首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some “fast-track” dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.  相似文献   

2.
Effect of stellar electromagnetic radiation on the motion of spherical dust particle in mean motion orbital resonances with a planet is investigated. Planar circular restricted three-body problem with the Poynting–Robertson (P–R) effect yields monotonic secular evolution of eccentricity when the particle is trapped in the resonance. Planar elliptic restricted three-body problem with the P–R effect enables nonmonotonous secular evolution of eccentricity and the evolution of eccentricity is qualitatively consistent with the published results for the complicated case of interaction of electromagnetic radiation with nonspherical dust grain. Thus, it is sufficient to allow either nonzero eccentricity of the planet or nonsphericity of the grain and the orbital evolutions in the resonances are qualitatively equal for the two cases. This holds both for exterior and interior mean motion orbital resonances. Evolutions of argument of perihelion in the planar circular and elliptical restricted three-body problems are shown. Numerical integrations show that an analytic expression for the secular time derivative of the particle’s argument of perihelion does not exist, if only dependence on semimajor axis, eccentricity and argument of perihelion is admitted. Connection between the shift of perihelion and oscillations in secular eccentricity is presented for the planar elliptic restricted three-body problem with the P–R effect. Period of the oscillations corresponds to the period of one revolution of perihelion. Change of optical properties of the spherical grain with the heliocentric distance is also considered. The change of the optical properties: (i) does not have any significant influence on the secular evolution of eccentricity, (ii) causes that the shift of perihelion is mainly in the same direction/orientation as the particle motion around the Sun. The statements hold both for circular and noncircular planetary orbits.  相似文献   

3.
The three-dimensional secular behavior of a system composed of a central star and two massive planets is modeled semi-analytically in the frame of the general three-body problem. The main dynamical features of the system are presented in geometrical pictures allowing us to investigate a large domain of the phase space of this problem without time-expensive numerical integrations of the equations of motion and without any restriction on the magnitude of the planetary eccentricities, inclinations and mutual distance. Several regimes of motion of the system are observed. With respect to the secular angle Δ?, possible motions are circulations, oscillations (around 0° and 180°), and high-eccentricity/inclination librations in secular resonances. With respect to the arguments of pericenter, ω1 and ω2, possible motions are direct circulation and high-inclination libration around ±90° in the Lidov-Kozai resonance. The regions of transition between domains of different regimes of motion are characterized by chaotic behavior. We apply the analysis to the case of the two outer planets of the υ Andromedae system, observed edge-on. The topology of the 3-D phase space of this system is investigated in detail by means of surfaces of section, periodic orbits and dynamical spectra, mapping techniques and numerical simulations. We obtain the general structure of the phase space, and the boundaries of the spatial secular stability. We find that this system is secularly stable in a large domain of eccentricities and inclinations.  相似文献   

4.
The dynamics of two families of minor inner solar system bodies that suffer frequent close encounters with the planets is analyzed. These families are: Jupiter family comets (JF comets) and Near Earth Asteroids (NEAs). The motion of these objects has been considered to be chaotic in a short time scale,and the close encounters are supposed to be the cause of the fast chaos. For a better understanding of the chaotic behavior we have computed Lyapunov Characteristic Exponents (LCEs) for all the observed members of both populations. LCEs are a quantitative measure of the exponential divergence of initially close orbits. We have observed that most members of the two families show a concentration of Lyapunov times (inverse of LCE) around 50–100yr. The concentration is more pronounced for JF comets than for NEAs, among which a lesser spread is observed for those that actually cross the Earth's orbit (mean perihelion distance q < 1.05 AU). It is also observed that a general correspondence exists between Lyapunov times and the time between consecutive encounters. A simple model is introduced to describe the basic characteristics of the dynamical evolution. This model considers an impulsive approach, where the particles evolve unperturbedly between encounters and suffer ‘kicks’ in semimajor axis at the encounters. It also reproduces successfully the short Lyapunov times observed in the numerical integrations and is able to estimate the dynamical lifetimes of comets during a stay in the Jupiter family in correspondence with previous estimates. It has been demonstrated with the model that the encounters with the largest effect on the exponential growth of the distance between initially nearby orbits are neither the infrequent deep encounters, nor the frequent and far ones; instead, the intermediate approaches have the most relevant contribution to the error growth. Such encounters are at a distance a few times the radius of the Hill's sphere of the planet (e.g. 3). An even simpler model allows us to get analytical estimates of the Lyapunov times in good agreement with the values coming from the model above and the numerical integrations. The predictability of the medium‐term evolution and the hazard posed to the Earth by those objects are analysed in the Discussion section. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some fast-track dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.On leave from the Department of Mathematics, University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy, thanks to the G. Colombo fellowships of the European Space Agency.  相似文献   

6.
We analyze the dynamical evolution of Jupiter-family (JF) comets and near-Earth asteroids (NEAs) with aphelion distances Q>3.5 AU, paying special attention to the problem of mixing of both populations, such that inactive comets may be disguised as NEAs. From numerical integrations for 2×106 years we find that the half lifetime (where the lifetime is defined against hyperbolic ejection or collision with the Sun or the planets) of near-Earth JF comets (perihelion distances q<1.3 AU) is about 1.5×105 years but that they spend only a small fraction of this time (∼ a few 103 years) with q<1.3 AU. From numerical integrations for 5×106 years we find that the half lifetime of NEAs in “cometary” orbits (defined as those with aphelion distances Q>4.5 AU, i.e., that approach or cross Jupiter's orbit) is 4.2×105 years, i.e., about three times longer than that for near-Earth JF comets. We also analyze the problem of decoupling JF comets from Jupiter to produce Encke-type comets. To this end we simulate the dynamical evolution of the sample of observed JF comets with the inclusion of nongravitational forces. While decoupling occurs very seldom when a purely gravitational motion is considered, the action of nongravitational forces (as strong as or greater than those acting on Encke) can produce a few Enckes. Furthermore, a few JF comets are transferred to low-eccentricity orbits entirely within the main asteroid belt (Q<4 AU and q>2 AU). The population of NEAs in cometary orbits is found to be adequately replenished with NEAs of smaller Q's diffusing outward, from which we can set an upper limit of ∼20% for the putative component of deactivated JF comets needed to maintain such a population in steady state. From this analysis, the upper limit for the average time that a JF comet in near-Earth orbit can spend as a dormant, asteroid-looking body can be estimated to be about 40% of the time spent as an active comet. More likely, JF comets in near-Earth orbits will disintegrate once (or shortly after) they end their active phases.  相似文献   

7.
The population of Near-Earth Asteroids (NEAs) appears to be overabundant at sizes smaller than 50m, compared to a power-law extrapolation from kilometer-sized objects. Several of these small NEAs are also concentrated on low-eccentricity orbits, where a few larger Earth-crossers are observed, and are called Small Earth-Approachers (SEAs). Their source region as well as the dynamical mechanisms involved in their transport close to the Earth on low-eccentricity orbits have not yet been determined. In this paper, we present our numerical and statistical study of the production and dynamical evolution of these SEAs. We first show that three main sources of Earth-crossers which are, according to recent simulations, the 3/1 and 6 resonances in the main belt, and the Mars-crosser population, are not able to produce as many bodies on SEAs-like orbits compared to other Earth-crossing orbits as has been inferred from observations. From these sources, SEAs-like orbits are reached through the interplay of two required mechanisms: secular resonances and planetary close approaches. However, the time spent on these orbits remains smaller than 1 Myr as confirmed by the study of the evolutions of 11 observed SEAs which also reveal the action of various mechanisms such as close approaches to planets and/or secular resonances. Therefore, our results present some mechanisms which can be responsible for their production but none that would preserve the lifetime of the SEAs sufficiently to enhance their abundance relative to other Earth-crossing orbits at the level observed. The overabundance of the SEA population, if real, remains a problem and could be related to the influence of collisional disruption and tidal splitting of Earth-crossers, as well as to observational biases that might account for a discrepancy between theory and observation.  相似文献   

8.
F. MarzariH. Scholl 《Icarus》2002,159(2):328-338
We have numerically explored the mechanisms that destabilize Jupiter's Trojan orbits outside the stability region defined by Levison et al. (1997, Nature385, 42-44). Different models have been exploited to test various possible sources of instability on timescales on the order of ∼108 years.In the restricted three-body model, only a few Trojan orbits become unstable within 108 years. This intrinsic instability contributes only marginally to the overall instability found by Levison et al.In a model where the orbital parameters of both Jupiter and Saturn are fixed, we have investigated the role of Saturn and its gravitational influence. We find that a large fraction of Trojan orbits become unstable because of the direct nonresonant perturbations by Saturn. By shifting its semimajor axis at constant intervals around its present value we find that the near 5:2 mean motion resonance between the two giant planets (the Great Inequality) is not responsible for the gross instability of Jupiter's Trojans since short-term perturbations by Saturn destabilize Trojans, even when the two planets are far out of the resonance.Secular resonances are an additional source of instability. In the full six-body model with the four major planets included in the numerical integration, we have analyzed the effects of secular resonances with the node of the planets. Trojan asteroids have relevant inclinations, and nodal secular resonances play an important role. When a Trojan orbit becomes unstable, in most cases the libration amplitude of the critical argument of the 1:1 mean motion resonance grows until the asteroid encounters the planet. Libration amplitude, eccentricity, and nodal rate are linked for Trojan orbits by an algebraic relation so that when one of the three parameters is perturbed, the other two are affected as well. There are numerous secular resonances with the nodal rate of Jupiter that fall inside the region of instability and contribute to destabilize Trojans, in particular the ν16. Indeed, in the full model the escape rate over 50 Myr is higher compared to the fixed model.Some secular resonances even cross the stability region delimited by Levison et al. and cause instability. This is the case of the 3:2 and 1:2 nodal resonances with Jupiter. In particular the 1:2 is responsible for the instability of some clones of the L4 Trojan (3540) Protesilaos.  相似文献   

9.
Abstract— A large body of evidence, including the presence of a dynamical family associated with 4 Vesta, suggests that this asteroid might be the ultimate source of both the V-type near-Earth asteroids (NEAs) and howardite, eucrite and diogenite (HED) meteorites. Dynamical routes from Vesta to the inner regions of the solar system are provided by both the 3:1 mean-motion resonance with Jupiter and the V6, secular resonance. For this reason, numerical integrations of the orbits of fictitious Vesta fragments injected in both of these resonances have been performed. At the same time, the orbital evolution of the known V-type NEAs has been investigated. The results indicate that the dynamical half lifetimes of Vesta fragments injected in both the 3:1 and the V6, resonances are rather short ('2 Ma). The present location of the seven known V-type NEAs is better explained by orbital evolutions starting from the v6 secular resonance. The most important result of the present investigation, however, is that we now face what we call the “Vesta paradox.” Roughly speaking, the paradox consists of the fact that the present V-type NEAs appear to be too dynamically young to have originated in the event that produced the family, but they are too big to be plausible second-generation fragments from the family members. The cosmic-ray exposure (CRE) age distribution of HED meteorites also raises a puzzle, since we would expect an overabundance of meteorites with short CRE ages. We propose different scenarios to explain these paradoxes.  相似文献   

10.
On the basis of a high-order (order 12) expansion of the perturbative potential in powers of the eccentricities and the inclinations, we analyze the secular interactions of two non-coplanar planets which are not in mean-motion resonance. The model is based on the planetary three-body problem which can be reduced to two degrees of freedom by the well-known elimination of the nodes [Jacobi, C.G.J., 1842. Astron. Nachr. XX, 81-102]. We introduce non-singular canonical variables which bring forward the symmetries of the problem. The main dynamical features depend on the location and stability of the equilibria which are easily found with our analytical model. We find that there exists an equilibrium when both eccentricities are zero. When the mutual inclination is small, this equilibrium is stable, but for larger mutual inclination it becomes unstable, generating a large chaotic zone and, by bifurcation, two regular regions, the so-called Kozai resonances. This analytical study which depends on only two parameters (the ratio of the semi-major axes and the mass ratio of the planets) makes possible a large survey of the problem and enables us to identify and quantify its main dynamical features, periodic orbits, regular and chaotic zones, etc. The results of our analytical model are illustrated and confirmed by numerical integrations.  相似文献   

11.
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analogue of the Solar system. Our work is inspired by the work of Malhotra & Minton. Using the linear Laplace–Lagrange theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However, due to uncertain or unconstrained orbital parameters, the subsystem of Jupiters may be found in a dynamically active region of the phase space spanned by low-order mean-motion resonances. To generalize this secular model, we construct a semi-analytical averaging method in terms of the restricted problem. The secular orbits of large planets are approximated by numerically averaged osculating elements. They are used to calculate the mean orbits of terrestrial planets by means of a high-order analytic secular theory developed in our previous works. We found regions in the parameter space of the problem in which stable, quasi-circular orbits in the HZ are permitted. The excitation of eccentricity in the HZ strongly depends on the apsidal angle of jovian orbits. For some combinations of that angle, eccentricities and semimajor axes consistent with the observations, a terrestrial planet may survive in low eccentric orbits. We also study the effect of post-Newtonian gravity correction on the innermost secular resonance.  相似文献   

12.
On the origin of the unusual orbit of Comet 2P/Encke   总被引:1,自引:0,他引:1  
The orbit of Comet 2P/Encke is difficult to understand because it is decoupled from Jupiter—its aphelion distance is only 4.1 AU. We present a series of orbital integrations designed to determine whether the orbit of Comet 2P/Encke can simply be the result of gravitational interactions between Jupiter-family comets and the terrestrial planets. To accomplish this, we integrated the orbits of a large number of objects from the trans-neptunian region, through the realm of the giant planets, and into the inner Solar System. We find that at any one time, our model predicts that there should be roughly 12 objects in Encke-like orbits. However, it takes roughly 200 times longer to evolve onto an orbit like this than the typical cometary physical lifetime. Thus, we suggest that (i) 2P/Encke became dormant soon after it was kicked inward by Jupiter, (ii) it spent a significant amount of time inactive while rattling around the inner Solar System, and (iii) it only became active again as the ν6 secular resonance drove down its perihelion distance.  相似文献   

13.
We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this sys-tem can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU ≤ a ≤ 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and sev-eral stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.  相似文献   

14.
The significant orbital eccentricities of most giant extrasolar planets may have their origin in the gravitational dynamics of initially unstable multiple planet systems. In this work, we explore the dynamics of two close planets on inclined orbits through both analytical techniques and extensive numerical scattering experiments. We derive a criterion for two equal mass planets on circular inclined orbits to achieve Hill stability, and conclude that significant radial migration and eccentricity pumping of both planets occurs predominantly by 2:1 and 5:3 mean motion resonant interactions. Using Laplace-Lagrange secular theory, we obtain analytical secular solutions for the orbital inclinations and longitudes of ascending nodes, and use those solutions to distinguish between the secular and resonant dynamics which arise in numerical simulations. We also illustrate how encounter maps, typically used to trace the motion of massless particles, may be modified to reproduce the gross instability seen by the numerical integrations. Such a correlation suggests promising future use of such maps to model the dynamics of more coplanar massive planet systems.  相似文献   

15.
We study the transfer process from the scattered disk (SD) to the high-perihelion scattered disk (HPSD) (defined as the population with perihelion distances q > 40 AU and semimajor axes a>50 AU) by means of two different models. One model (Model 1) assumes that SD objects (SDOs) were formed closer to the Sun and driven outwards by resonant coupling with the accreting Neptune during the stage of outward migration (Gomes 2003b, Earth, Moon, Planets 92, 29–42.). The other model (Model 2) considers the observed population of SDOs plus clones that try to compensate for observational discovery bias (Fernández et al. 2004, Icarus , in press). We find that the Kozai mechanism (coupling between the argument of perihelion, eccentricity, and inclination), associated with a mean motion resonance (MMR), is the main responsible for raising both the perihelion distance and the inclination of SDOs. The highest perihelion distance for a body of our samples was found to be q = 69.2 AU. This shows that bodies can be temporarily detached from the planetary region by dynamical interactions with the planets. This phenomenon is temporary since the same coupling of Kozai with a MMR will at some point bring the bodies back to states of lower-q values. However, the dynamical time scale in high-q states may be very long, up to several Gyr. For Model 1, about 10% of the bodies driven away by Neptune get trapped into the HPSD when the resonant coupling Kozai-MMR is disrupted by Neptune’s migration. Therefore, Model 1 also supplies a fossil HPSD, whose bodies remain in non-resonant orbits and thus stable for the age of the solar system, in addition to the HPSD formed by temporary captures of SDOs after the giant planets reached their current orbits. We find that about 12 – 15% of the surviving bodies of our samples are incorporated into the HPSD after about 4 – 5 Gyr, and that a large fraction of the captures occur for up to the 1:8 MMR (a ⋍ 120 AU), although we record captures up to the 1:24 MMR (a ≃ 260 AU). Because of the Kozai mechanism, HPSD objects have on average inclinations about 25°–50°, which are higher than those of the classical Edgeworth–Kuiper (EK) belt or the SD. Our results suggest that Sedna belongs to a dynamically distinct population from the HPSD, possibly being a member of the inner core of the Oort cloud. As regards to 2000 CR105 , it is marginally within the region occupied by HPSD objects in the parametric planes (q,a) and (a,i), so it is not ruled out that it might be a member of the HPSD, though it might as well belong to the inner core.  相似文献   

16.
T.A. Michtchenko  R. Malhotra 《Icarus》2004,168(2):237-248
The discovery of extra-solar planetary systems with multiple planets in highly eccentric orbits (∼0.1-0.6), in contrast with our own Solar System, makes classical secular perturbation analysis very limited. In this paper, we use a semi-numerical approach to study the secular behavior of a system composed of a central star and two massive planets in co-planar orbits. We show that the secular dynamics of this system can be described using only two parameters, the ratios of the semi-major axes and the planetary masses. The main dynamical features of the system are presented in geometrical pictures that allows us to investigate a large domain of the phase space of this three-body problem without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The topology of the phase space is also investigated in detail by means of spectral map techniques, which allow us to detect the separatrix of a non-linear secular apsidal resonance. Finally, the qualitative study is supplemented by direct numerical integrations. Three different regimes of secular motion with respect to the secular angle Δ? are possible: they are circulation, oscillation (around 0° and 180°), and high eccentricity libration in a non-linear secular resonance. The first two regimes are a continuous extension of the classical linear secular perturbation theory; the last is a new feature, hitherto unknown, in the secular dynamics of the three-body problem. We apply the analysis to the case of the two outer planets in the υ Andromedae system, and obtain its periodic and ordinary orbits, the general structure of its secular phase space, and the boundaries of its secular stability; we find that this system is secularly stable over a large domain of eccentricities. Applying this analysis to a wide range of planetary mass and semi-major axis ratios (centered about the υ Andromedae parameters), we find that apsidal oscillation dominates the secular phase space of the three-body coplanar system, and that the non-linear secular resonance is also a common feature.  相似文献   

17.
A simple method for numerical integration of the equations of motion of small bodies of the Solar System is proposed, which is especially efficient in studying the orbits with small perihelion distances. The evolution of orbits of 121 numbered asteroids with perihelion distances q < 1.2 AU is investigated over the time interval of years 2000–2100 with allowance made for the gravitational influence of nine planets and three largest asteroids. The circumstances of close encounters of asteroids with the Earth and other terrestrial planets are presented.  相似文献   

18.
Numerical integrations of the four major planets orbits inside a primordialplanetesimals disk show that a fraction of Neptune primordial scatteredobjects are deposited into the classical Kuiper Belt at Solar System age. Theseobjects exhibit inclinations as high as 40° and can account forpresent high inclinations population in the classical Kuiper Belt. The samemechanism can also originate high perihelion scattered objects like 2000 CR105. The process that in the end produced such objects can be divided into two phases, a migration phase where nonconservative dynamics acted to producesome stable objects already at 108 years and a nonmigrating phase that helped to establish some other objects as stable TNO's. Low inclination CKBO's have inprinciple an origin through the resonance sweeping process, although someresults from numerical integrations at least suggest a possible origin also fromthe primordial Neptune scattered population.  相似文献   

19.
H. Scholl  F. Marzari 《Icarus》2005,175(2):397-408
In this paper we explore the dynamical stability of the Mars Trojan region applying mainly Laskar's Frequency Map Analysis. This method yields the chaotic diffusion rate of orbits and allows to determine the most stable regions. It also gives the frequencies which are responsible for the instability of orbits. The most stable regions are found for inclinations between about 15° and 30°. For inclinations smaller than 15°, we confirm, by applying a synthetic secular theory, that the secular resonances ν3, ν4, ν13, ν14 rapidly excite asteroid orbits within a few Myrs, or even faster. The asteroids are removed from the Trojan region after a close encounter with Mars. For large inclinations, the secular resonance ν5 clears a small region around 30° while the Kozai resonance rapidly removes bodies for inclinations larger than 35°. The dynamical lifetimes of the three L5 Trojans, (5261) Eureka, 1998 VF31, 2001 DH47, and the only L4 Trojan 1999 UJ7 are determined by numerically integrating clouds of corresponding clones over the age of the Solar System. All four Trojans reside in the most stable region with smallest diffusion coefficients. Their dynamical half-lifetime is of the order of the age of the Solar System. The Yarkovsky force has little effect on the known Trojans but for bodies smaller than about 1-5 m the drag is strong enough to destabilize Trojans on a timescale shorter than 4.5 Gyr.  相似文献   

20.
Since the first extrasolar planet was discovered about 10 years ago, a major point of dynamical investigations was the determination of stable regions in extrasolar planetary systems where additional planets may exist. Using numerical methods, we investigate the dynamical stability in known multiple planetary systems (HD74156, HD38529, HD168443, HD169830) with special interest on the region between the two known planets and on the mean motion resonances inside this region. As a dynamical model we take the restricted 4-body problem containing the host star, the two planets and massless test-planets. For our numerical integrations, we used the Lie-integrator and additionally the Fast Lyapunov Indicators as a tool for detecting chaotic motion. We also investigated the inner resonances with the outer planet and the outer resonances with the inner planet with test-planets located inside the resonances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号