首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabasites within the Tokoro belt of eastern Hokkaido,Japan, suffered pervasive high–P/ Tetamorphism. Mineralassemblages and compositions of more than 400 metabasites fromthe Saroma–Tokoro district were investigated. The metabasites are divided into six metamorphic zones basedon mineral assemblages. The laumontite (Lm) zone is definedby the presence of laumontite. The prehnite–pumpellyite(Pr–Pp) zone is characterized by the association of prehnite+ pumpellyite. The lawsonite–sodic. pyroxene (Lw–Napx)zone is defined by the assemblage lawsonite + pumpellyite +sodic pyroxene + chlorite. The epidote–sodic pyroxene(Ep–Napx)(1) and (2) zones are charecterized by the assemblage epidote+ pumpellyite + sodic pyroxene + chlorite. The former is characterizedby the absence of aragonite, sodic amphibole, and winchite,as well as the presence of jadeite–poor sodic pyroxene(maxJd mol% = 13), whereas these minerals occur in the Ep–Napx(2)zone, together with jadeite–rich sodic pyroxene (max.Jd mol % = 34). In the epidote–actinolite (Ep–Act)zone, the most common assemblages contain epidote+ actionolite+ pumpellyite + chlorite. The Lm zone corresponds to the zeolite facies (150–200?Cand 1–2 kb) and the Pr–Pp zone is equivalent tothe prehnite–pumpellyite facies (200–250?C and 2–2–5kb). The Ep–Napx(I) zone appears to be stable at 200–250?C and 2? 5?3?5 kb. The pressure conditions in the Lw–Napx,Ep-Napx(2), and Ep–Act zones appear to range from 5 to6 kb, and the temperatures are estimated to be 200–230,230–270, and 270–300? C, respectively. The sequenceof the metamorphic zones is charaterized by the curved P–Tpath. The stability field of pumpellyite+ sodic+ pyroxene+ chloritein Fe3+ bearing metabasites is located in the lower–temperatureand higher–pressure part of the pumpellyite–actionolitefacies. On the basis of Schreinmaker's method, the stabilityfield of the assemblage is bounded by a high–pressurereaction Pp+ Napx+ Chl+ Ab+ Qz+ H2O= Lw+ Gl, and by a high-temperaturereaction Pp Napx+ Chl+ Ab+ Qz = Ep + Gl + H2O.  相似文献   

2.
The major mineral assemblages of the metabasites of the Omoiji-Nagasawaarea in central Shikoku are hematite+epidote+chlorite+actinolite,riebeckitic actinolite+epidote+chlorite, epidote+chlorite+actinolite,and pumpellyite+epidote+chlorite+actinolite. The constituentminerals are often heterogeneous and assemblages in the fieldof a thin section sometimes do not obey the phase rule, butif grains apparently in non-equilibrium with others are excludedand domains of chemical equilibrium are appropriately chosenthe assemblages approximately obey the phase rule. The stability of hematite, pumpellyite, and epidote associatedwith chlorite and actinolite can be dealt with in terms of aternary system with appropriate excess phases. By fixing theFe2+/(Fe2+ +Mg) ratio of chlorite, it is dealt with in termsof stability relations in the system Ca2Al3Si3O12(OH)–Ca2AlFe2Si3O12(OH)with excess chlorite, actinolite, quartz, and controlled PH2O.The maximum and minimum Fe3+ contents of epidote in this modelsystem are determined by hematite+epidote+chlorite+actinoliteand pumpellyite+epidote+chlorite+actinolite assemblages. Themaximum Fe3+ of the three phase assemblage epidote+chlorite+actinoliteis insensitive to temperature, but the minimum Fe3+ contentof epidote is sensitive to temperature and can be used to definethe metamorphic grade by a continuous quantity related to temperature.The phase relations expected for the model system are in goodagreement with the parageneses of the Sanbagawa terrain in centralShikoku and offer an explanation to the rule of Miyashiro &Seki (1958a) that the compositional range of epidote enlargeswith increasing temperature. The model also makes it possibleto estimate semi-quantitatively the temperature range in whichthe assemblage pumpellyite+epidote+chlorite+actinolite is stable.The possible maximum range is about 120 ?C, but the assemblageis stable in metabasite only for about 90 ?C. The higher temperaturelimit of the pumpellyite-actinolite facies defined by the disappearanceof pumpellyite in metabasite corresponds to the temperatureat which epidote with Fe3+/(Fe3+ +Al) = 0.10 0.15 coexistswith pumpellyite, actinolite, and chlorite. The compositions of epidotes in the metabasites of the Omoiji-Nagasawaarea cluster around Fe3+/(Fe3+ +Al) = 0.33. The grade of thisarea is close to the lower temperature stability limit of thepumpellyite+epidote+chlorite+actinolite assemblage.  相似文献   

3.
Mineral paragenescs in the prehnite-pumpellyite to greenschistfades transition of the Karmutsen metabasites are markedly differentbetween amygdule and matrix, indicating that the size of equilibriumdomain is very small. Characteristic amygdule assemblages (+chlorite + quartz) vary from: (1) prehnite + pumpeUyite + epidote,prehnite + pumpellyite + calcite, and pumpellyite + epidote+ calcite for the prehnite-pumpellyite facies; through (2) calcite+ epidote + prehnite or pumpellyite for the transition zone;to (3) actinolite + epidote + calrite for the greenschist facies.Actinolite first appears in the matrix of the transition zone.Na-rich wairakites containing rare analcime inclusions coexistwith epidote or Al-rich pumpellyite in one prehnite-pumpellyitefacies sample. Phase relations and compositions of these wairakite-bearingassemblages further suggest that pumpellyite may have a compositionalgap between 0.10 and 0.15 XFe?. Although the facies boundaries are gradational due to the multi-varianceof the assemblages, several transition equilibria are establishedin the amygdule assemblages. At low Xco2, pumpellyite disappearsprior to prehnite by a discontinuous-type reaction, pumpellyite+ quartz + CO2 = prehnite + epidote + calcite + chlorite + H2O,whereas prehnite disappears by a continuous-type reaction, prehnite+ CO2 = calcite + epidote + quartz-l-H2O. On the other hand,at higher XCO2 a prehnite-out reaction, prehnite + chlorite+ H2O + CO2 = calcite + pumpellyite + quartz, precedes a pumpellyiteoutreaction, pumpellyite + CO2 = calcite + epidote + chlorite +quartz + H2O. The first appearance of the greenschist faciesassemblages is defined at both low and high XCOj by a reaction,calcite + chlorite + quartz = epidote + actinolite+ H2O + CO2.Thus, these transition equilibria are highly dependent on bothXFe3+ + of Ca-Al silicates and XH20 of the fluid phase. Phaseequilibria together with the compositional data of Ca-Al silicatesindicate that the prehnite-pumpellyite to greenschist faciestransition for the Karmutsen metabasites occurred at approximately1.7 kb and 300?C, and at very low Xco2, probably far less than0.1.  相似文献   

4.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

5.
High-grade exotic blocks in the Franciscan Complex at Jenner, California, show evidence for polydeformation/metamorphism, with eight distinct stages. Two parallel sets of mineral assemblages [(E) eclogite, and (BS) laminated blueschist] representing different bulk chemistry were identified. Stage 1, recorded by parallel aligned inclusions (S1) of crossite + omphacite + epidote + ilmenite + titanite + quartz (E), and glaucophane + actinolite + epidote + titanite (BS) in the central parts of zoned garnets, represents the epidote blueschist facies. The onset of a second stage (stage 2) is represented by a weak crenulation of S1 and growth of garnet. This stage develops a well-defined S2 foliation of orientated barroisite + epidote + titanite (E), or subcalcic actinolite + epidote + titanite (BS) at c. 90d? to S1, with syntectonic growth of garnet, defining the (albite-)epidote-amphibolite facies. A third stage, with aligned inclusions of glaucophane + (subcalcic) actinolite + phengite parallel to S2 in the outermost rims of large garnet grains, is assigned to the transitional (albite-)epidote-amphibolite/(garnet-bearing) epidote blueschist facies. The fourth stage represents the peak metamorphism, and was identified by unorientated matrix minerals in the least retrograded samples. In this stage the mineral assemblages garnet + omphacite + glaucophane + phengite (E) and garnet + winchite + phengite + epidote (BS) both represent the eclogite facies. Stage 5 is represented by the retrogression of eclogite facies assemblages to the epidote blueschist facies assemblages crossite/glaucophane + garnet + omphacite + epidote + phengite (E), and glaucophane + actinolite + epidote + phengite (BS), with the development of an S5 foliation subparallel to S2. Stage 6 represents a crenulation of S5, with the development of a well-defined S6 crenulation cleavage wrapping around relics of the eclogite facies assemblages. This crenulation cleavage is further weakly crenulated during a D7 event. Post-D7 (stage 8) is recorded by the growth of lawsonite + chlorite ± actinolite replacing garnet, and by veins of lawsonite + pumpellyite + aragonite and phengite + apatite. The different, yet coeval, mineral parageneses observed in rock types (E) and (BS) are probably due to differences in bulk chemistry. The metamorphic evolution from stage 1 to stage 8 seems to have been broadly continuous, following an anticlockwise P-Tpath: (1) epidote blueschist (garnet-free) to (2) (albite-)epidote-amphibolite to (3) transitional epidote blueschist (garnet-bearing)/(albite-)epidote-amphibolite to (4) eclogite to (5) epidote blueschist (garnet-bearing) to (6-7) epidote blueschist (garnet-free) facies to (8) lawsonite + pumpellyite + aragonite-bearing assemblages. This anticlockwise P-T path may have resulted from a decreasing geothermal gradient with time in the Mesozoic subduction zone of California at early or pre-Franciscan metamorphism.  相似文献   

6.
The 6km-thick Karmutsen metabasites, exposed over much of Vancouver Island, were thermally metamorphosed by intrusions of Jurassic granodiorite and granite. Observation of about 800 thin sections shows that the metabasites provide a complete succession of mineral assemblages ranging from the zeolite to pyroxene hornfels facies around the intrusion. The reaction leading to the appearance of actinolite, which is the facies boundary between prehnite-pumpellyite and prehnite-actinolite facies, was examined using calcite-free Karmutsen metabasites collected from the route along the Elk river. In the prehnite-pumpellyite facies, X Fe3+[Fe3+/(Fe3++Al)] in prehnite, pumpellyite and epidote buffered by the four-phase assemblage prehnite+pumpellyite+epidote+chlorite systematically decreases with increasing metamorphic grade. Such a trend is the reverse of that proposed by Cho et al. (1986); this may be related to the higher in the Mt. Menzies area. The actinolite-forming reaction depends on the value of X Fe3+ in pumpellyite. If using a low value of Fe3+, 3.89 Pr(0.06)+0.48 Ep(0.26)+0.60 Chl+H2O=2.10 Pm (0.08)+0.17 Act+0.88 Qz is delineated. The number in parentheses stands for the X Fe3+value in Ca-Al silicates. On the other hand, replacing the X Fe3+ of 0.08 in pumpellyite with a higher X Fe3+ value (0.24) changes the reaction to 0.41 Pm+0.02 Chl+0.42 Qz=0.11 Pr+0.62 Ep+0.10 Act+H2O. The first (hydration) reaction forms pumpellyite and actinolite on the high-temperature side, whereas the second (dehydration) reaction consumes pumpellyite to form prehnite, epidote and actinolite. The former reaction seems to explain the textural relationship of Ca-Al silicates in the study area. However, actinolite-forming reaction changes to a different reaction depending on the compositions of the participating minerals, although in the other area even physical conditions may be similar to those in the study area. Chemographic analysis of phase relations in the PrA facies indicates that the appearance of prehnite depends strongly on the bulk FeO/MgO ratio: this may explain the rarity of prehnite in common metabasites in spite of the expected dominant occurrence in the conventional pseudo-quaternary (Ca-Al-Fe3+-FM) system. An increasing FeO/MgO ratio stabilizes the Pr+Act assemblage and reduces the stability of the Pm+Act one. Therefore, the definition of pumpellyite-actinolite facies should include not only Pm+Act but also the absence of Pr+Act assemblages. In addition to the possible role of high (Cho and Liou 1987) and/or high to mask the appearance of prehnite, the effect of the FeO/MgO ratio is emphasized.  相似文献   

7.
In situ eclogitic schist lenses occur in the coherent low-gradeepidote-zone Ward Creek metabasite unit of the Central Franciscanbelt. They contain almandine garnet, clinopyroxene, and rutile.They have slightly higher Mn content (0–5–1–0wt.%) than the coexisting Type III metabasites (0–12–0–25wt%) which contain epidote + glaucophane + actinolite + chlorite+ omphacite + quartz + sphene ? aragonite? lawsonite ? pumpellyite+ albite. The in situ eclogitic schists (130–140 Ma) canbe distinguished from older tectonic eclogites (150–160Ma) in Ward Creek as follows: (1) they are medium grained, whereasType IV tectonic eclogites are coarse grained; (2) they haveunaltered spessartine-rich idioblastic (0–4–10 mm)garnets, whereas Type IV tectonic eclogites have larger xenoblasticto hypidiomorphic spessartine-poor garnets which were corrodedand chloritized along the rim during retrograde metamorphism;(3) clinopyroxenes are chloromelanite in in situ eclogitic schistsbut omphacite in Type IV tectonic eclogites; (4) barroisiticamphiboles occur both as inclusions in garnets and as matrixminerals in Type IV tectonic eclogites but not in in situ eclogiticschists; (5) albite is present in in situ eclogitic schistsbut not in Type IV tectonic eclogites; and (6) the estimatedP-T condition of in situ eclogitic schists is 290 ?C < T<350 ?C, P = 8–9 kb, whereas that of Ward Creek Type IVtectonic eclogites is 500?C< r<540?C, P< 10–11–5kb. Medium-grained eclogites occur as individual blocks in WardCreek; they are different from Type IV tectonic eclogites butare very similar to in situ eclogitic schists. They have unalteredidioblastic garnet with high almandine and spessartine content(Alm47Sp23Gr20Py10), and they have chloromel-anitic clinopyroxeneand quartz but no barroisite. Paragonite is also stable in theseeclogites. The blocks formed at 380 ?C< r<400?C, and 9–5kb<P< 14 kb. They are presumably in situ eclogites formedat the highest-temperature part of the Ward Creek metabasiteunit and may be younger than Type IV tectonic eclogites. Such low-temperature occurrences of eclogitic assemblages aredue to the compositional effect on reactions between blueschistand eclogite that are insensitive to pressure and shift towardslower temperatures as bulk-rock MnO content and XFe/(Fe+Mg)increase. The Mn/(Mn + Fe) ratio of bulk rock is an importantfactor in controlling the P-T positions of these reactions attemperatures below 450 ?C, whereas the Fe/(Fe + Mg) ratio ofbulk-rock becomes important at temperatures higher than 450?C.  相似文献   

8.
Detailed laboratory study has been made on pre-Tertiary coarse-grainedglaucophane schist, garnet-epidote amphibolite, and epidoteamphibolite in the eastern slope of the Central Mountain Range,Taiwan. These petrotectonic assemblages are considered to beexotic tectonic blocks emplaced within the feebly metamorphosedin situ graphite and quartzose schists of the Yuli belt. Thinlenses of Mn-rich metamorphosed tuff are intercalated withinthe metabasaltic rocks. Such high MnO (2 wt. per cent) and lowMgO (3–4 wt. per cent) tuffaceous rocks are similar inbulk composition to some volcanic clays collected in deep oceanbasins. They consist of the characteristic assemblage Mn-bearinggarnet (5–7 wt. per cent MnO and 30 volume per cent inthe rock)+muscovite+epidote+hornblende+quartz+ albite+rutile?pyrite. Successive stages of conversion of garnet-epidote amphiboliteto blueschist assemblages were noticed. The most recrystallizedschists display abundant Mn-bearing garnet, zoned amphibole,phengite, zoned epidote, stilpnomelane, chlorite, quartz, minoralbite, magnetite, and sphene. The recrystallization processis nearly isochemical except the glaucophane schists appearto be more oxidized and contain more Na2O than the relict amphibolites.Intimately associated amphibolites of basaltic composition,in contrast, contain the assemblage hornblende+paragonite+epidote+chlorite+quartz+albite+rutile. Microprobe analyses of the coexisting minerals in glaucophaneschists, garnet-epidote amphibolites and epidote amphibolitesyield the following results: (1) garnets, consisting of almandine,spessartine, and grossular components, are less Mn and Mg-richcompared to those in in situ metabasalts of the Franciscan;(2) rim epidotes of the glaucophane schists are more pistastic(XFe=0?27–0?30) than that of the garnet-epidote amphibolite(0?2–0?22) implying higher fO2 values for the glaucophanization;(3) phengitic micas of the glaucophane schist have less Al2O3content (29 wt. per cent) than those of the garnet-epidote amphibolite(32 wt. per cent) whereas micas of epidote amphibolites areparagonites with K/(K+Na) ratio of 0?04; (4) the zoned amphibolesshow glaucophane occurring marginal to cores of calcic amphibole.Sodic amphiboles with Al2O3 of 6-? to 10?4 wt. per cent arecrossite-glaucophane whereas all calcic amphiboles analyzedare barroisite-pargasite (Al2O3 greater than 10 wt. per cent). The garnet-epidote-rutile bearing glaucophane schist of Taiwanprobably recrystallized at temperatures above 350 ?C (the epidotezone) whereas the lawsonite-sphene glaucophane schists of theFranciscan equilibrated below 350 ?C (the lawsonite zone). TheMn-rich basaltic tuffs and their associated flows appear tohave been metamorphosed at profound depths and at the relativelyhigh temperatures of the epidote amphibolite facies, succeededlater by glaucophane schist facies metamorphism at lower temperatures.  相似文献   

9.
Phase Relations on the Actinolite-Pargasite Join   总被引:1,自引:0,他引:1  
Phase relations along the join Ca2Mg4Fe2+Si8O22 (OH)2 (Actinolite)-NaCa2Mg3?2Fe0?82+AlSi6Al2O22(OH)2 (Pargasite) have been studied at PH2O = 1 kb andthe oxygen fugacities defined by the iron-wustite(IW) buffer. Actinolite and bornblende are separated by a solvus and thefield of actinolite+hornblende+vapor is present in the regionbetween Ac85Pa15 and Ac55 Pa45 at 680 ?C. Complete miscibilityis achieved at 720 ?C. At temperatures higher than the solvusthere is a continuous solid solution series between the twoend members. The stability field of amphibole solid solutiongradually increases with increasing pargasite content in actinolite.The phase assemblages at temperatures higher than those of asolid solution series between the two end members change withincreasing pargasite content in the bulk composition as follows;Act+Cpx+Qz+V, ActHbl+Cpx+Opx+Qz+V, Hbl+Cpx+Opx+Pl+V and Hbl+Cpx+Pl+Ol+V. In comparison with the Fe-free system, the extent of the miscibilitygap between actinolite and hornblende is reduced by an increasein the Fe2+ content. The present study should provide an adequatebasis for the interpretation of actinolite-hornblende pairsin metamorphic rocks.  相似文献   

10.
Phase relations of pumpellyite, epidote, lawsonite, CaCO3, paragonite, actinolite, crossite and iron oxide are analysed on an Al-Ca-Fe3+ diagram in which all minerals are projected from quartz, albite or Jadeite, chlorite and fluid. Fe2+ and Mg are treated as a single component because variation in Fe2+/Mg has little effect on the stability of phases on the diagram. Comparison of assemblages in the Franciscan, Shuksan, Sanbagawa, New Caledonia, Southern Italian, and Otago metamorphic terranes reveals several reactions, useful for construction of a petrogenetic grid:
  1. lawsonite+crossite + paragonite = epidote+chlorite + albite + quartz + H2O
  2. lawsonite + crossite = pumpellyite + epidote + chlorite + albite+ quartz + H2O
  3. crossite + pumpellyite + quartz = epidote + actinolite + albite + chlorite + H2O
  4. crossite + epidote + quartz = actinolite + hematite + albite + chlorite + H2O
  5. calcite + epidote + chlorite + quartz = pumpellyite + actinolite + H2O + CO2
  6. pumpellyite + chlorite + quartz = epidote + actinolite + H2O
  相似文献   

11.
In the southern Apennin (= northern part of the region dealt with) and the Coasta Chain (= southern part) there are metabasalts wich are classified in the northern part as:
  1. Glaucophane rocks of the albite-lawsonite-glaucophane-subfacies with the assemblage glaucophane + pumpellyite + lawsonite ±albite ±aragonite ±muscovite (7 rock analyses, 8 mineral analyses). These rocks are conceived as relics of an older burial metamorphism.
  2. Rocks with pumpellyite and chlorite or also chlorite alone, that are interpreted as reaction rims between the metastable glaucophane rocks and the country rock (phyllites, quartzites). The assemblages pumpellyite + chlorite and chlorite alone are to be found (2 rock analyses and 2 mineral analyses).
  3. Rocks with lawsonite and/or epidote belong to the same mineral facies as the country rock: a facies similar to the greenschist facies (called “lawsonite-albite-chlorite-subfacies”) which is characterized by the assemblages lawsonite + albite + chlorite ±calcite and also epidote ±lawsonite + albite + chlorite ± muscovite. These types are attributed to a younger dynamo-metamorphism (2 rock analyses).
In the southern part, the metabasalts can be found only as rocks with epidote and/or lawsonite, a metamorphism with more than one event cannot be proved petrologically (3 rock analyses). Equations of the observed mineral reactions are given. The transitions of one facies into another are represented in the pseudo-quaternary system Al2O3-CaO-Na2O · Al2O3-2 Fe2O3 + FeO + MnO + MgO-(H2O). The pressure-temperature conditions are estimated on the basis of published experimental data (300° C and 6–7 kb for the glaucophane rocks; 400° C and about 6 kb for the rocks with lawsonite and/or epidote) and are compared with geologic facts.  相似文献   

12.
Summary In the Cazadero area, northern California, Lawsonite-bearing eclogitic metabasites occur in association with glaucophane schists. Lawsonite-bearing eclogitic metabasites are coarse-grained, and characteristically lack albite. Representative mineral assemblages are; (1) garnet + omphacite + Lawsonite + epidote + glaucophane + chlorite + quartz, (2) garnet -F- omphacite + Lawsonite + pumpellyite + glaucophane + actinolite + quartz, (3) garnet + omphacite + Lawsonite + pumpellyite + epidote + glaucophane + quartz. They can be represented on an A12O3-Fe2O3-MgO-Na2O diagram in which all minerals are projected from quartz, Lawsonite, almandine garnet, and H2O-predominant fluid. On the basis of the garnet-clinopyroxene geothermometry and phase relations, the metamorphic conditions for the formation of Lawsonite-bearing eclogitic metabasites are estimated at 360-445 °C and more than 9 ± 1 kbar. Lawsonite-bearing eclogitic metabasites formed near the univariant curve albite = jadeite +quartz. A petrogenetic grid constructed by Schreinemakers' method shows that the Lawsonite-bearing eclogitic metabasites in the Cazadero area formed under transitional P-T conditions between those of the garnet-bearing glaucophane schists in New Caledonia and lawsonitebearing eclogitic metabasites in Corsica.Zusammenfassung Im Gebiet um Cazadero, Nordkalifornien, kommen Lawsonit-führende eklogitische Metabasite in Assoziation mit Glaukophanschiefern vor. Den grobkörnigen Lawsonitführenden Metabasiten fehlt charakteristischerweise Albit. Repräsentative Mineralparagenesen sind: (1) Granat + Omphacit + Lawsonit + Epidot + Glaukophan + Chlorit + Quarz, (2) Granat + Omphacit + Lawsonit + Pumpellyit + Glaukophan + Aktinolith + Quarz, (3) Granat + Omphacit +Lawsonit + Pumpellyit + Epidot + Glaukophan + Quarz. Sie lassen sich in einem A12O3-Fe2O3-MgO-Na2O Diagramm, in dem alle Minerale von Quarz, Lawsonit, Almandin-reichem Granat und einem H2O-dominierten Fluid projiziert werden, darstellen. Die Metamorphosebedingungen der Lawsonitführenden eklogitischen Metabasite werden auf Grund von Granat-Klinopyroxenthermometrie und der Phasenbeziehungen mit 360-445°C und mehr als 9 ± 1 kbar abgeschätzt. Die Lawsonit-führenden eklogitischen Metabasite bildeten sich nahe der univarianten Reaktion Albit = Jadeit +Quarz. Ein petrogenetisches Netz, konstruiert nach der Schreinemakers Methode, zeigt, daß die P-T Bedingungen der Lawsonitführenden eklogitischen Metabasite im Gebiet von Cazadero im übergangsbereich zwischen jenen von Granat-führenden Glaukophanschiefern in Neukaledonien und Lawsonit-führenden eklogitischen Metabasiten in Korsika liegen.
Lawsonit-führende eklogitische Metabasite im Gebiet um Cazadero, Nordkalifornien

With 9 Figures  相似文献   

13.
ROSE  N. M.; BIRD  D. K. 《Journal of Petrology》1987,28(6):1193-1218
Layered gabbros at Nordre Aputit?q and Kruuse Fjord were emplacedduring extensional tectonism that led to the formation of theNorth Atlantic basin in the Early Tertiary. Sub-solidus reactionsbetween the gabbros and hydrothermal fluids formed superimposedalteration assemblages in fractures, cavities, and the adjacentgabbros. The earliest secondary minerals are Ca-Al amphibole+ clinopyroxene + biotite ? plagioclase that form thin veinsor porous pegmatitic masses. These minerals are crosscut, overgrownor partially replaced by one or more generations of prehniteand epidote bearing assemblages associated with filling of thefractures and cavities, and with extensive wall rock albitization. Wide variations in the partitioning of Fe3+ and Al between coexistingprehnite and epidote solid solutions occur in these alteredgabbros. The partitioning data define distinct clusters in termsof associated mineralogy and paragenetic relations. This, togetherwith prehnite and epidote compositions from active geothermalsystems, are used to evaluate the thermodynamic properties ofthe intercrystalline exchange reaction:When compared to thecompositions of prehnite and epidote in the Nordre Aputit?qand Kruuse Fjord intrusions, it is concluded that the latestand lowest temperature generations of prehnite and epidote displaydisequilibrium partitioning of Fe3+ and Al, manifested by theoccurrence of prehnite that is relatively enriched in Fe3+ Thermodynamic analysis of phase relations in the system Na2O-CaO-Al2O3-Fe2O3-FeO-SiO2-H2O-HClis used to determine local equilibrium constraints on Fe3+-Alsubstitution in prehnite and epidote. It appears that parageneticand compositional relations of prehnite and epidote are sensitiveindicators of local fluctuations in fluid composition and temperature.The complex magmatic and structural history of the gabbros atNordre Aputit?q relative to Kruuse Fjord is considered to beresponsible for the differences in mineral paragenesis and compositionsof prehnite and epidote within these intrusions.  相似文献   

14.
Mineral assemblages and textures are described from clinopyroxene-bearingmeta-syenites and related rocks from a small area in the PenninicBasement Complex of the south-east Tauern Window. Evidence from mineral textures, mineral compositions and geobarometryindicate that the clinopyroxene, a sodic salite, crystallizedas part of an equilibrium albite-epidote-amphibolite faciesparagenesis in the 35–40 Ma meso-Alpine metamorphic event.Phase relations in co-facial quartz + albite + K-feldspar +sphene-bearing meta-syenites and meta-granites are examinedusing a projection from these minerals onto the plane (A12O3+ Fe2O3)-CaO-(MgO + FeO + MnO). The projection demonstratesthat salitic clinopyroxene can only be a stable phase in suchrocks if the bulk-rock Al/Na + K ratios are low. This is confirmedby comparing the whole-rock analyses of clinopyroxene-bearingmeta-syenites with those of clinopyroxene-free meta-syenitesand meta-granites. Mineral assemblages in a variety of lithologies from the south-eastTauern Window are used to construct a generalized AKM diagramfor magnesian albite + epidote + quartz-bearing rocks of thealbite-epidote-amphibolite facies. Thermochemical calculations indicate that the meta-syeniteswere metamorphosed at temperatures close to 500 C and at a pressureof 6+2 –4 kb. Fluids in equilibrium with meta-syeniteand meta-granite mineral assemblages had XH2O values of 0–95,assuming XH2O + XCO2O= 1.0.  相似文献   

15.
The Adula Nappe is a slice of Pre-Mesozoic continental basementaffected by Early Alpine (Mesozoic or Lower Tertiary) high-pressuremetamorphism. Mineral compositions in mafic rocks containingomphacite + garnet + quartz record a continuous regional trendof increasing recrystalliza tion temperatures and pressuresthat can be ascribed to this regional high-pressure metamorphicevent. P-T estimates derived from mineral compositions gradefrom about 12 kb and 500 ?C or less in the north of the nappeto more than 20 kb/800 ?C in the south. The regional P-T trend is associated with a mineralogical transitionfrom assemblages containing additional albite and abundant amphiboles,epidote minerals, and white micas in the north (omphacite-garnetamphibolites) to kyanite eclogites containing smaller amountsof hornblende and zoi.site in the south. Textures and mineralcompositional data show that these hydrous and anhydrous silicatesassociated with omphacite + garnet + quartz arc primary partsof the high-pressure assem blages. Observed phase relationsbetween these primary silicates, theoretical Schreinemakersanalysis, and the thermobarometric results, together indicatethat the regional transition from omphacite amphibolites tokyanite eclogites can be described by two simplified reactions: alb+epi+hbl=omp+kya+qtz+par (H2O-conserving) (15) par+epi+hbl+qtz=omp+kya+H2O (dehydration) (12) which have the character of isograd reactions. Local variations of water activity (aH2O) as indicated by isofacialmineral assemblages, and the H2O character of the reaction (15),are interpreted to reflect largely H and predominantly fluid-absenthigh-pressure metamorphism within the northern part of the nappe.The omphacite amphibolites and paragonite eclogites in thisarea are thought to have formed by H2O reactions from Pre-Mesozoichigh-grade amphibolites, i.e. from protoliths of similar bulkH2O-countent. The second ‘isograd’ (12) is interpreted to markthe regional transition from largely fluid-absent metamorphismin the north to fluid-present metamorphism in the south, wheremetamorphic pressures and temperatures in excess of 12-15kband 500-600?C were sufficient for prograde in-situ dehydrationof similar hydrous protoliths to kyanite eclogites. The observationof abundant veins, filled with quartz+kyanite+omphacite, suggeststhat a free fluid coexisted locally with the kyanite eclogitesof the southern Adula Nappe at some time during progressivedehydration.  相似文献   

16.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

17.
The pumpellyite–actinolite facies proposed by Hashimoto is defined by the common occurrence of the pumpellyite–actinolite assemblage in basic schists. It can help characterize the paragenesis of basic and intermediate bulk compositions, which are common constituents of various low-grade metamorphic areas. The dataset of mutually consistent thermodynamic properties of minerals gives a positive slope for the boundary between the pumpellyite–actinolite and prehnite–pumpellyite facies in PT space. In the Sanbagawa belt in Japan, the mineral parageneses of hematite-bearing and -free basic schists, as well as pelitic schists have been well documented. The higher temperature limit of this facies is defined by the disappearance of the pumpellyite+epidote+actinolite+chlorite assemblage in hematite-free basic schists with XFe3+ of epidote around 0.20–0.25 and the appearance of epidote+actinolite+chlorite assemblage with XEpFe3+≤0.20. In hematite-bearing basic schists, there is a continuous change of paragenesis to higher grade, epidote–glaucophane or epidote–blueschist facies. In pelitic schists, the albite+lawsonite+chlorite assemblage does occur but only rarely, and its assemblage cannot be used to determine the regional thermal structure. The lower temperature equivalence of the pumpellyite–actinolite assemblage is not observed in the field. The Mikabu Greenstone complex and the northern margin of the Chichibu complex, which are located to the south of the Sanbagawa belt, are characterized by clinopyroxene+chlorite or lawsonite+actinolite assemblages, which are lower temperature assemblages than the pumpellyite+actinolite assemblage. These three metamorphic complexes belong to the same subduction-metamorphic complex. The pumpellyite–actinolite facies or subfacies can be useful to help reveal the field thermal structure of metamorphic complexes  相似文献   

18.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

19.
High-pressure metamorphic rocks form a coastal belt, 175 kmby 35 km, in northeastern New Caledonia. Metamorphic grade rangesfrom lawsonite-albite schists through glaucophane-epidote schiststo omphacite-garnet-quartz gneisses. In the eclogitic terrane,metabasites, locally containing relict pillow structure andigneous textures, with well-preserved eclogitic mineral assemblages,are intercalated with metasedimentary gneisses containing albite-epidote-garnet? glaucophane and barroisite. Omphacite is partly retrogressedto albite and ferromagnesian minerals in almost every paragneiss.The paragneisses show strong evidence of penetrative foldingand microfracturing and were more permeable to metamorphic fluidsthan were the metabasites. The metabasites are inferred to havebeen relatively ‘dry’ and free of penetrative deformationduring the latter stages of metamorphism and thus were preservedmetastably during uplift, erosion, and cooling. Fe-Mg exchange thermometry between omphacite and garnet suggeststemperatures between 520 and 600 ?C. Omphacite + quartz (molper cent jadeite = 37–43) does not coexist stably withalbite suggesting minimum pressures near 12 kb at 550 ?C. Remnantsof more jadeite-rich pyroxenes in paragneisses (jd50–60)suggest even higher pressure. The stable coexistence of chloritoidalmandine-quartz in paragneisses suggests relatively H2O-rich fluids werein equilibrium with this assemblage. The widespread stable occurrenceof sphene suggests relatively low fco2 during metamorphism.Late stage healed fractures in quartz contain H2O-rich fluidinclusions with relatively low density isochores. Limited geochronologicdata combined with these petrologic data suggest a fairly rapidinitial rate of uplift followed by a much slower rate of uplift  相似文献   

20.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号