首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蔡家营铅—锌—银矿床的稳定同位素地球化学研究   总被引:3,自引:0,他引:3  
河北蔡家营矿床是大型中温热液充填-交代脉型铅-锌-银矿床。其硫化物的δ^34S值为2.2‰-7.8‰,同世代共存的10个硫化物对的Δ^34S值表明,Fe-(Zn、Pb)-S系统的硫同位素非平衡分馏占主导,硫是岩浆(为主)与老变质岩层硫的混合来源。石英及其流体包裹体的δ^18OSMOW和δDSMOW值(‰)按混合模式计算表明,成矿流体为混合的岩浆和大气降水,早期成矿流体以岩浆为主,尔后则变为以大气降  相似文献   

2.
作者测定了韩国14个金银矿硫化矿物同位素比值。尽管δ^34S值从-0.2%到+9.8%相对较宽,但是90%的值都落在+1%到+7%的范围内。个别矿床其同位素值通常有不同超过千分之三的较小变化范围。这种小变化范围和在硫化矿物中观察到的^34S分馏,表明了在均衡或近均衡条件下硫化物沉淀作用主要来自H2S。  相似文献   

3.
熊耳群碲化物型金矿硫铅同位素及其在矿作用探讨   总被引:5,自引:0,他引:5  
丁士应  任富根 《河南地质》1995,13(4):241-247
熊耳群火山岩中产出各种类型的金矿床,碲化物型(构造蚀变岩型)是金矿主要类型,该类型金矿以出现大量碲化物或富碲、硒为特征。硫化物δ^34S以较大的负值为特征,δ^34S=-19.24‰-+6.68‰。本文通过综合研究及与国内外有关矿床对比,认为该碲化物型金矿δ^34S负值的主要原因是地表水的渗透参与导致成矿热液物理化学条件改变,fo2升高、PH降低,从而引起硫同位素强烈分馏形成的。有关铅同位素组成具  相似文献   

4.
脉冲黝铜矿型铜矿床是产于兰坪-思茅盆地中的一种新的铜矿床类型。碳酸盐及CO2包裹体的δ^13C值大多在-4‰~-7‰之间变化,显示碳来自地幔。矿石中铅同位素组成与盆地中喜马拉雅期碱性岩长石中铅的同位素组成一致,方解石和铁白云石的^87Sr/^86Sr比值接近或稍高于碱性岩的^87Sr/86Sr的比值,显示矿石锶、铅与碱性岩锶、铅是同源的,均来自于上地幔。硫化物中硫的δ^34S值大多集中在0~-4‰  相似文献   

5.
四川省石棉县大水沟碲床成矿物质来源的一些证据   总被引:1,自引:0,他引:1  
该矿床是一个新矿床类型。成矿作用分为磁黄铁矿-黄铁矿、辉碲铋矿和黄铁矿-黄铜矿三个阶段。矿化围三叠纪镁铁质火山岩。在矿脉周围广泛发育有以黑云母、白云母、石英和斜长石为代表的蚀普及分带。磁黄铁矿和辉碲铋矿的硫同位素值δ^34S=-1.7‰-2.8‰白去石和方解石的δ^13CPDB=-5.3‰--7.42,δ^18OSMOW=10.9-13.1‰。根据以硅质、碱和富挥发组分为特征的围岩蚀变和S、O?  相似文献   

6.
广东长坑金银矿床流体包裹体及同位素地球化学研究   总被引:9,自引:0,他引:9  
通过长坑金银矿床流体包裹体及氢氧硫碳同位素的研究,表明金矿体与银矿体在空间上虽存在分带性,但成矿的物质来源和成矿热液来源是相同的。金银矿床的形成,成矿温度为250℃,Logfo2为-38~-37,pH为4.0~5.6,硫化物的δ34S值为-6.6‰~8.8‰;成矿热液水的δ18O值和δD值分别为-7.8‰~9.0‰和-80‰~-43‰;金银矿石K-Ar年龄为133×106a~137×106a。因此,金银矿床的形成为燕山期岩浆活动提供热源,使大气降水在地层中循环淋滤,带出地层中成矿物质,并在容矿构造中沉淀形成矿床。  相似文献   

7.
中国主要类型锑矿床硫同位素组成及地球化学特征   总被引:6,自引:2,他引:4  
中国主要类型锑矿床的硫同位素组成范围变化很大,锑矿床中各种矿物(辉锑矿、黄铁矿、闪锌矿、雄黄、方铅矿、重晶石、毒砂、辰砂、脆硫锑铅矿)的δ34S值从-32.7‰变化到+34.8‰,极差值高达67.5‰。各类锑矿床中矿物的硫同位素组成变化各异,说明锑矿床成因较复杂,硫的来源不仅有海水中沉淀的硫酸盐硫,而且还有生物、细菌形式的还原硫和深源硫(岩浆作用、喷流作用等),从而形成不同类型或成因复杂的锑矿床  相似文献   

8.
江西留龙金矿矿质来源及硫,铅,氢,氧同位素组成研究   总被引:2,自引:0,他引:2  
留龙金矿存在两种不同类型的金矿体,一类为毒砂石英脉;另一类为铅锌硫化物石英脉。它们都受上施组火山沉积凝灰岩中近南北向断裂控制,具有不同的矿物组合、成矿温度和同位素组成。毒砂石英脉形成于140 ̄220℃,δ^34S的值-0.04‰ ̄-1.04‰,铅同位素组成与变沉凝灰岩一致,成矿流体以大气降水为主,是加热了大气降水热液改造围岩而形成的改造型矿体。铅锌硫化物石英脉形成于260 ̄325℃,δ^34S值-  相似文献   

9.
深源流体—老王寨金矿床含矿流体来源的一种可能性   总被引:6,自引:1,他引:6  
老王寨金矿床含矿流体是一种富含矿化剂Cl^-、CO2和S^2-的高温高压深源流体。石英中流体包裹体的δ^18OH2O值在+6.91‰ ̄+11.76‰之间,δDH2O值为-68.10‰ ̄-101.10‰之间,辉锑矿的δ^34S值为-0.15‰ ̄-1.03‰,方解石的δ^13C值为-0.34‰ ̄-3.12‰。研究结果表明,这种流体既不是岩浆热液也不是大气降水,而是一种深源流体。  相似文献   

10.
黔中沉积磷灰石的硫碳同位素及其地质意义   总被引:5,自引:0,他引:5  
陈其英  封兰英 《岩石学报》1996,12(4):594-597
本文研究了黔中磷块岩中磷灰石的结构硫同位素组成。磷灰石的δ34S值为34.2‰~42.4‰,它高于同期海水的δ34S(约34.2‰),也高于共生的成岩黄铁矿的δ34S(15.4‰~19.8‰),表明磷灰石形成于富有机质沉积物早期成岩作用硫酸盐还原带的最上部,其间同时伴有大量硫酸盐细菌的还原过程。磷灰石的碳同位素组成(δ13C=-3.63‰~1.0‰),表明它含有微生物有机质分解演化而来的CO2-3,而磷灰石比胶结白云石更富集轻同位素则反映出沉积阶段生物作用的影响比成岩阶段更为明显  相似文献   

11.
铜矿峪铜矿床地球化学的研究   总被引:2,自引:0,他引:2  
详细地研究了铜矿峪矿床地球化学特征,得出铜矿床形成的pb-pb年龄为21亿年;矿床形成温度为350℃,压力为4×10 ̄7pa~1×10 ̄8pa;Logfo_2:为-31~-31.88,logfs_2为-5~-8;pH值为3.6~6.4;硫化物的δ ̄34S值为-4.5‰~0.2‰,δ ̄34S为+10‰;方解石的δ ̄13C为-4.89‰~1.1‰,δ ̄13C为一4.28‰,成矿流体主要为岩浆水,属于斑岩型铜矿床。  相似文献   

12.
横岭关铜矿床地球化学研究   总被引:1,自引:0,他引:1  
对横岭关铜矿床中稀土元素、同位素和矿物包裹体地球化学研究表明,矿床形成温度为350℃±30℃;压力为38×10~5Pa~240×10~5Pa;盐度为30wt%~42wt%;logfo_2为-30.41~-31.47;logfs_2为-5.4~-8;pH值为7.3;logfco_2为-2.49;铜的溶解度(logm_(Cu))为-5.87~-2.21。围岩的铅-铅同位素年龄为1775×10~6a,矿石的铅-铅同位素年龄为1845×10~6a;矿石硫同位素组成,δ~(34)S为-8.1‰~36.9‰,显示出硫同位素为非平衡特征;碳酸盐岩的碳同位素组成,δ~(13)C为-7.1‰~-2.6‰,δ~(13)C_(∑C)为-5.3‰;成矿流体的氢氧同位素组成具有变质热卤水的特点,认为该矿床属于变质热卤水成矿。  相似文献   

13.
吉林省金城洞地区金矿类型及成因   总被引:1,自引:1,他引:0  
吉林省金城洞地区是吉林省夹皮沟-金城洞金矿成矿带的重要组成之一,该区金矿发育,按春产出的地质背景可划分为两类:一类为产于晚太古宙绿岩带变质岩系中的金矿;一类为产于花岗岩侵入体中的金矿,两类金矿容矿构造均为中生代(75Ma~145Ma)脆性断裂,矿脉均以石英脉型为主,矿床氢氧同位素组成为δD=-87‰~-92‰,δ^18OH2xo=+2‰~+5.26‰,硫同位素δ^34S为+0.6‰~+4.8‰,其  相似文献   

14.
广东长坑金银矿床的成矿地球化学——硫同位素研究   总被引:10,自引:1,他引:10  
张生  李统锦 《地球化学》1997,26(4):78-85
长坑矿床金、银矿石硫化物的δ^34S分别以高离散的负值和相对较集中的正值为特征。在主要成矿阶段硫同位素基本达到平衡或近平衡分馏条件下,采用大本模式分析表明,硫同位素分布特征可能与成矿流体物理化学条件不同有关,即形成金矿石的热液偏酸性、fo2较高,而银矿化期的流体近中性、fo2较低;此外,伴随硫化物沉淀的储库效应对此也有一定的影响。热液的总硫同位素组成可取为4‰-7‰,应主要来自围岩中的沉积硫。成矿  相似文献   

15.
侯增谦  吴世迎 《地质论评》1996,42(6):531-540
本文首次报道了川西呷村黑矿型矿床硅质岩的硅,氧同位素组成,其δ^18O为12.8‰-18.3-‰形成温度约99-120℃,δ^30Si为0.0‰-1.6‰,与Mariana和Galapagos热液硅质烟囱的δ^30Si值范围基本相当,揭示两者具相似的形成机制。  相似文献   

16.
火山岩型银多金属矿床是滇东南地区的重要矿床类型、矿床中硫的δ^34S值分布于-6.9‰-+7.3‰之间,并且呈波浪式分布;铅同位素组成以正常铅为主,并受异常铅的混染。硫,铅同位素具有相似的变化趋势。这些硫,铅同位素特征表明,该矿床成矿物质可能具有多种来源,除了直接来自玄武岩外,还有来自古海水硫酸盐和地层的贡献;该矿床的成因与玄武岩海底中心喷发有密切的关系。  相似文献   

17.
李毅  徐文忻  刘悟辉  李蘅  戴塔根 《地球学报》2005,26(Z1):168-170
对滇、黔、桂微细浸染型金矿硫化物进行硫、铅同位素测定,获得马雄、浪全、金牙、高龙、堂上等矿床206Pb/204Pb比值为17.636~19.530;207Pb/204Pb比值为15.451~16.092;208Pb/204Pb比值为37.871~40.854。用等时线斜率与铅同位素曲线关系剖析,矿床形成年代晚于矿床赋存层位,铅来源较为复杂。金牙矿床硫化物的δ34S值为15.3‰~15.6‰;板其矿床硫化物的δ34S值为-1.5‰~14.7‰;柴木函矿床硫化物的δ34S值为0.2‰~18.0‰;戈塘矿床硫化物的δ34S值为-29.2‰~5.0‰;丫他矿床硫化物的δ34S值为5.5‰~8.0‰,获得矿床有单一岩浆来源,单一海水(地层)来源和混合来源3种类型矿床。  相似文献   

18.
凡口铅锌矿床同位素地球化学证据   总被引:3,自引:0,他引:3  
汪礼明  徐文忻  李蘅  彭省临 《地球学报》2005,26(Z1):164-167
对凡口铅锌矿床不同成矿阶段进行矿物包裹体温度、硫和铅同位素测定,获得成矿第Ⅰ阶段温度为300±50℃,第Ⅱ、Ⅲ阶段温度为250±50℃;并获得矿床硫化物的S同位素组成为2.1‰~26.5‰,具有δ34SPy>δ34SSp>δ34SGn;第Ⅰ阶段硫化物的硫同位素组成随赋存层位由老到新硫同位素有逐渐减小趋势;第Ⅱ阶段硫化物的δ34S为14.3‰~23.8‰;第Ⅲ阶段硫化物的δ34S为5.7%~15.7‰,具有从早阶段至晚阶段硫同位素组成变化范围从大至小的减小趋势。分析获得68件铅同位素数据,其中硫化物的206Pb/204Pb比值为18.023~18.847;207Pb/204Pb比值为15.700~15.820;208Pb/204Pb比值为38.056~39.796。灰岩全岩的206Pb/204Pb比值为18.230~18.860;207Pb/204Pb比值为15.640~16.000;208Pb/204Pb比值为38.714~39.960。辉绿岩的206Pb/204Pb比值为18.570~18.650;207Pb/204Pb比值为15.260~15.620;208Pb/204Pb比值为38.650~38.960。第Ⅰ阶段δ34OH2O为13.3‰~13.1‰,δD为-50.2‰~-61.5‰;第Ⅱ阶段δ18OH2O为-2.4‰~+10.8‰,δD为-50.2‰~-63.2‰;第Ⅲ阶段δ18OH2O为-4.9‰~-14.3‰,δD为-59.0‰~-61.0‰。  相似文献   

19.
浙江西裘矿区新元古代火山-热泉活动强烈,矿石Cu:Zn:Pb原子百分比与火山岩和热水沉积硅质岩相似。矿床δ^34S值为-6.5‰~2.8‰,δ^18O值为8.14‰~22.32‰,铅同位素示踪主要为下地壳铅;矿石具较高的As、Sb、Bi、Ga、Zn、Ba等含量;具较低的Al/(Al+Fe=Mn)比值,Zn(Pb+Zn)比值接近1,均表现出火山-热泉沉积成矿地球化学特征。  相似文献   

20.
研究区的碳氧同位素组成表明,矿化灰岩和细晶灰岩的δ^13C为正值,其δ^18O值变化于-6.4‰~-21‰之间;而绝大多数矿石中碳酸盐矿物的δ^13C为负值,只有少数为正值,与其对应的δ^18O值为-12.3‰~-12.5‰。根据δ^13C-δ^18O图解分析,区分出了3种不同类型的碳同位素:(1)三叠纪海洋生物碳;(2)海相碳酸盐的碳与热卤水中碳的过渡类型;(3)深部热卤水中CO2的碳。研究发现  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号