首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
P. Naidoo  J. Stiefenhofer  M. Field  R. Dobbe 《Lithos》2004,76(1-4):161-182
The complex internal geology of the Koffiefontein pipe has contributed to the marginal nature of the mine. The key to this is the presence of a large zone dominated by down-rafted country rock Karoo sediment and dolerite xenoliths. Recent work indicates that the kimberlite pipe at Koffiefontein consists of precursor dykes (the West and East Fissures), and the main pipe, in which two main eruptive phases have been recognized. Groundmass spinel compositions have been used to provide a chemical fingerprint of each lithology. There is evidence for at least three magma batches, each with its own chemical signature. Cross-cutting contact relationships were used to determine the emplacement sequence. The characterization of the different internal geological units permitted the development of a three-dimensional (3D) model of the pipe. Both main eruptive phases, viz., the Speckled west kimberlite and the Speckled east kimberlite comprise volcaniclastic kimberlite. They are separated by a large irregular mass of kimberlite that contains abundant country rock xenoliths comprising varying proportions of Karoo mudstone and dolerite, as well as probable bedded crater–facies fragments. This zone of contamination dilutes the grade of the kimberlites, affects the geotechnical stability and adversely affects the economics of the mine.  相似文献   

2.
Occurrence of calcrete over kimberlite is known all over the world and calcrete can also develop over a wide variety of weathered rocks and/or soil under suitable condition of its formation. The objective of this study is to evaluate the mineralogy and mineral chemistry of kimberlite derived calcretes and highlights their role as an exploration tool in search of kimberlite. The present study reveals the presence of significant minerals, including diamonds, within the calcretes of “kimberlite traits”. Calcrete derived from granite and mafic (dolerite/gabbro) rocks are mineralogically very distinct with those derived from kimberlite. Calcrete can thus be a very useful prospecting tool in kimberlite and diamond exploration.  相似文献   

3.
金伯利岩是化学成分、矿物组成和结构多变的混杂岩,极易发生蚀变,因此对金伯利岩全岩及各种矿物进行测年的方法很难确定金伯利岩的侵位年龄,且数据结果差别很大。通过分析蒙阴坡里金伯利岩带与辉绿岩的侵入关系,以及辉绿岩锆石U-Pb测年,结合辉绿岩与上覆灰岩的接触关系及金刚石砂矿储集层与已知金刚石原生矿的关系,确定辉绿岩脉的侵位时代为中生代燕山晚期,证实坡里金伯利岩带形成时代为中生代燕山晚期而非加里东期。  相似文献   

4.
J. Stiefenhofer  D.J. Farrow   《Lithos》2004,76(1-4):139-160
The Mwadui pipe represents the largest diamondiferous kimberlite ever mined and is an almost perfectly preserved example of a kimberlitic crater in-fill, albeit without the tuff ring.

The geology of Mwadui can be subdivided into five geological units, viz. the primary pyroclastic kimberlite (PK), re-sedimented volcaniclastic kimberlite deposits (RVK), granite breccias (subdivided into two units), the turbidite deposits, and the yellow shales listed in approximate order of formation. The PK can be further subdivided into two units—lithic-rich ash and lapilli tuffs which dominate the succession, and lithic-poor juvenile-rich ash and lapilli tuffs. The lower crater is well bedded down to at least 684 m from present surface (extent of current drill data). The bedding is defined by the presence of juvenile-rich lapilli tuffs vs. lithic-rich lapilli tuffs, and the systematic variation in granite content and clast size within much of the lithic-rich lapilli tuffs. Four distinct types of bedding have been identified in the pyroclastic deposits. Diffuse zones characterised by increased granite abundance and size, and upward-fining units, represent the dominant types throughout the deposit.

Lateral heterogeneity was observed, in addition to the vertical changes, suggesting that the eruption was quite heterogeneous, or that more than one vent may have been present. The continuous nature of the bedding in the pyroclastic material and the lack of ash-partings suggest deposition from a high concentration (ejecta), sustained eruption column at times, e.g. the massive, very diffusely stratified deposits. The paucity of tractional bed forms suggest near vertical particle trajectories, i.e. a clear air-fall component, but the poorly sorted, matrix-supported nature of the deposits suggest that pyroclastic flow and/or surge processes may also have been active during the eruption.

Available diamond sampling data were examined and correlated with the geology. Data derive from the old 120 (37 m), 200 (61 m), 300 (92 m) and 1200 ft (366 m) levels, pits sunk during historical mining operations, drill logs, as well as more recent bench mapping. Correlating macro-diamond sample data and geology shows a clear relationship between diamond grade and lithology. Localised enrichment and dilution of the primary diamond grade has taken place in the upper reworked volcaniclastic deposits due to post-eruptive sedimentary in-fill processes. Clear distinction can be drawn between upper (re-sedimented) and lower (pyroclastic) crater deposits at Mwadui, both from a geological and diamond grade perspective.

Finally, an emplacement model for the Mwadui kimberlite is proposed. Geological evidence suggests that little or no sedimentary cover existed at the time of emplacement. The nature of the bedding within the pyroclastic deposits and the continuity of the bedding in the vertical dimension suggest that the eruption was continuous, but that the eruption column may have been heterogeneous, both petrologically as well as geometrically. Volcanic activity appears to have ceased thereafter and the crater was gradually filled with granite debris from the unstable crater walls and re-sedimented volcaniclastic material derived from the tuff ring.

The Mwadui kimberlite exhibits marked similarities compared to the Orapa kimberlite in Botswana.  相似文献   


5.
辽宁瓦房店金刚石矿田金伯利岩侵位机制分析   总被引:2,自引:0,他引:2  
付海涛 《地质学报》2020,94(9):2640-2649
辽宁省瓦房店金刚石矿田位于华北陆块辽东新元古代- 古生代坳陷带。区内各时代地层均有出露,其中新元古界出露面积最大。区内断裂构造发育,较大的有北北东向的金州断裂,已发现的金伯利岩体基本上分布在该断裂以西。矿田内金刚石矿均为金伯利岩型,已发现100多个金伯利岩体,划分成4条矿带,已提交4个大型原生金刚石矿床和3个近源小型金刚石砂矿床,资源量占全国的一半以上,是我国重要的金刚石矿集区,其中50号金伯利岩管因其出产的金刚石质量优越而在宝石界享有盛誉。但本区的金伯利岩绝大部分是20世纪70年代、80年代发现的,为了更好地开展金刚石勘查工作,对本区金伯利岩的成矿条件和控矿因素进行了研究,金伯利岩体的平面分布位置表明,瓦房店地区的金伯利岩体成群、成带分布,既有岩管也有岩脉,以岩脉为主,岩管约占20%左右,岩体大小不等、形态各异,钻孔控制的岩管、岩脉大多具有向下延伸突然中断的特征,钻孔中见到的金伯利岩显示,很多金伯利岩管底界平直或具有多个水平标高上出现平移错动的现象,典型岩管、岩脉与等轴或近等轴状构造盆地的关系密切。通过对区内金伯利体岩空间分布特征、岩体形态特征进行分析,并探讨了本区金伯利岩的侵位过程和就位机制后认为,瓦房店地区的金伯利岩在侵位的浅成阶段,由于岩浆携带大量挥发分,在上升通道不顺畅的地段使上覆地层隆起,当挥发分泄漏掉以后隆起的地层塌陷形成浅碟子状的构造盆地,挥发分泄漏的通道就是金伯利岩体的产出位置,也有部分岩浆沿次级断裂运移固结成岩;由于被晚期推覆构造改造,使岩管、岩脉出现水平错动,造成了钻孔中所见的平底岩管或岩脉向下延伸不大的现象,这一认识为合理部署勘查工作提供了新的思路。  相似文献   

6.
西村岩管是在苏北地区发现的第一个金伯利岩管,颠覆了苏北地区无金伯利岩的历史。从岩石学、地球化学和伴生矿物等方面分析了西村岩管的地质特征,并进一步探讨其金刚石找矿意义。从区域背景和金刚石形成条件看,西村地区具备了金伯利岩侵位和金刚石矿形成的基本地质条件,而西村岩管为金刚石矿就位提供了母岩条件;西村金伯利岩与山东、辽宁金伯利岩具有相似的地球化学特征,是幔源岩浆低程度部分熔融的产物,且在岩浆上升过程中普遍遭受了壳源物质的混染,后期碳酸盐化现象普遍发育;其相容元素含量与山东金伯利角砾岩相似,均为典型的金伯利岩型配分模式,稀土元素表现为轻、重稀土元素强烈分馏的特征;伴生指示矿物主要为榴辉岩型含铬镁铝榴石、富铬透辉石和富镁铬尖晶石,其特征均表现出含矿金伯利岩的特点。  相似文献   

7.
对山东中生代金伯利岩和伴生煌斑岩进行了对比研究。纠正了过去伴生煌斑岩基质“以斜长石为主”的结论并重新命名。伴生煌斑岩可以分为二种类型:碳酸岩型煌斑岩和碱性岩型煌斑岩.前者与金伯利岩关系密切,但在形成时间、产出部位、矿物学和生成条件上与中生代金伯利岩有明显不同。建立在岩石化学和地球化学渐变过渡基础上的“同源分异”观点有不可忽略的弱点。本文提出地台不同部位下的上地幔橄榄岩在不同条件下部分熔融分别形成中生代金伯利岩和伴生煌斑岩的观点.  相似文献   

8.
The Renard igneous bodies were discovered in late 2001 as part of a regional diamond exploration program launched by Ashton Mining of Canada and SOQUEM. Nine bodies have been discovered within a 2-km-diameter area, and are comprised of root zone to lower diatreme facies rocks including kimberlitic breccia, olivine macrocrystic hypabyssal material, and brecciated country rock with minor amounts of kimberlitic material. Many mineralogical and petrographic features are common to both kimberlite and melnoite, and strict assignment of the rocks as kimberlite is not possible with these criteria alone. Whole rock trace element compositions suggest a closer affinity to Group I kimberlite, with derivation from a garnet-bearing mantle. Exceptions to conventional classification of the rocks along petrographic or mineralogical lines may be due in part to assimilation of felsic country rock into the Renard magmas at the time of emplacement. The Renard magmas were emplaced into northeastern Laurentia at 630 Ma, when the supercontinent was undergoing a change from convergent margin magmatism to rifting, the latter being associated ultimately with the opening of the Iapetus ocean.  相似文献   

9.
苏北第二轮金刚石找矿历时8 a,尚未发现含矿的金伯利岩或金刚石矿床。从苏北找矿实际出发,结合最新的金刚石成矿理论和进展,提出和探讨了制约苏北原生金刚石找矿的几个问题,进一步探讨了找矿方向。研究认为: 苏北原生金刚石找矿的首要目标为古生代金伯利岩,在郯庐断裂带西侧,由于徐宿弧形构造的存在,可能使得该期金伯利岩被掩盖于推覆体之下; 郯庐断裂带与古生代金伯利岩没有成因联系,但其在伸展阶段控制发育的断陷红盆,可能使得带内的古生代金伯利岩被掩盖在白垩系之下。今后的找矿方向应重点集中在郯庐断裂带内的城岗隆起上,郯庐断裂带西侧的含角砾基性岩亦是值得关注的对象。在开展找矿勘查时,应充分考虑工作区地质与地形条件、方法适应性和局限性等因素,因地制宜选择勘查方法组合。  相似文献   

10.
对分布于华北板块东缘的辽宁铁岭、瓦房店及山东蒙阴等3个金伯利岩区的地质构造特征进行了研究,利用地层时代、构造行迹、古地磁以及同位素资料,对该区域金伯利岩的侵位时间进行了综合约束,认为该区域金伯利岩的侵位时间应该在250-300 Ma 之间。在此基础上,结合华北板块与扬子板块在古生代时的相互运移特征,对华北板块东缘金刚石的成矿区域地质背景进行了分析,并结合构造形迹的研究,对该区域金刚石原生矿进行了成矿预测。  相似文献   

11.
E.M.W. Skinner  J.S. Marsh 《Lithos》2004,76(1-4):183-200
Field and Scott Smith [Field, M., Scott Smith, B.H., 1999. Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. Proc. 7th Int. Kimb. Conf. (Eds. Gurney et al.) 1, 214–237.] propose that kimberlite pipes can be grouped into three types or classes. Classical or Class 1 pipes are the only class with characteristic low temperature, diatreme-facies kimberlite in addition to hypabyssal- and crater-facies kimberlite. Class 2 and 3 pipes are characterized only by hypabyssal-and crater-facies kimberlite. In an increasing number of Class 1 pipes a new kimberlite facies, transitional-facies kimberlite, is being found. In most cases this facies forms a zone several metres wide at the interface between the hypabyssal- and diatreme-facies. The transitional-facies exhibits textural and mineralogical features, which are continuously gradational between the hypabyssal and the diatreme types. The textural gradations are from a coherent magmatic texture to one where the rock becomes increasingly magmaclastic and this is accompanied by concomitant mineralogical gradations involving the decline and eventual elimination of primary calcite at the expense of microlitic diopside. Both transitional- and diatreme-facies kimberlites are considered to have formed in situ from intruding hypabyssal kimberlite magma as a consequence of exsolution of initially CO2-rich volatiles from the volatile-rich kimberlite magma. The transitional-facies is initiated by volatile exsolution at depths of about 3 km below the original surface. With subsequent cracking through to the surface and resultant rapid decompression, the further catastrophic exsolution of volatiles and their expansion leads to the formation of the diatreme facies. Thus diatreme-facies kimberlite and Class 1 pipes are emplaced by essentially magmatic processes rather than by phreatomagmatism.

Distinctly different petrographic features characterize crater-facies kimberlite in each of the three pipe classes. In crater-facies kimberlites of Class 1 pipes, small pelletal magmaclasts and abundant microlitic diopside are characteristic. These features appear to reflect the derivation of the crater-facies material from the underlying diatreme zone. Most Class 2 pipes have shallow craters and the crater-facies rocks are predominantly pyroclastic kimberlites with diagnostic amoeboid lapilli, which are sometimes welded and have vesicles as well as glass. Possible kimberlite lava also occurs at two Class 2 pipes in N Angola. The possible presence of lava as well as the features of the pyroclastic kimberlite is indicative of hot kimberlite magma being able to rise to levels close to the surface to form Class 2 pipes. Most Class 3 kimberlites have very steep craters and crater-facies rocks are predominantly resedimented volcaniclastic kimberlites, in some cases characterized by the presence of abundant angular magmaclasts, which are petrographically very similar to typical hypabyssal-facies kimberlite found in Class 1 pipes. The differences in crater-facies kimberlite of the three classes of pipe reflect different formation and depositional processes as well as differences in kimberlite composition, specifically volatile composition. Kimberlite forming pipe Classes 1 and 3 is thought to be relatively water-rich and is emplaced by processes involving magmatic exsolution of volatiles. The kimberlite magma forming Class 2 pipes is CO2-rich, can rise to shallow levels, and can initiate phreatomagmatic emplacement processes.  相似文献   


12.

The Renard 2 pipe is currently the deepest-drilled and most extensively studied kimberlite body in the Renard cluster, central Québec, Canada, forming the major component of the Mineral Resource of Stornoway Diamond Corporation’s Renard Mine. Renard 2 is infilled with two distinct kimberlite units that exhibit Kimberley-type pyroclastic kimberlite and related textures. Hypabyssal kimberlite also occurs as smaller cross-cutting sheets and irregular intrusions. The units are distinguished by their rock textures, groundmass mineral assemblages, olivine macrocryst size distributions and replacement products, mantle and country rock xenolith contents, whole rock geochemical signatures, bulk densities and diamond grades. These differences are interpreted to reflect different mantle ascent and near-surface emplacement processes and are here demonstrated to be vertically continuous from present surface to over 1000 m depth. The distinctive petrological features together with sharp, steep and cross-cutting internal contact relationships, show that each unit was formed from a separate batch of mantle-derived kimberlite magma, and was completely solidified before subsequent emplacement of the later unit. The mineralogy and textures of the ultra-fine-grained interclast matrix are consistent with those described at numerous Kimberley-type pyroclastic kimberlite localities around the world and are interpreted to reflect rapid primary crystallization during emplacement of separate kimberlite magmatic systems. The units of fractured and brecciated country rock surrounding the main kimberlite pipe contain kimberlite-derived material including carbonate providing evidence of subsurface brecciation. Together these data show that Renard 2 represents the deeper parts of a Kimberley-type pyroclastic kimberlite pipe system and demonstrates that their diagnostic features result from magmatic crystallisation during subsurface volcanic emplacement processes.

  相似文献   

13.

The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.

  相似文献   

14.
This paper outlines the development of a multi-disciplinary strategy to focus exploration for economic kimberlites on the Ekati property. High-resolution aeromagnetic data provide an over-arching spatial and magnetostratigraphic framework for exploration and kimberlite discovery at Ekati, and hence also for this investigation. The temporal, geomagnetic, spatial and related attributes of kimberlites with variable diamond content have been constrained by judiciously augmenting the information gathered during routine exploration with detailed, laboratory-based or field-based investigations. The natural remanent magnetisation of 36 Ekati kimberlites has been correlated with their age as determined by isotopic dating techniques, and placed in the context of a well-constrained geomagnetic polarity timescale. Kimberlite magmatism occurred over the period 75 to 45 Ma, in at least five temporally discrete intrusive episodes. Based on current evidence, the older kimberlites (75 to 59 Ma) have low diamond contents and are distributed throughout the property. Younger kimberlites (56 to 45 Ma) have moderate to high diamond contents and occur in three distinct intrusive corridors with NNE to NE orientations. Economic kimberlite pipes erupted at 55.4±0.4 Ma along the A154-Lynx intrusive corridor, which is 7 km wide and oriented at 015°, and at 53.2±0.3 Ma along the Panda intrusive corridor, which is 1 km wide and oriented at 038°. The intrusion ages straddle a paleopole reversal at Chron C24n, consistent with the observation that the older economic kimberlites present as aeromagnetic “low” anomalies while the younger economic pipes are characterised as aeromagnetic “highs”. The aeromagnetic responses for these kimberlites are generally muted because they contain volcaniclastic rock types with low magnetic susceptibility. Kimberlites throughout the Ekati property carry a primary natural magnetic remanence (NRM) vector in Ti-bearing groundmass magnetite, and it dominates over vectors related to induced magnetisation. Magnetostratigraphic correlation of Ekati kimberlites may therefore present a powerful adjunct to existing exploration techniques, mainly because the diamond content of Ekati kimberlites apparently is related more to the age of eruption than to any other parameter investigated in this work.  相似文献   

15.
金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNd(t)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。  相似文献   

16.
东秦岭宽坪花岗岩体特征及其成因   总被引:4,自引:0,他引:4  
宽坪花岗岩体的野外地质、岩石学及地球化学特征表明,该岩体为一具主动侵位特征的同构造花岗岩体,属S型花岗岩。其源岩物质为秦岭群变质杂岩。根据这些地质事实并结合区域地质事件综合分析,该岩体是早古生代末-晚古生代初,华北与扬子两大板块开始闭合,华北板块南缘发生小规模洋内弧-岛弧碰撞拼贴不同构造岩片就位过程中作为岛弧陆壳物质的秦岭群变质杂岩活化重熔的产物。  相似文献   

17.
Diamond-bearing kimberlites in the Fort à la Corne region, east–central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U–Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.  相似文献   

18.
Kimberlite is an effective vector for researches and discussions on mantle dynamics process, lithosphere evolution and other major scientific problems, which plays an important role in revealing the forming environment, origin, source and prospecting of diamond. Currently, the developing research process of Kimberlite is still hampered by several key scientific problems, such as the evolution and the significance of the Kimberlite, evaluation for diamond potential and so on. Based on high-pressure melt simulation experiments, researches about matrix mineral, fine syngenetic inclusion (cognate xenolith?) and cryptocrystalline in the margin area of Kimberlite pipe, it seems that the initial composition features of Kimberlitic magma can be effectively analyzed. However, these experiments and researches are not only difficult to identify source characteristics of Kimberlitic magma efficiently, but also difficult to distinguish those effects on magma from which is assimilation/contamination, fluid fractionation or devitrification. Lacking of systematic research reports about recrystallization and (or) regrowth mineral on micro-composition and micro-structure, it is hard to efficiently and accurately analyze the changes and degassing effects in Kimberlitic magma, so far as to reveal the process of Kimberlitic magma evolution. Although Kimberlite diamond potential can be evaluated based on mineral assemblage, water content of olivine, there still exist some kinds of problems, like the index system being too simple, and the data accumulation being too little. Carrying out the fine micro-fabric studies between diamond-bearing Kimberlite and non diamond-bearing one can establish the scientific foundation for rebuilding the Kimberlitic magma evolution mechanism effectively and reveal the response to deep geological process. Meanwhile, on the basis of known diamond mines, a model for initial grade prediction of diamond and analysis of preservation potential can be set up to realize final purpose to evaluate the diamond potential in unknown Kimberlite areas in effect validity.  相似文献   

19.
Metasomatism accompanying kimberlite emplacement is a worldwide phenomenon, although infrequently described or recognised. At the Cambrian-aged Murowa and Sese kimberlite clusters located within the Archean Zimbabwe Craton just north of the boundary with the Limpopo Mobile Zone in southern central Zimbabwe, the metasomatism is intense and well exposed and the processes can be readily studied. Dykes, sills and the root zones of pipes are exposed at the current erosion level. Kimberlite lithologies present are hypabyssal macrocrystic kimberlite (“HMK”), HMK breccia, and tuffisitic kimberlite breccia (“TKB”) including minor lithic tuffisitic kimberlite breccia (“LTKB”). Country rocks are 2.6 Ga Chibi and Zimbabwe granite batholiths emplaced into 2.6–2.9 Ga or earlier Archean tonalitic gneiss and greenstones. During initial metasomatism, the granites become spotted with green chlorite, needles of alkaline amphiboles (winchite, riebeckite, arfvedsonite) and pyroxenes (aegirine–augite) with minor carbonate and felts of talc. Oligoclase feldspar becomes converted to albite, extensively altered, dusted and reddened with hematite, whereas K-feldspar remains unaffected. The granites become converted to syenite through removal of quartz. More intense metasomatism at Murowa and Sese results in veins of green metasomatite which cut and disrupt the granite. Progressive disruption entrains granite blocks, breaking down the granite still further, spalling off needle-like granite slivers, and so giving rise to LTKB. This process of disruption and entrainment appears to be the manner of initial development of the pipe structure. The chemistry of the metasomatite is intermediate between granite and kimberlite. Compared to granite country rock it has markedly higher Mg, Cr, Ni, CO2 and H2O+, higher Ca, Mn, Nb, Sr, P, Fe3+/Fe2+ ratio, U, Co, and Cu, approximately equal TiO2, K2O, Na2O, La, Ta, Rb, Zr, Zn and resultant lower SiO2, Al2O3, Ga and Y. The metasomatite Na2O/K2O ratio is slightly higher than that of the granite. The metasomatic process is broadly analogous to fenitisation of granitic wall rock accompanying carbonatite complex emplacement. The metasomatism at Murowa and Sese was caused by fluids from the rising but confined proto-kimberlite melt penetrating into cracks and matrix of granite country rock and reacting with it. These fluids were CO2-rich, hydrous, oxidising, enhanced in ultramafic elements and carried low levels of Na.  相似文献   

20.
辽宁瓦房店金刚石矿田是我国重要的金伯利岩型金刚石矿集区.为了更好地发挥物探在该区寻找金刚石矿的作用,对以往物探工作程度、使用的方法、取得的成果进行了系统梳理.通过总结发现,地面磁测在圈定浅地表金伯利岩体中发挥了重要作用;在寻找深部隐伏金伯利岩体时,音频大地电磁测量、井中物探发挥了重要作用;在研究金刚石矿控矿因素等问题时,1∶5万区域重力测量、大地电磁剖面测量发挥了重要作用.总之,物探是瓦房店矿田金刚石矿勘查中的重要组成部分,合理的方法组合能够解决相应的地质问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号