站观测的仅是很小一部分。这对于耀斑建立过程的研究是很不够的,必需补充其他天文台的资料。注意到周报上已列出该活动区的软X射线(1~8A)M1.0级以上的高能耀斑事件,将它们补充进图1,用黑色三角形表示,画其位置时考虑到耀斑、黑子及磁特征之间的关系和它们彼此之间的时间差,并按Howard和Harvey给出的较差自转公式进行了改正。10个高能耀斑事件中有6个可能与磁特征N_3,N_7和P_2的衰减(即对消,另一极性在复杂活动区中衰减不明显)有关;另外的事件可能与发生在磁特征N_2、P_2之间的磁剪切有关。  相似文献   

12.
1989年1月14日AR5312(怀柔编号89009)活动区,产生了一个2B级耀斑。该活动区经纬度为L306、S32,黑子群磁场分类为δ型。耀斑开始时间为0202UT,结束为0534UT,持续了3个多小时。北京天文台磁场望远镜,得到了一系列较完整的高分辨磁场及速度场资料,包括光球5324A的矢量磁场图和色球4861A的纵向磁场图(图1、2)。从耀斑前后的磁图得到以下结果: 1、耀斑初始亮点位于纵向磁场中性线附近高度剪切区域(见图1B区)、新浮磁流区(图2D区)以及双极磁结构对消区。前两种区域均能形成电流片,并且引起磁流体不稳定性,从而激发耀斑,但对消区和耀斑的关系不是很清楚,有待于理论工作者进一步探讨。 2、耀斑极大时间过后,光球和色球H_(11)=0线附近纵场梯度均有明显下降。 3、在强剪切区域(图1B区),5324A横向磁场和H_(11)=0线之间的夹角在耀斑极大时间过后有明显增大,该现象表明磁能释放后,磁场剪切缓解。 4、耀斑初始亮点产生后磁场高度剪切区、新浮磁流区和双极对消区,其触发耀斑的作用和周围的磁场环境有密切关系,特别是象具有磁海湾结构这样的活动区,似乎更容易产生耀斑。 5. 该活动区色球磁场位形,较光球磁场位形复杂,主要表现在:色球的纵场出现了一些磁弧岛结构,其原因可能是光球之上的磁力线高度剪切区及扭绞所致。0411  相似文献   

13.
利用紫金山天文台里奥型色球Hα(6562.8A)望远镜,其滤光器带宽为0.75A,太阳像直径为15.2mm,附加一组透镜使像放大至10cm,获得了1981年4月27日日面西边缘大爆发环状日珥事件的Hα资料(0816—0951UT)(见附图22)。 这次环状爆珥事件很可能是MW22216群(SESC3049)(15N,150L)在0720UT的X5.5级大爆发事件后的耀斑环。观测资料表明: 1.环形结构早于0816UT。环足部有耀斑状亮块。 2.0816-0826.5UT;0830-0837UT;0839-0908UT时环北支(B支)较南支(A支)粗。而0828.5-0830UT;0837.5-0838.5UT时A支较B支粗。 3.在0829.5UT和0833UT时,环顶部分别出现奇特的结构,持续均约1分钟。 4.在0836.5UT时,环顶出现小针状突出物,并逐渐上升,变粗;0839UT环顶小突起结构达最大高度。0847UT环顶出现新的突出结构,它逐渐弯向B支。0853UT时可见B支的扭转结构。 5.A足点随环珥上升而逐渐向南(向外侧)移动,B足点变化较小。0855UT前后,A足点外移加快,环珥变化明显:环足部明显分开,高度明显增加,环顶管经略降后陡增。 6.测量表明,0844UT前环珥几乎以 8.4km/sec匀速上升。环顶管径由0816UT时的0.74×10~4km迅速增至0826UT时的1.27×10~4km,此后至0855UT环顶管径变化不大。在0844—0853UT环珥以-0.012km/sec~2的平均加速度上升。在0853UT环再上  相似文献   

14.
利用SDO (Solar Dynamics Observatory)/HMI (Helioseismic and Magnetic Imager)观测到的矢量磁图,研究了与活动区AR12673上爆发的一个X9.3级耀斑(2017年9月6日)的相关电流分布和演化.结果显示,在该活动区的磁中性线两边存在一对方向相反的电流密度约为0.4 A/m~2的长电流带,可称其为一对共轭电流带.这对共轭电流带在耀斑发生之前、期间以及之后一直存在;并且观测到,该耀斑的两个亮带的位置几乎刚好与两个电流带重叠,它们的形状也极其相似. 9月6日电流总强度演化曲线表明,电流强度在X9.3级强耀斑爆发期间出现快速增加的现象,这种现象持续了几个小时.这一研究结果有力支持了磁准分界面(Quasi-Separatrix Layer, QSL) 3维重联模型.  相似文献   

15.
王霖  谢瑞祥  汪敏  许春  刘玉英 《天文学报》2004,45(4):389-401
利用太阳射电宽带频谱仪(0.7-7.6GHz)于2001年10月19日观测到的复杂太阳射电大爆发,呈现出许多有趣的特征,结合NoRH(Nobeyama Radio Heliograph)的高空间分辨率射电成像观测及TRACE(Transition Region and Coronal Explorer)在远紫外(EUV)波段的高空间分辨率成像观测资料,分析了该爆发的射电频谱特征和微波射电源的演化以及它们与复杂的EUV日冕环系统的关系,该爆发是一个双带大耀斑的射电表征.前一部分以宽带(从厘米到米波)爆发为主,机制是回旋同步辐射,所对应的是环足源的辐射;后一部分以窄带(分米到米波)分米波爆发为主,机制是等离子体辐射和回旋共振辐射的联合,对应的是环顶源的辐射。  相似文献   

16.
本文对云南天文台1981年5月16日3B级双带大耀斑环(0922UT)的H_α—SSHG光谱资料作了初步的数据处理。采用非线性函数的最小二乘曲线拟合方法,从光谱轮廓求得圆面耀斑环的线心光学厚度τ_0、Doppler宽度Δλ_D平均能源函数S_λ及视向速度V_(11)的二维分布,为处理具有时空序列的光谱资料提供了一种数值方法。计算结果表明,耀斑环系内的物质由环顶沿两环腿向色球层溅落;用色球蒸发模型解释环中的物质来源较为合理。  相似文献   

17.
利用云南天文台色球Hα单色像、SOHO/EITEUV单色像、SOHO/LASCO白光日冕观测、SOHO/MDI光球磁图及Nobeyama17GHz微波射电观测资料对2004年4月11日AR0588中的环形暗条爆发进行了初步的分析。主要结论如下:(1)爆发的暗条呈现封闭的环形。在Hα观测上爆发前有明显的激活态,表现为西半环变粗变厚,断裂出现缺口并缓慢向西南方向上升。在EIT195 观测上,此暗条爆发表现出两条扎根于爆发源区的亮带,其顶部可能是爆发中的暗条,而这两条亮带是暗条的两条腿。该暗条爆发是动力学爆发,但暗条等离子体在爆发过程中也受到明显的加热。(2)该暗条爆发伴随有一个明显的双带耀斑。一个带位于暗条爆发的中心,几乎不动,而另一个带呈环状包围爆发的暗条,展示明显的分离运动。这两个带之间,在耀斑后期出现明显的耀斑后环。(3)这一暗条爆发及耀斑与LASCO观测到的一个快速的、具有典型三部分结构的partialHaloCME在时间和空间上是密切相关的。  相似文献   

18.
本文利用云南天文台二维光谱仪观测的1989年8月17日耀斑的Hβ波段光谱资料,采用多云模型的方法,得到此耀斑的观测视向速度分布,并在一定的简化和假设下,采用MHD理论计算了几种情况下耀斑环内物质运动的视向速度分布,与观测的视向速度分布加以比较,研究和探讨耀斑环中的物质运动情况。通过分析比较,得出此耀斑环内物质运动可能属于下述两种模式:物质从环顶沿两环腿螺旋下落和物质从环足沿一环腿螺旋上升到环顶后沿另一腿螺旋下落  相似文献   

19.
1986年2月4日太阳耀斑的演化研究   总被引:1,自引:0,他引:1  
本文根据乌鲁木齐天文站的H_α耀斑及3.2cm射电流量观侧资料、云南天文台的黑子精细结构照相和Marshall Space Flight Center的向量磁场图,对1986年2月4日的六个耀斑的形态相关及演化联系,特别是0736UT 4B/3X大耀斑的发展过程进行了综合分析。主要结果是: 1.4日大耀斑的初始亮点和闪光相的主要形态演化,与活动区中沿中性线新浮现的强大电流/磁环系密切相关。后者的主要标志是沿中性线的长的剪切半影纤维及它两端的偶极旋涡黑子群(1_3F_3)。 2.上述大耀斑与1972年8月4日0624 UT大耀斑爆发的磁场背景及主要形态特征相似,表明两者的储能和触发机制可能相同。 3.大耀斑爆发的H_α初始亮点,双带出现,环系形成,亮物质抛射和吸收冕珥等现象同3.2cm射电流量的变化在时间上有较好的对应关系。 4.重复性的前期小耀斑爆发位置和发展趋势与大耀斑的主要形态及演化特征相似。它们相对于剪切的纵场中性线两侧的位置相近或相同。因而,可以看作上述强大电流/磁环系不稳性发展过程中的前置小爆发。  相似文献   

20.
1989年3月9日,AR5395活动区(N32 E51)在0220UT—0300UT间爆发的2N/1.8M耀斑,在极大后伴有明显的暗物质运动和抛射。经分析,我们认为这种运动是由耀斑后的色球物质在磁张力作用下沿着磁场减弱方向的流动所致。抛射系暗物质往  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号